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Abstract
The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which

regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in

particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal

sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and

delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent

motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus

solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The

purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory

synapse and its role in regulating vagally determined gastric functions.
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Introduction

Appropriate gastrointestinal (GI) functions are critical for a
variety of factors including nutrient absorption, satiety sig-
naling, and energy homeostasis but also for drug absorption
and delivery. GI dysfunctions (examples in Table 1 left)
often accompany, and potentially exacerbate, other under-
lying diseases (examples in Table 1 right). Almost 45% of the
US population report upper GI symptoms, yet treatments
are often less than effective because of a lack of understand-
ing of underlying pathophysiology and appropriate thera-
peutic interventions.1–4

While the GI tract possesses intrinsic neural plexuses that
allow a significant degree of independent control over GI
functions, the central nervous system (CNS) provides
extrinsic neural inputs that regulate and modulate these
functions. The esophagus and stomach, in particular, are
more dependent upon extrinsic neural inputs; the sympa-
thetic nervous system exerts predominately inhibitory
effects upon GI smooth muscle and mucosal secretion
while also regulating blood flow via vasoconstriction.
The parasympathetic nervous system, in contrast, exerts
both excitatory and inhibitory control over GI motility and
tone and removal of this parasympathetic innervation
results in disorganized and disrupted motility patterns
that often induce nausea, vomiting, abdominal pain, and
discomfort.5

The parasympathetic innervation to the GI tract is pro-
vided by the vagus nerve. Vagal sensory and motor circuits
provide a pathway for communication between the GI tract
and the CNS which allows the integration, modulation, and
synchronization of digestive processes. The sensory (affer-
ent) limb of this circuit has been studied more frequently,
and its role in various pathologies including obesity, dia-
betes, gastritis, gastric ulcer and inflammation is better
understood.6–14 The aim of this review, however, is to exam-
ine the less well described motor (efferent) limb and, more
importantly, the functionally dominant inhibitory synaptic
input onto vagal efferent motoneurons, which ultimately
determines vagally modulated gastric functions.

Vagal sensorimotor neurocircuits

The peripheral terminals of vagal afferents innervate all
layers of the GI tract and their anatomy and morphology
influence the modality of their response (chemical, osmotic,
mechanical etc.15). The cell bodies of these afferents, located
in the nodose ganglion, are pseudounipolar neurons whose
central terminals have glutamatergic inputs onto the
nucleus tractus solitarius (NTS) in the brainstem,5,16,17 a pri-
mary site for neuronal integration. The NTS, for example,
has reciprocal connections with the parabrachial nucleus,
the hypothalamus, the periaqueductal gray area, and the
central nucleus of the amygdala, and also receives inputs
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from the raphe, trigeminal, and vestibular nuclei, the area
postrema, spinal cord, and prefrontal cortex.5 In terms of
vagal efferent control of the GI tract, the NTS relays this
integrated signal to the adjacent dorsal motor nucleus of
the vagus (DMV) using primarily GABAergic, glutamater-
gic, and catecholaminergic projections.18–21

Gastric motility is influenced heavily by the efferent
(motor) output of DMV neurons. While DMV neurons are
pacemakers, having a low intrinsic level of spontaneous
action potential firing21, their activity and excitability are
regulated heavily by synaptic inputs, particularly inputs
from the NTS. Retrograde tracing experiments suggest
that, rather than being organized viscerotopically, the
DMV is organized in rostro-caudal ‘‘columns,’’ each of
which contains the motoneurons that innervate the sub-
diaphragmatic viscera through one of the five subdiaphrag-
matic vagal branches: anterior gastric, posterior gastric,
hepatic, celiac, and accessory celiac.22–24 In general, the
medial and lateral portions of the DMV contain neurons
innervating the more proximal and distal GI organs,
respectively.25 As preganglionic parasympathetic neurons,
the overwhelming majority of DMV neurons are choliner-
gic.26 They belong, however, to one of the two pathways; an
excitatory, cholinergic or an inhibitory, non-adrenergic,
non-cholinergic, (NANC) pathway, determined by the post-
ganglionic neurons they synapse onto within the enteric
nervous system. The excitatory cholinergic pathway
releases acetylcholine which activates muscarinic receptors
on GI smooth muscle to increase motility and tone, while
the inhibitory NANC pathway releases either nitric oxide
(NO) or vasoactive intestinal peptide (VIP) to decrease
motility and tone.27 A decrease in gastric motility can
occur, therefore, by either inhibiting the excitatory cholin-
ergic pathway or activating the inhibitory NANC pathway.

