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Abstract
Nonproliferative diabetic retinopathy (DR) is characterized by multiple degenerative changes that could be potentially corrected by

stem cell therapies. Most studies so far have attempted to alleviate typical abnormalities of early retinopathy, including vascular

hyperpermeability, capillary closure and pericyte dropout. Success was reported with adult stem cells (vascular progenitors or

adipose stem cells), as well as induced pluripotent stem cells from cord blood. The cells were able to associate with damaged

vessels in both pericyte and endothelial lining positions in models of DR and ischemia-reperfusion. In some diabetic models,

functional amelioration of vasculature and electroretinograms was noted. Another approach for endogenous progenitor cell

therapy is to normalize dysfunctional diabetic bone marrow and residing endothelial progenitors using NO donors, PPAR-d and

-g agonists, or inhibition of TGF-b. A potentially important strategy would be to reduce neuropathy by stem cell inoculations, either

naı̈ve (e.g., paracrine-acting adipose stem cells) or secreting specific neuroprotectants, such as ciliary neurotrophic factor or

brain-derived neurotrophic factor that showed benefit in amyotrophic lateral sclerosis and Parkinson’s disease. Recent advances

in stem cell therapies for diabetic retinal microangiopathy may form the basis of first clinical trials in the near future. Additionally,

stem cell therapies may prove beneficial for diabetic corneal disease (diabetic keratopathy) with pronounced epithelial stem cell

dysfunction.
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Introduction

Diabetic retinopathy (DR) has been usually considered as a
vascular disease or, particularly, an endotheliopathy mani-
fested by ischemia-induced pathologic alterations in the ret-
inal microvasculature. In recent years, however, it has
become more obvious that diabetes-associated neurodegen-
erative changes take place before endothelial alterations,
suggesting that diabetic retinopathy should be regarded as
a neurovascular degenerative disease.

A continuous hyperglycemic condition leads to dysfunc-
tion and loss of endothelial cells (EC), pericytes and vascu-
lar smooth muscle cells, causing hypoxia. This is
characteristic of both type I (insulin-dependent) and type
II (non-insulin-dependent) diabetes. Specifically, pericyte
and EC ability for self-renewal is impaired in diabetes,
and their turnover potential is finally depleted,1,2 after
which acellular capillaries become non-perfused, and adja-
cent retina turns hypoxic. This hypoxic environment upre-
gulates vascular endothelial growth factor (VEGF), which
contributes to elevated vascular permeability3,4 that can

result in diabetic macular edema and, eventually, in loss
of visual function.5 Neurodegeneration, which includes
neuronal apoptosis and glial cell reactivity, occurs in dia-
betes before the alterations of ECs are observed.6–8 In fact,
persistent hyperglycemia during early retinopathy can lead
to ganglion cell depletion7 and consequently, to changes in
the retinal electrical activity prior to a noticeable endothelio-
pathy.9 Neuroretinal hypoxia stimulates the translocation of
hypoxia-inducible factor-1a (HIF-1a),10 which induces the
expression of hypoxia-regulated cytokines and growth fac-
tors, such as VEGF. VEGF-driven increased proliferation of
ECs initially causes intraretinal microvascular abnormal-
ities (IRMA) in areas lacking functional capillaries11 and
may also be responsible for the development of microaneur-
ysms in which ECs proliferate in the absence of pericytes
that normally keep ECs dormant. Non-proliferative DR
(NPDR) is manifested by capillary non-perfusion, leakage,
microaneurysms and IRMAs (Figure 1). EC proliferation
and migration from vessels can eventually result in the
development of preretinal neovascularization characteristic
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of proliferative DR (PDR). More than 3.5% of type I diabetic
patients lose vision as a consequence of the disease,12 which
makes DR one of the leading causes of blindness in the
world. At present, there are few effective treatments of
DR focused on prevention, including tight glycemic and
cholesterol control that may maintain sustained protection
from disease progression.13–16 When the disease progresses
to sight-threatening macular edema or PDR, laser photo-
coagulation can help to regress disease by destroying per-
ipheral retina and reducing oxygen demand.17,18 However,
photocoagulation may bring about complications resulting
in deteriorating visual acuity, retinal thickening and
field loss.19

To date, no treatment has yet been developed to support
regeneration of the damaged retinal vasculature as a result
of long-term hyperglycemia. Cell-based therapies may be a
feasible option for both preventing neurovascular damage
and promoting regeneration of damaged retina, as evi-
denced by recent studies with several types of stem cells
(Figure 1). Novel approaches developed recently (for
reviews see literatures20–23) to treat early and moderate
DR are mainly based on the ability of mesenchymal stem

cells (MSC) to produce neuroprotective and neurotrophic
factors, and the potential of endothelial progenitor cells
(EPC) to repair vasculature, or the ability of adipose stromal
cells (ASC) to accomplish both of the above functions.

