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Abstract. The aim of the present study was to evaluate the 
changes in cervical cancer glucose metabolism for different 
levels of cellular differentiation. The metabolic activity 
was measured by standardized uptake value (SUV), SUV 
normalized to lean body mass, metabolic tumor volume and 
total lesion glycolysis using fluorine‑18 fluorodeoxyglucose 
positron emission tomography (PET). A correlation study of 
these values could be used to facilitate therapeutic choice and 
to improve clinical practice and outcome. This study consid-
ered 32 patients with diagnosed cervical cancers, at different 
International Federation of Gynecology and Obstetrics stages. 
Glucose metabolism was assessed by PET examination, and 
histological specimens were examined to determine their 
initial grade of differentiation. A correlation study of these 
values was evaluated. Histological examination showed that all 
cases were of squamous cell carcinoma. Regarding the differ-
entiation of the tumor, 19 well‑ to moderately‑differentiated 
tumors and 13 poorly‑differentiated tumors were determined. 
Negative findings for correlations between metabolic param-
eters and initial grade of histological differentiation were 
found, and considering that histological grade has been shown 
to have no consistent prognostic value in cervical cancer treat-
ment, PET imaging could play a significant role in cervical 
cancer prognosis.

Introduction

Cervical cancer is one of the most frequently occurring 
cancers in women and a significant cause of mortality with 

528,000 novel cancer cases and 266,000 cancer mortalities 
among females, worldwide in 2012. Despite advances in 
screening, cervical cancer remains a major health problem 
worldwide, with a high number of cases already at a locally 
advanced disease stage at presentation (1,2). The histological 
subtype that most commonly occurs in ~90% of cases is 
squamous cell carcinoma. Adenocarcinoma and adenosqua-
mous carcinoma with unusual histologies, such as sarcoma 
and lymphoma, are quite rare (~10% of cases) (3). Staging is 
mainly determined on the basis of tumor size in the cervix 
or in its extension into the pelvis. The current staging system 
is based on physical examination, but imaging used in addi-
tion to this provides more information regarding lesion size, 
adjacent organ invasion and distant metastases (4).

The International Federation of Gynecology and Obstetrics 
(FIGO) (5,6) defines clinical stages of cervical cancer based on 
the tumor size and extension, the involvement of regional lymph 
nodes and the presence of distant metastases (7). In addition, 
cervical cancer is classified into three grades based on histo-
logical criteria. The grading is a measure of cell differentiation 
in the tumor, based on the resemblance of the tumor to the tissue 
of origin. The grade describes the appearance of the cancerous 
cells as follows: Grade 1 (G1; well‑differentiated) and grade 2 
(G2; moderately‑differentiated) are the most common catego-
ries, whereas grade 3 (G3; poorly‑differentiated) indicates an 
aggressive tumor. In addition, certain references in the litera-
ture support the fact that grading does not play a significant 
role in the prognosis (8,9).