Gastroexcitatory neurons appear to be located in the
more rostral and medial divisions of the DMV, while

gastroinhibitory neurons appear to be located in more ros-
trolateral and caudomedial areas of the DMV.28,29 The exci-
tatory cholinergic pathway is active tonically; hence, the
upper GI tract receives an ongoing level of excitatory activ-
ity. Previous studies have demonstrated, however, that
microinjections of the non-selective ionotropic glutamater-
gic receptor antagonist, kynurenic acid, into the dorsal
vagal complex (i.e., NTS, DMV and area postrema) had
little to no effect on gastric motility, while microinjection
of the GABAA receptor antagonist, bicuculline, caused
large increases in gastric tone and motility. This suggests
that the vagal efferent output of DMV neurons is sup-
pressed by a tonic inhibitory GABAergic input.
Disruption of this influential central GABA input, therefore,
has a significant effect on vagal efferent output and gastric
functions.20,27,30

GABAergic signaling in vagal neurocircuits

In mature DMV neurons, both phasic (synaptic) and tonic
(extrasynaptic) GABA currents modulate the excitability
and activity of vagal efferent motoneurons.21,30,31 Phasic
and tonic GABA-dependent currents are associated with
the activation of receptors with different receptor subunit
compositions and locations on the postsynaptic membrane.
GABAA receptors are heteropentameric, consisting of two
a, two b, and an additional d or c subunit. GABAA receptors
containing the c subunit, for example, are located predom-
inately within the synapse and are associated with transi-
ent, phasic inhibition of neurons.32 Phasic GABAA currents
occur during synaptic transmission involving release of
high concentrations of GABA which induces a short-term
inhibitory postsynaptic current (IPSC) in the postsynaptic
neuron. In contrast, GABAA receptors containing the d sub-
unit are frequently expressed peri- and extra-synaptically,
and are associated with long lasting, slow, tonic inhibition
of neurons.32 Tonic GABAA currents occur in response to
diffusion of GABA from the synaptic cleft; low extracellular
GABA concentrations can activate extrasynaptic receptors
which are responsible, in part, for narrowing the temporal-
spatial window in which integration of excitatory postsy-
naptic potentials (EPSC) can lead to action potential firing.32

In DMV neurons, this extrasynaptic tonic GABAergic cur-
rent constitutes the overwhelming majority of the total
GABAA receptor-dependent inhibition,31 suggesting that
volume transmission plays a critical role in determining
the excitability of vagal efferent neurons. The origin of
GABA activating tonic receptors has been suggested to be
completely dependent on action potential-dependent ves-
icular release in juvenile rats, but does not always require
an action potential in mature neurons, suggesting a non-
vesicular source of GABA that has not yet been identified.32

Previous studies have also shown that GABA trans-
porters (GATs) influence the extent to which GABA can
act upon extrasynaptic DMV GABAA receptors. GATs are
Na-Cl symporters that regulate neuronal excitability by
modulating extracellular GABA concentration via reuptake
of GABA into the pre-synaptic neuron (GAT1) or surround-
ing glial cells (GAT2/3). These transporters assist in the
termination of synaptic transmission, limit the amount of

Table 1 Examples of physiology and pathophysiology of vagally

dependent visceral functions

Selected vagally dependent

gastrointestinal functions

Selected diseases associated

with altered vagally dependent

functions

Swallowing Dysphagia and achalasia

Gastric motility, and emptying Nausea and vomiting

Gastric acid secretion Delayed gastric emptying and

gastroparesis

Receptive relaxation; gastric

accommodation

Diabetic gastropathy (Type 1

and 2 diabetes)