Mesenchymal stem cells and their role in diabetes

These are multipotent stromal cells usually isolated from
bone marrow, although they can be found in most tissues.24

In vitro cultured MSCs are known to express such surface
markers as CD105, CD44, CD90, CD166, CD54 and stromal
antigen 125 but lack surface markers that are characteristic
for hematopoietic cells (CD45, CD11a and CD14).26 MSCs
have recently become possible candidates for use in disease
treatment and tissue replacement due to several factors.
These include relatively simple donor biopsies that can be
expanded in vitro and administered intravenously, allowing
an autologous treatment. Also, MSCs secrete neuroprotec-
tive growth factors such as fibroblast growth factor-2
(FGF-2) and ciliary neurotrophic factor (CNTF),27 and
they proved to be safe in human trials so far.

The ability of MSCs to maintain and restore the neural
retina damaged in degenerative diseases was demonstrated

Figure 1 Maximizing the potential efficacy of stem cell therapies will depend on the timing of their use. MSC-derived neuroprotection and neuroretinal cell

replacement may help if given early in disease. EPC-derived vascular regeneration may offer benefit right up until end stage disease. Reproduced with permission from

Megaw and Dhillon. 23 (A color version of this figure is available in the online journal.)
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for age-related macular degeneration (AMD) and retinitis
pigmentosa (RP). When injected locally or systemically,
engrafted MSCs were reported to provide visual protection
and a delay in degeneration.28 This could be due to stimu-
lation of resident neural progenitors to regenerate neuror-
etinal tissue,27 paracrine supply of neuroprotectants29–31 or
their possible differentiation into photoreceptors and retinal
pigment epithelium in these disease models.32–35

MSCs have a potential as candidates for the treatment of
diabetes, although mechanisms of their action in alleviating
organ damage (immunomodulatory, neuroprotective, or
regenerative) remain disputable. MSCs have immunomo-
dulatory effect as they inhibit differentiation of monocytes
into dendritic cells in vivo.36 In addition, MSCs can increase
levels of the anti-inflammatory cytokine interleukin (IL)-10
and downregulate levels of the pro-inflammatory IL-12 and
interferon-g.37–40 The benefit of MSCs for treating diabetes
and protecting vascular cells is thought to be due to their
production of trophic and immunomodulatory factors.40,41

This hypothesis was partially corroborated by the finding
that normal MSCs transiently alleviated hyperglycemia in
NOD mice, whereas NOD MSCs did not.42 It should be
noted that MSCs derived from bone marrow of non-obese
diabetic (NOD) mice have decreased capacity for adhesion
and migration43 and reduced ability for retinal differenti-
ation,44 as well as more pro-inflammatory cytokine profile.

In early diabetes, the loss of pericytes and neuroretinal
damage appear to be caused by oxidative stress.2 MSCs
were shown to absorb reactive oxygen species (ROS) via
expression of sulfoxide reductase A, which may suggest a
mechanism for their neuroprotective effect.45 When deliv-
ered intravitreally, MSCs could protect the neuroretina in
degenerative retinal animal models by secreting neuro-
trophic factors that may prevent apoptosis, stimulate angio-
genesis, and promote resident neural progenitors to
regenerate neuroretinal tissue.27,29–31

It is presently unclear whether dysfunctional tissue
recovery is mostly due to trophic factors secreted by
MSCs that facilitate survival of degenerating tissue and
the endogenous stem cells or to the transdifferentiation of
transplanted cells that functionally integrate into the dis-
eased tissue. In this respect, it is worth mentioning that
MSCs can self-renew and differentiate into tissues of meso-
dermal origin.37,38 However, some data also suggest their
ability to turn into other cell types, such as glial and neural
cells,46–49 or pancreatic50–52 and hepatocyte-like cells.53,54

Despite considerable debate regarding the ability of MSC-
derived cells to express markers’ characteristic for fully dif-
ferentiated ecto- and endodermal lineages, there is growing
evidence supporting MSCs potential for generating cell
types of multiple lineages suitable for cell therapy in vari-
ous degenerative and metabolic conditions, including dia-
betes (reviewed in literatures32,55,56). This issue needs
further investigation in connection with the retinal changes
in degenerative diseases including DR.

Although the exact mechanisms by which MSCs provide
neuroprotection for damaged retina still remain somewhat
unclear, advantages of MSCs are obvious, and clinical trials
may soon be underway examining their effect on visual
function in ischemic and diabetic retinopathies. At the

same time, their autologous use in diabetic patients may
be hampered because of their dysfunctional state. A pro-
mising approach for future studies would be normalization
of their functions using gene therapy, antioxidants, etc.