Positron emission tomography (PET) with fluorine‑18 fluo-
rodeoxyglucose (FDG) is an important tool for the diagnosis and 
staging of cervical cancer, providing metabolic information on 
the tumor (10). FDG‑PET images have a fundamental impact 
in numerous fields of oncology, as metabolic changes are often 
faster and more indicative of the effects of therapy with respect 
to morphological changes, providing a more rapid evaluation 
of the response to treatment  (11‑13). PET is used together 
with computed tomography (CT), as the low spatial resolution 
of PET limits its capability in the evaluation of the primary 
tumor and in the precise anatomical localization of regions of 
increased focal uptake. The introduction of integrated PET/CT 
scanners has overcome these limitations (14,15). In the clinical 
routine, PET lesions are analyzed using the standardized 
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uptake value (SUV), a semi‑quantitative parameter for 
discrimination between patients that respond or do not respond 
to treatment (16,17). Since 1999, the European Organization 
for Research and Treatment of Cancer (EORTC) has proposed 
metabolic criteria to evaluate the treatment response by PET 
imaging based on SUV (18). Therapy response can be assessed 
using CT images according to Response Evaluation Criteria in 
Solid Tumors (19), depending on tumor anatomical changes, 
but these criteria do not reflect metabolic changes. The tumors 
detected by morphological imaging can include non‑viable 
necrotic tissues. Thus, PET measurements can provide more 
accurate information than either CT, magnetic resonance 
imaging (MRI) or 3‑dimensional ultrasonography (3D US). In 
a recent review (20), the role of PET parameters in a number 
of cancer types, including cervical cancer, was studied. In 
particular, a low degree of FDG uptake may be associated 
with a good prognosis, as also confirmed by Kwee et al (21). 
The association between the FDG uptake degree and histology 
type was studied by Kidd et al (22), and it was concluded that 
the maximum SUV differed among the various subtypes of 
cervical cancer. Additional measures of tumor metabolic 
activity determined by PET images were proposed by 
Larson et al (23), including the volumetric measurement of 
tumor cells with increased FDG uptake. Metabolic volumes 
may be used both for treatment response monitoring and for 
target volume delineation in radiotherapy. Due to the nature 
of PET images (i.e., a low spatial resolution, high noise levels 
and weak boundaries), metabolic volume varies substantially 
depending on the algorithm used to delineate this. For this 
reason, various approaches for the metabolic volume calcula-
tion have been suggested (24). Visual delineation is the most 
commonly used technique in the clinical environment, as it is 
easily applicable, but it is also potentially inaccurate, as it is 
susceptible to the window level settings and subject to intra and 
inter‑operator variability. For visual delineation, the physician 
must correctly identify the lesion and have excellent contrast 
between tumor and normal tissues. For this reason, an operator 
and scanner independent segmentation method is mandatory 
to accurately define the metabolic volume (24). Kim et al (25) 
evaluated 45 patients with maximum SUV and metabolic tumor 
volume (MTV), and MTV proved to be an important inde-
pendent prognostic marker for disease‑free survival. In other 
published data (26), it was suggested that maximum SUV and 
MTV could predict overall survival, recurrence‑free survival 
and disease‑specific survival. Nevertheless, the measurement 
of PET volumes provides only volumetric information and 
does not assess metabolic activity; parameters that combine 
the volumetric and metabolic information, such as the total 
lesion glycolysis (TLG), can provide a better evaluation of 
prognosis. A number of studies have shown the usefulness of 
TLG as a predictive parameter to guide treatment decisions in 
different cancers (27‑31). Maximum SUV, MTV and TLG may 
be considered as predictive and risk stratification markers for 
the management of cervical cancer patients (4). The prognostic 
value of metabolic and volumetric PET parameters in cervical 
cancer was investigated in a study by Yoo et al (32), which 
showed that TLG may be a significant independent prognostic 
factor for event‑free survival and that it may be considered 
more effective than the other PET parameters in determining 
patient prognosis. In another study by Miccò  et  al  (33), 

MTV and TLG were associated with high‑risk features and 
were indicated to serve as prognostic biomarkers of survival 
in patients with cervical cancer. Finally, previous studies 
assessed the usefulness of PET studies in cervical carcinoma 
staging and showed that high FDG uptake does not correlate 
with the initial grade of histological differentiation (34,35). As 
the grade has no consistent prognostic value in cervical cancer 
treatment (8,9), FDG uptake‑based parameters could provide a 
better evaluation of the prognosis in cervical cancer.

 The aim of the present study was to evaluate the correlation 
between the PET parameters and the different levels of differ-
entiation in patients with cervical cancer. This study could be 
useful for detecting PET prognostic factors that affect patient 
management decisions, improving the clinical outcome.

Patients and methods

Patients. This study considered data from 32 patients, aged 
24‑69 years, who were diagnosed with cervical cancer at 
FIGO stages IB‑IVB. The patients were recruited between 
July 2011 and July 2012 at the Department of Gynecology, 
Cannizzaro Hospital (Catania, Italy). Pre‑treatment evaluation 
included taking the patient's history, a physical examination, 
a vaginal‑pelvic examination, a cervical biopsy and complete 
blood analysis. Tumor extension was assessed clinically by 
abdominal MRI, 3D US and PET examinations. Histological 
specimens were also examined to determine the initial grade 
of differentiation. Diagnosis and grading were rendered 
according to World Health Organization criteria (36).

PET/CT imaging. PET/CT examinations were performed at 
Cannizzaro Hospital using the Discovery 690 system with 
time‑of‑flight (GE Healthcare, Little Chalfont, UK) and the 
Gemini GXL system (Philips Healthcare, Surrey, UK). The 
weight of each patient was measured on the day of the PET/CT 
scan. The actual injected and residual radioactive doses of the 
radiotracer were measured.