Intestinal motility Functional dyspepsia

Pancreatic exocrine and endo-

crine secretion

Early satiety

Satiation and regulation of food

intake

Gastric ulcers

Cholinergic anti-inflammatory

reflex

Acute pancreatitis

Irritable bowel syndrome

Neurological disorders such as

Parkinson’s disease
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GABA spillover from synapses, and are responsible for
determining extracellular GABA concentration.33–35 Tonic
GABAA receptors are located peri- and extra-synaptically
and their activation reflects extracellular GABA concentra-
tion; the activity of GATs, therefore, strongly influences the
overall inhibition of DMV neurons.36 Although GABAergic
synapses tend to resist modulation, GABA conductance,
hence neuronal excitability, can be altered by changes in
neurotransmitter diffusion, location and activity of GATs,
activation and location of astrocytes/glia, expression of
extrasynaptic receptors, cell maturity amongst other
factors.33–35,37

Modulation of GABAergic synaptic transmission

Previous studies from this, and other, laboratories, have
demonstrated that, under normal conditions, GABAergic
synaptic transmission to DMV neurons is relatively resist-
ant to modulation.38–43 In a series of studies, we demon-
strated that the underlying reason for this lack of synaptic
modulation is the low level of cAMP-PKA activity within
inhibitory synaptic terminals impinging upon DMV neu-
rons. Further, the low ‘‘state of activation’’ of these inhibi-
tory terminals is due to tonic activation of presynaptic
group II metabotropic glutamate receptors (mGluRs) by
glutamate released from vagal afferents which make mono-
synaptic connections with these inhibitory GABAergic ter-
minals.44,45 Overcoming this tonic inhibition, either by
removal of vagal afferent inputs, antagonism of presynaptic
mGluRs, or by activation of adenylate cyclase directly,
allows modulation of GABAergic synaptic transmission
by a variety of neurotransmitters and neuromodulators
including 5-HT, �-opioid peptides, NPY and PYY, oxytocin
(OXT) and insulin amongst others.38–43 Thus, by increasing
activity of the cAMP-PKA second messenger pathway,
inhibitory GABAergic synaptic inputs are more susceptible
to modulation. By consequence, this results in an increase in
availability of presynaptic receptors, which enables the pre-
viously unresponsive synapse to be sensitive to neurotrans-
mitters, neuromodulators, or neurohormones. By
consequence, the amount of GABA released is altered,
hence postsynaptic DMV neuronal excitability is regulated.
In contrast, glutamatergic terminals impinging upon DMV
neurons appear to have relatively elevated endogenous
activity of cAMP-PKA pathways, due to the lack of tonic
activation of presynaptic mGluRs; hence, glutamatergic
synaptic transmission appears to be always open to
modulation.39,46–48

Physiological and pathophysiological modulation of
GABAergic synaptic transmission

From a physiological perspective, the activity of vagal effer-
ent motoneurons, hence vagal efferent control of gastric
motility and tone, is dependent upon prevailing circum-
stances that may affect cAMP-PKA levels within inhibitory
GABAergic vagal neurocircuits. Following a meal, for
example, GI neurohormones such as cholecystokinin
(CCK) and glucagon-like peptide 1 (GLP-1) are released
from enteroendocrine cells lining the intestinal mucosa
and activate the peripheral terminals of vagal afferents.49,50