For Discovery 690 system examinations, patients fasted for 
6 h prior to the PET/CT scans, and only patients with a serum 
glucose level of <200 mg/dl were injected intravenously with 
FDG (37 MBq/10 kg). PET/CT acquisition started 50‑60 min 
after injection. Patients were positioned with their arms raised 
during the PET/CT examinations. All studies were performed 
according to a standard protocol, scanning from the top of 
the skull to the middle of the thigh, which included a scout 
scan at 10 mA, a CT scan at 120 kVp and 50‑120 mA, and a 
3D whole‑body PET scan (2 min/bed position). PET images 
were reconstructed using the 3D ordered subset expectation 
maximization algorithm optimized to time‑of‑flight, with 
corrections for random, scatter and attenuation. For each 
bed position, the CT volume consisted of 512x512 voxels of 
1.36x1.36x3.75 mm3 in size, while the PET image volume 
consisted of 256x256 voxels of 2.73x2.73x3.27 mm3 in size.

For Gemini system analysis, the patients fasted for 6 h prior 
to PET/CT scans being performed, and only patients with a 
serum glucose level of <200 mg/dl were injected intravenously 
with FDG (3 MBq/kg of body weight, normalized to body 
mass index, with a minimum of 148 MBq and a maximum of 
296 MBq). The weight of each patient was measured on the 
same weighing machine on the day of the PET/CT scan. The 
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actual injected and residual radioactive doses were measured 
by a dose measurement system. PET/CT acquisition started 
50‑60 min after radiotracer injection. Patients were positioned 
with their arms raised and were allowed to breathe normally 
during the PET/CT examinations. All studies were performed 
according to a standard protocol, scanning from the top of 
the skull to the middle of the thigh, which included a scout 
scan at 20 mA, a CT scan at 120 kVp and 60 mA, and a 3D 
whole‑body PET scan (2 min/bed position). PET images were 
reconstructed using the line of response row action maximum 
likelihood algorithm, with corrections for random, scatter and 
attenuation. For each bed position, the CT volume consisted 
of 512x512 voxels of 1.17x1.17x5 mm3 in size, while the PET 
image volume consisted of 144x144 voxels of 4x4x4 mm3 in 
size.

PET/CT data analysis. Maximum SUV normalized to body 
weight (SUVmax), SUV normalized to lean body mass (SUL), 
MTV and TLG were determined from FDG‑PET images in 
the primary cervical tumor of each patient.

Volumetric and semi‑quantitative parameters were 
extracted using a software package that has been developed 
and implemented ‘ad hoc’ by our group to assess treatment 
response in oncological patients: PET parameters were 
measured on the lesions that had previously been identified as 
suspicious by visual analysis using our automatic segmenta-
tion algorithm based on random walks on graphs (37). The 
nuclear medicine physician interactively selected the PET 
region with uptake higher than the background, excluding any 
physiological uptake findings, by clicking on the image. Lesion 
contour was automatically plotted, and MTV was calculated. 
SUVmax was obtained from the maximum pixel value in the 
MTV (18). SUL was obtained as the SUV normalized to lean 
body mass calculated as the average within a 1‑cm3 spherical 
volume of interest, centered on the portion of the lesion with 
the highest uptake, according to the PET Response Criteria In 
Solid Tumors (PERCIST) (11). Finally, TLG, which combines 
the volumetric and metabolic information of PET lesions, was 
calculated as the product of the MTV with its mean SUV (23).

Statistical data analysis. To compare tumor aggressiveness 
resulting from PET quantitative values and histological exami-
nations, Student's t‑test was used. Student's t‑test was therefore 
performed to compare SUVmax, SUL and MTV for each of 
the degrees of differentiation. To find eventual correlations 
between uptake values and histological grade, Spearman's 
correlation coefficient was used. Regression analysis was 
applied for comparing PET volumetric measurements (MTV 
and TLG) with semi‑quantitative measurements (SUVmax 
and SUL). P<0.05 was considered to indicate a statistically 
significant difference. Statistical evaluations were performed 
using MedCalc software, version 12.3.0.0 (Frank Schoonjans, 
Mariakerke, Belgium).

Results

Patients and lesion characteristics. Tumors were graded into 
G1, G2, G3 according to well defined criteria (38). Examina-
tions determined 19 well to moderately‑differentiated tumors 
(1 G1 and 18 G2) and 13 poorly‑differentiated tumors (G3). 

All patients presented with squamous cell carcinoma and 
the majority of patients (87.5%) had FIGO stage IIB disease 
(Table I).

Analysis of PET images (8 examinations performed using 
the Discovery 690 system and 24 using the Gemini GXL) showed 
an SUVmax of 15±3.92 (range, 8.14‑23.93; median, 14.72), an 
SUL of 10.30±2.37 (range, 6.28‑16.74; median, 10.35), an MTV 
of 43.92±327.90 ml (range, 7.87‑109.49 ml; median, 33.8 ml) 
and a TLG of 328.5±2208.99 ml (range, 45.75‑782.77 ml; 
median, 269.06 ml). Representative PET images for three 
patient studies are shown in Fig. 1. 

Correlation analysis. Fig. 2 shows the scatter plots for PET 
values and grade of histological differentiation. Student's 
t‑test for unpaired data was used for comparing the mean 
SUVmax for the two levels of tumor differentiation (well‑ to 
moderately‑differentiated vs. poorly‑differentiated). The 
t‑test gave a P‑value of >0.05 (P=0.9536), thus there was 
no significant difference in the SUVmax of well‑ to moder-
ately‑differentiated and poorly‑differentiated cervical tumors. 
Student's t‑test showed no significant difference for SUL 
vs. grading (P=0.7952), for MTV vs. grading (P=0.9049) or 
for TLG vs. grading (P=0.8335).

The mean SUVmax was 15.43±4.56  for well‑  to 
moderately‑differentiated cervical tumors and 15.34±4.42 for 
poorly‑differentiated tumors. The mean SUL was 9.53±2.84 for 
G1 and G2, and 9.28±2.36  for G3. The mean MTV was 
44.42±28.71 ml for well‑ to moderately‑differentiated cervical 
tumors and 43.19±27.81 ml for poorly‑differentiated tumors. 
The mean TLG was 335.08±215.91 ml for G1 and G2, and 
318.88±206.73 ml for G3.

No positive association was found with Spearman's corre-
lation coefficients or rank correlation between SUVmax and 
grade of histological differentiation (P=0.8957; rho=0.024), 
between SUL and histological grade (P=0.9701; rho=0.007), 
or between MTV and histological grade (P=0.8957, rho=-
0.024), or between TLG and histological grade (P=0.8957, 

Table I. Patient characteristics.

Characteristic	 Value

Age, years
  Mean	 50.31
  Range	 24‑69
Histology, n (%)
  Squamous cell carcinoma	   32 (100.00)
FIGO stage, n (%)
  I	 1 (3.13)
  II	 28 (87.50)
  III	 1 (3.13)
  IV	 2 (6.25)
Tumor grade, n (%)
  Well‑ to moderately-differentiated	 19 (59.38)
  Poorly‑differentiated	 13 (40.63)

FIGO, International Federation of Gynecology and Obstetrics.
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rho=-0.024).It was concluded that there is no significant corre-
lation between uptake values and the grade of histological 
differentiation.

Regression analysis was used to describe the associa-
tion between SUVmax and MTV (R2<0.00001) (Fig. 3), and 

Figure 2. (A) Scatter plot comparing SUVmax and grade of histological 
differentiation (mean difference, ‑0.095; 95% CI, ‑3.4066‑3.2161; t=‑0.0587; 
df=30; P=0.9536). (B) Scatter plot comparing SUL and grade of histological 
differentiation (mean difference, ‑0.2507; 95% CI, ‑2.2057‑1.7043; t=‑0.262; 
df=30; P=0.7952). (C) Scatter plot comparing MTV and grade of histological 
differentiation (mean difference, ‑1.23; 95% CI, ‑22.0711‑19.6111; t=‑0.121; 
df=30; P=0.9049). SUVmax, maximum standardized uptake value; SUL, 
SUV normalized to lean body mass; MTV, metabolic tumor volume; CI, 
confidence interval; df, degrees of freedom.