Such GI neurohormones also enter the circulation, and it
should be noted that the DVC is known to be a circumven-
tricular organ being surrounded by a leaky blood–brain
barrier with permeable fenestrated capillaries.51,52 Thus,
neurons and terminals within the DVC are more vulnerable
to peripheral circulating factors and are, indeed, activated
by peripheral neurohormones such as CCK.53 Recent stu-
dies have also shown that the ability of exogenous applica-
tion of insulin to modulate synaptic transmission to DMV
neurons in brainstem slice preparations is dependent upon
second messenger levels; whether systemic, circulating
insulin is capable of the same modulation remains to be
elucidated. While, under basal conditions, glutamatergic
transmission is decreased by insulin, GABAergic neurons
are not initially sensitive to insulin due to low cAMP-PKA
levels.38 After an increase in cAMP-PKA activity, however,
insulin decreases GABAergic transmission to gastric-
projecting DMV neurons, suggesting that vagal efferent
activity, hence gastric functions, will synchronize with feed-
ing/fasting cycles due to the fluctuating levels of hormone
and neurohormone/neurotransmitter release. In Type 1
diabetes, however, the absence of insulin may contribute
to the lack of appropriate inhibition of this synapse; in add-
ition, recent studies have demonstrated that expression of
tonic GABAA receptors on the membrane surface of DMV
neurons of diabetic mice is elevated, further increasing the
overall inhibition of the postsynaptic neuron.38,43,54

Increased GABAergic signaling onto DMV neurons control-
ling visceral functions would be expected to decrease vagal
efferent outflow to several visceral organs including the
stomach, pancreas, liver, small intestine, and proximal
large intestine. These findings may partly explain the symp-
toms such as gastroparesis and decreased gastric emptying
often seen in Type I and Type II diabetic patients.

Stress is known to exert quite profound effects upon gas-
tric functions via actions at both central and peripheral
sites.55–57 Previous studies have shown that exposure of
DMV neurons to corticotropin releasing factor (CRF) is
associated with an increase in the cAMP-PKA pathway,58

modulation of inhibitory GABAergic neurotransmission in
DMV neurons, and a decrease in gastric tone and motility
(Lewis et al., 2002).98 The hypothalamic anti-stress neuro-
peptide, OXT, normally inhibits DMV neurons, decreasing
in gastric tone and motility; after exposure to CRF, however,
OXT inhibits GABAergic transmission, attenuating, or in
some cases reversing, the CRF-induced decrease in gastric
tone and motility. These studies suggest that CRF modifies
the ability of OXT to modulate GABAergic synaptic trans-
mission to DMV neurons, possibly acting to self-regulating
the response to central vagal neurocircuits to stress.5

Theoretically, the activity of vagal (sensory) afferent
inputs will also modulate DMV neuronal activity via activa-
tion of presynaptic mGluRs which dampens cAMP levels in
inhibitory GABAergic synaptic terminals. Metabotropic glu-
tamate receptors have a much higher affinity for glutamate
compared to ionotropic receptors;59,60 ongoing vagal afferent
activity may ensure that sufficient glutamate is released to
activate presynaptic mGluRs, even under basal conditions.
The excitability and responsiveness of vagal afferent neurons
are known to be decreased by diet-induced obesity8,10,61–63 as
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well as diabetes;12,64–66 it remains to be determined, however,
whether this decrease in activity is sufficient to alter the acti-
vation of central mGluRs, and hence inhibitory neurotrans-
mission and the activity of vagal efferent motoneurons. It
should be noted, however, that in rats exposed to a high-
fat diet from embryonic day 13 onwards, GABAergic trans-
mission to gastric-projecting DMV neurons was able to be
modulated even prior to elevation of cAMP levels, suggest-
ing a possible alteration in vagal afferent dependent-activa-
tion of mGluRs.67

In addition to alterations in gastric functions, disturbances
of tonic GABAA inhibition are also associated with a wide
range of psychiatric, neurological and neurodevelopmental
conditions including autism spectrum disorder, depression,
and cognitive impairments.68–70 Benzodiazepines, barbitur-
ates, ethanol, and neurosteroids, such as estrogen, all act as
allosteric modulators of GABAA receptor efficacy and/or
affinity and therefore exert control over this inhibitory net-
work.71,72 Low concentrations of ethanol, for example,
enhance GABAA receptor activation, whereas high concen-
trations of ethanol can activate the receptor independently of
GABA.73 Thus, even in the absence of alterations in GABAA

receptor number or distribution, DMV neurons may respond
differently when exposed to these factors, modulating vagal
efferent output and with respect to the focus of this review,
alter gastric functions.