Figure 3. Regression plot comparing the association between SUVmax and 
PET tumor volume. SUVmax, maximum standardized uptake value; MTV, 
metabolic tumor volume.

Figure 1. Three representative positron emission tomography/computed tomography image slices. FIGO stage, grade of histological differentiation, SUVmax,  
SUL, MTV and TLG were determined for each patient: (A) FIGO IIB, G3, SUVmax=14.20, SUL=8.96, MTV=17.81cc, TLG=108.40. (B) FIGO IIIB, G2, 
SUVmax=15.40, SUL=10.34, MTV=57.36cc, TLG=487.62. (C) FIGO IIB, G3, SUVmax=17.82, SUL=9.53, MTV=27.4cc, TLG=245.68. Segmentation results 
(blue contour) are also shown. FIGO, International Federation of Gynecology and Obstetrics; SUVmax, maximum standardized uptake value; SUL, SUV 
normalized to lean body mass; MTV, metabolic tumor volume; TLG, total lesion glycolysis.

Figure 4. Regression plot comparing the association between SUL and PET 
tumor volume. SUL, standardized uptake value normalized to lean body 
mass; MTV, metabolic tumor volume.

  A

  B

  C
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between SUL and MTV (R2<0.00001) (Fig. 4). In each case, 
there was no correlation. The association between TLG 
and SUVmax (Fig. 5), and between TLG and SUL (Fig. 6) 
also showed no correlation. In addition, no correlation was 
found between grade and PET parameters when considering 
the following subgroups separately: i) 28 patients with the 
prevailing FIGO stage (IIB) (P>0.60); ii) 24 patients under-
going PET examination using the Gemini GXL (P>0.14); and 
iii) 8 patients undergoing PET examination using the Discovery 
690 system (P>0.58); only the SUL and grading comparison 
showed a P‑value of <0.05 (P=0.039). This correlation should 
be further investigated in a larger sample.

Discussion

Medical imaging plays an important role in the assessment of 
patients with cervical cancer, from the diagnosis to the evalu-
ation of the disease extent. The traditional prognostic factors, 
including lymph node metastasis, parametrial invasion, lesion 
size and tumor differentiation, provide significant clinical 
and pathological information. Therefore, certain studies 

have shown that PET imaging is useful for the assessment 
of prognosis in cervical cancer patients, by identifying the 
primary tumor and potential distant metastases, and allowing 
the risk stratification of patients (4,10,32,33). Research efforts 
have focused on the identification of novel PET prognostic 
factors: An accurate prediction of prognosis is important, as it 
affects patient management decisions. In the clinical routine, 
PET images are analyzed semi‑quantitatively using the SUV, 
a potential predictive biomarker for discrimination between 
patients who respond to treatment and those who do not. A 
number of studies have suggested that SUV is associated with 
prognosis in patients with cervical cancer (4,33,39‑41). In a 
study by Xue et al (42), the avidity of FDG uptake in primary 
cervical tumors was a predictor of survival outcome. Tumors 
that had a high SUVmax had a worse survival outcome 
than those with a low SUVmax. These findings suggest 
that patients with a high SUV may be at increased risk for 
disease recurrence and may benefit from more aggressive 
therapy. SUVmax is often considered the best measure of 
tumor uptake when considering that it is the most resistant to 
partial volume effect and is operator‑independent (43), but it 
is highly variable due to the high noise level in PET data. In 
addition, SUVmax corresponds to the maximum pixel value 
in the lesion, and a single pixel may not be representative 
of the overall lesion uptake (16). For this reason, the study 
of alternative PET parameters could be useful. PERCIST 
introduces the SUL obtained from a fixed region of interest, 
obtaining an average of multiple pixel data, to remove 
interobserver variation and noise susceptibility. In addition, 
the use of volumetric parameters, as MTV and TLG, should 
be mandatory. The identification of effective PET prognostic 
factors can be obtained using a standardized PET imaging 
protocol consistent with the National Cancer Institute recom-
mendations (44) and those of the Netherlands multicenter 
trial group, on well‑calibrated and well‑maintained PET 
scanners (45). In addition, in the evaluation of patients with 
gynecological malignancies, the role of PET parameters 
correlated with histological results may become central for an 
accurate diagnosis in order to achieve better treatment selec-
tion and planning.