Developmental modulation of inhibitory
neurotransmission in vagal neurocircuits

Is it possible that some of these physiological alterations
observed in inhibitory signaling in the brainstem of rats
and mice have a developmental origin? Vagal sensory neu-
rocircuits begin development around embryonic day 13
(E13), vagal motoneurons innervating the GI tract can be
identified by E14, and central vagal nuclei appear mature
by E18.74–76 Immature neurons have several different char-
acteristics, which are suggested to play an important role in
neuronal migration, dendritic arborization, and the forma-
tion of synapses.70,77 Several immunohistochemical and
functional studies have demonstrated, however, that vagal
neurocircuits continue to undergo a considerable degree of
synaptogenesis, synaptic pruning, and reorganization post-
natally, and do not appear fully mature until postnatal day
22–28.74,78,79 Inhibitory brainstem neurosignaling develops
during mid-gestation and matures, in rats, around the end
of the second postnatal week. During early development,
brainstem inhibitory terminals are mixed GABA-glycine
synapses.80 At birth, an increase in GABA axon terminals
and the appearance of mixed GABA/glycine axon terminals
in the lateral NTS suggests changes in synaptic processing of
visceral information in the lateral NTS during postnatal
development and is extended into adult neurons;80 in the
adult, however, functional studies have all shown clearly
that inhibitory synapses to gastric-projecting DMV neurons

NTS

DMV
GABAGlu

NANC inhibitory pathway

ACh excitatory pathway

Kynurenic acid (Glutamate 
antagonist) microinjection into 

DMV

Bicuculline (GABAA

antagonist) microinjection into 
DMV

Microinjection

Effects on Gastric Motility
Glu

Figure 1 Summary schematic diagram illustrating the prominent role of brainstem GABAergic transmission in regulating vago-vagal reflex control of the stomach.

Vagal afferent (sensory; blue) fibers innervating the GI tract transduce and relay signals centrally; the cell bodies of these sensory neurons lie within the paired nodose

ganglia and their central terminals enter the brainstem via the tractus solitarius and terminate within the nucleus tractus solitarius (NTS) using predominately glutamate

(Glu; green) as their neurotransmitter. NTS neurons integrate these visceral sensory signals with those from other brainstem and higher CNS nuclei involved in

autonomic homeostatic control and relay the integrated signal to the adjacent dorsal motor nucleus of the vagus (DMV) using Glu and GABA (red) as neurotransmitters.

The critical role of GABAergic signaling to regulate DMV neuronal activity is illustrated by the accompanying gastric motility traces, recorded using miniaturized strain

gauges affixed to the ventral surface of the gastric corpus. Note that following microinjection of the non-selective ionotropic glutamate antagonist, kynurenic acid, there

was very little change in gastric motility or tone. In contrast, following microinjection of the GABAA receptor antagonist, bicuculline, gastric motility and tone increased

dramatically, demonstrating that DMV neurons are under a tonic inhibitory, GABAergic drive.27 (A color version of this figure is available in the online journal.)
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utilize only GABA.18,21,31,78 Thus, there appears to be a devel-
opmental loss of glycinergic transmission in central GI vagal
neurocircuits. DMV neurons innervating the GI tract appear
to still express functional glycine receptors,81 suggesting a
‘‘developmental dissociation’’ between the loss of glycine
as a neurotransmitter but the retention of postsynaptic gly-
cine receptors similar to that reported in other mature central
neurons.82,83 Glycine is well recognized as a principal inhibi-
tory neurotransmitter in the spinal cord and brainstem and is
closely involved in cardiorespiratory functions.84,85 Glycine
is often co-released with GABA onto lateral NTS neurons,
suggesting a role in visceral information processing.80 GABA
and glycine receptors have similar molecular makeup, con-
sisting of heteropentameric, ligand-gated chloride channels
that are members of the cytosine (Cys) loop ion channel
receptor family.86

In many central neurons, the chloride ion gradient is
reversed during early development; high levels of the
NKCC1 co-transporter at birth, for example, result in a
high intracellular chloride ion concentration, causing
GABA and glycine to depolarize neurons. This GABA/
glycine-induced depolarization causes a postsynaptic cal-
cium influx that may regulate the gephyrin interactions,
which is involved in the clustering of postsynaptic GABA
and glycine receptors.87,88 During maturation, develop-
mental increases in the levels of the KCC2 co-transporter
reverse this chloride gradient by the second postnatal
week in rats, when GABA induces neuronal hyperpolar-
ization.37,77,85 Similarly, in many central synapses, both
glycine and GABA receptors undergo developmental mat-
uration themselves, which affects channel kinetics; glycine
receptors, for example, shift from expressing the a2 sub-
unit at early postnatal time-points to expressing the a1
subunit in mature neurons, shifting the functional proper-
ties of the inhibitory synapse to a faster IPSC in the
second postnatal week.89–91 Similarly, the GABAA receptor
in immature neurons contains the kinetically slower a2/3
subunits, while mature neurons contain the faster a1/6
subunits, shifting the functional properties of the inhibi-
tory synapse to a faster inhibitory postsynaptic current in
mature neurons.92 Even in mature neurons, however, gly-
cine and GABA receptor activation have different kinetics,
with glycine receptor activation inducing an inhibitory
postsynaptic current with a faster IPSC rise time and
decay time; thus, the additional use of glycine as a neuro-
transmitter may allow further integration and fine-tune
synaptic inhibition in the postsynaptic neuron.78,93

Glycine and GABA neurotransmitters act as co-agonists
on glycine receptors in the trapezoid body of the brain-
stem, with glycine acting as a strong agonist and GABA
as a weak agonist.94 Frequently, glycine compliments
GABA release and, together, these inhibitory transmitters
may influence the generation of early patterns of activity
as well as the structure of neural circuits. The integration
of glycine and GABA receptor activations allows for
adjustments in the time course of inhibitory synaptic
transmission, and determines the strength of postsynaptic
inhibition, thus optimizing neuronal integration, excitabil-
ity, and function.

Future directions

The physiological consequences of developmental disrup-
tions in inhibitory brainstem neurocircuit development
have yet to be elucidated, but both GABA and glycine
appear promising candidates for future research. The peri-
natal time period is critical for development of vagal neu-
rocircuits and also represents a time when these neurons are
vulnerable to different factors, possibly imprinting perman-
ent effects on these neurocircuits.95–97 Neonatal stress, such
as maternal separation for example, has been suggested to
influence the development of the GABA transmission in the
NTS by altering both pre-synaptic GABA content and post-
synaptic GABAA receptors.78 It remains to be determined
whether and how environmental factors can affect the
development of inhibitory synapses which may alter inhibi-
tory signaling in adulthood.37

Since the inhibitory network between the NTS and DMV
is critical in setting the ‘‘tone’’ of vagal efferent outflow,
relatively minor changes in development, neurotransmitter
release, receptor trafficking, transporter reuptake functions
or glial/astrocyte activity, may have dramatic effects on GI
outcomes. The question then becomes, which other aspects
of the NTS-DMV synapse that have not yet been analyzed
can lead to GI dysfunction? Certainly, vagal neurocircuits
are open to a wide degree of plasticity, even in adulthood;
under what, if any, conditions are these changes in
GABAergic signaling permanent? Are these effects revers-
ible? Under what, if any, pathophysiological conditions are
GAT functions altered, which would alter extracellular
GABA concentration, hence synaptic efficacy? Is it possible
that glycine can still be actively co-released in adulthood if
the developmental decline in glycinergic transmission is
arrested?

While there are still many unanswered questions about
the regulation of gastric functions by inhibitory currents
onto DMV neurons, identification of the current gaps in
knowledge is the first step towards better treatment of the
myriad of GI disorders involved in altered vagal signaling.
From a clinical perspective, the complex structure and dif-
ferential subunit composition of GABA and glycine recep-
tors raise the possibility of selective pharmacological and
therapeutic interventions in the future.86,72 Understanding
the complexity of inhibitory synaptic regulation of DMV
neuronal activity will bring us closer to uncovering the
physiology and pathophysiology of autonomic homeostatic
control of GI functions.
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