The purpose of the present study was to investigate the 
association between initial histological grade and potential 
PET prognostic factors in 32 patients with cervical cancer at 
FIGO stages IB‑IVB. The evaluation included physical and 
vaginal‑pelvic examinations, a cervical biopsy, and MRI, 3D 
US and PET examinations prior to treatment. 

Through the statistical tests, the present study found 
that PET values in the primary cervical tumor were not 
correlated with the initial grade of histological differentia-
tion, independent of the PET system and the FIGO staging. 
Only the comparison between SUL and grading differen-
tiation showed a P‑value of <0.05 in 8 patients undergoing 
PET Discovery 690 system examination. Nevertheless, this 
correlation should be verified on a larger study considering 
the small sample size. The usefulness of FDG‑PET in the 
staging of squamous cervical carcinoma has already been 
studied and shows a high accumulation of FDG, but no 
correlation with the initial grade of histological differentia-
tion (34,35), as confirmed by the present study: Metabolic and 
volumetric measurements of FDG uptake did not result in 

Figure 5. Regression plot comparing the association between cervical SUV 
and TLG. SUVmax, maximum standardized uptake value; TLG, total lesion 
glycolysis.

Figure 6. Regression plot comparing the association between cervical SUL 
and TLG. SUL, standardized uptake value normalized to lean body mass; 
TLG, total lesion glycolysis.
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a direct assessment of cervical cancer grade. As the grade 
has no consistent prognostic value in cervical cancer treat-
ments, as reported in the literature  (8,9), PET parameters 
could provide a better evaluation of the prognosis. However, 
the present correlation results differ from those of previously 
published data. In a recent study (46), the quantitative analysis 
of PET/MRI results revealed a significant correlation between 
SUV and differentiation grade, which was in accordance 
with the results of the study by Kurokawa et al (47). In one 
study (25), the MTV was compared with pathological and 
clinical prognostic factors in 45 patients with stage IA‑IIB 
cervical cancer. Statistical analysis showed that MTV was 
a better predictor of disease‑free survival than traditional 
prognostic factors. It was suggested that patients with a high 
MTV may benefit from more aggressive treatment. In addi-
tion, MTV significantly differed among the groups according 
to tumor differentiation. MTV represents the metabolic extent 
of the oncological lesion and the size of the viable tumor 
cells, while TLG combines volumetric and SUV information, 
providing a better evaluation of the prognosis. TLG therefore 
appears to be of greater importance for patient prognosis in 
patients with cervical cancer (32).

The presence of contrasting results indicates that this is 
a complex field of research that requires prospective studies 
with a larger number of patients to evaluate the prognostic 
usefulness of metabolic and volumetric PET parameters. 
The main limitation of the present study is the low number 
of patients used to describe the possible correlation between 
histological grade and PET parameters in cervical carcinoma. 
This limitation is due to the requirement for a multidisci-
plinary team. Taking into consideration the importance 
that this study can have with regard to oncological patient 
management, additional analyses, such as randomized trials 
and larger studies, are required. In addition, further inves-
tigations should be performed monitoring the treatment 
response of these patients (48), defined as complete, partial, 
stable or progressive according to metabolic criteria such as 
EORTC and PERCIST, as well as MTV and TLG percentage 
changes.

Another limitation of the present study is the arbitrary 
choice of the segmentation method used to delineate the 
MTV. The MTV and consequently, the TLG, vary substan-
tially depending on the algorithm used to delineate metabolic 
lesions, due to the low contrast and high noise level of PET 
images. An accurate and robust segmentation method is 
mandatory, as manual delineation is a prohibitively laborious 
task and considerable variations may occur among nuclear 
medicine physicians. Several semi‑automatic methods have 
been proposed in the literature for MTV delineation and the 
choice of a standard method is a challenging yet unresolved 
step. For this reason, our automatic segmentation algorithm 
based on random walks on graphs was used (37).

The aim of the present study was to investigate the poten-
tial correlation between PET parameters and the initial grade 
of histological differentiation in cervical cancer. Negative 
findings were found independently of the PET system and 
the FIGO staging, and since the histological grade has no 
consistent prognostic value in cervical cancer treatment, PET 
imaging could play a significant role in cervical cancer prog-
nosis, impacting patient management decisions.
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