Endothelial progenitor cells

For a long time, conventional view was that retinal vascu-
lature develops after birth. This view was contested by a
breakthrough study that isolated a population of circulating
cells capable to differentiate into endothelial cells and to
play a role in adult neovascularization.57 The presence of
circulating cells involved in endothelial repair was sup-
ported by the finding that bone marrow transplantation
leads to donor-derived endothelial cells in the vessel
wall.58 These rare cells, called endothelial progenitor cells
(EPCs), are able to migrate to areas of ischemia and incorp-
orate into sites of active angiogenesis.57 In fact, retinal ische-
mia generated by retinal vein occlusion was shown to
promote the re-endothelialization of acellular capillaries
leading to retinal re-vascularization.59

In diabetes, IRMAs contain many endothelial cells and
are thought to be a result of the ischemic retina trying to
stimulate angiogenesis. While there is a general decline of
retinal angiogenesis in diabetes, the slow and gradual char-
acter of the disease allows for reparative angiogenesis to
occur. If retinal angiogenesis could be targeted successfully,
there is a possibility that it could eliminate ischemia that
drives DR.

Impaired EPC and HSPC mobilization in diabetes

EPCs represent heterogeneous groups of cells ranging from
mostly proangiogenic hematopoietic cells to subsets of
hematopoietic stem and progenitor cells (HSPCs).22,60,61

Circulating EPCs were first identified when human
CD34þ cells (a HSPC marker) or mouse flk1þ (endothelial
marker also known as VEGF receptor 2, or VEGFR2) cells
from the peripheral blood were found to acquire endothe-
lial-like properties in vitro and promote neovascularization
in response to ischemia.57 EPCs are usually defined in
humans as peripheral mononuclear cells that are positive
for the stem cell markers (CD34, VEGFR2 and/or CD133),
and can repair damaged vasculature by directly differen-
tiating into endothelial cells (re-endothelialization), or by
paracrine actions of EPCs that stimulate resident progenitor
cells (neovascularization).62,63

Numerous studies showed diabetes-associated changes
in EPCs, including a decrease in circulating EPCs,64 and
defects in proliferation and vascular tube formation
in vitro.65,66 The number of circulating EPCs is reduced in
patients with both types of diabetes,67,68 which is usually
associated with diabetic complications.69 Additionally, the
number of CD34þ cells is decreased in the peripheral
blood70 and their reaction to granulocyte colony stimulating
factor (G-CSF) is compromised in diabetic individuals.71–73

The impaired mobilization of EPCs and HSPCs in diabetes
suggests that the bone marrow is also affected by the
disease.74

Analogous observations were made in diabetic animal
studies that revealed decreased numbers of circulating
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EPCs and reduced mobilization in response to ischemia75 or
wound injury.76 Similarly to humans, mice with short (5–8
weeks) duration of streptozotocin (STZ)-induced type I dia-
betes have impaired HSPC mobilization in response to
G-CSF, which is correlated with an increase in HSC num-
bers in the bone marrow.71

With regard to mechanisms of these alterations, it was
found that diabetic animals have decreased level of a sig-
naling molecule, C-X-C motif chemokine 12 (CXCL12, also
called SDF-1) in local tissues and reduced activation of a
mobilization-promoting endothelial nitric oxide synthase
(eNOS) pathway in the bone marrow.

Interestingly, mobilization defects depend on micro-
environment and take place only in nondiabetic-to-diabetic
bone marrow transplantation and not in diabetic-to-nondia-
betic transplants. Studies of the stem cell niche revealed that
decreased number of osteoblasts and altered innervation
are among factors contributing to mobilization defects.
There is an extensive network of nerves in the bone
marrow, including sympathetic nervous system (SNS) that
is needed to mobilize HSPC.77 Also, inhibition of osteoblast
activity and suppression of CXCL12 in the bone by SNS
mediate, in part, G-CSF-induced mobilization of HSPCs.77

Circulating HSPCs were found to display circadian oscilla-
tions caused by circadian secretion of noradrenaline by the
SNS into the BM, which downregulates CXCL12 via adren-
ergic receptor on MSCs.78,79 Involvement of the bone
marrow sympathetic nerves in the regulation of EPC release
was studied in a rat model of type II diabetes,80 which
revealed a reduction in sympathetic nerve terminals fol-
lowed by decreased circadian release of EPCs and accumu-
lation of slowly proliferating EPCs in the bone marrow.

These studies strongly implicate dysfunctional stem cell
niche in the bone marrow in diabetes and emphasize pos-
sible structural and functional changes in the bone marrow
induced by diabetes.

EPCs potential for cell replacement

There are two main subtypes of EPCs isolated from the
peripheral blood that share certain surface markers, such
as CD34, CD131, and KDR.81,82 One of the subtypes, endo-
thelial colony forming cells (ECFCs), is directly involved in
vascular repair by incorporating into mature blood vessels
and forming an endothelial layer of the damaged vascula-
ture.83,84 They can also secrete paracrine factors required for
vessel repair.85 The other subtype, endothelial cell colony
forming units (CFU-EPCs) can affect vascular repair only in
a paracrine manner, i.e. by releasing growth factors that
stimulate resident endothelial progenitors in blood vessel
walls.86

The use of a mixed cell population to enhance EPCs rep-
arative capacity in a mouse model of limb ischemia yielded
some promising results.87 However, they were not corrobo-
rated by subsequent clinical studies88 suggesting the poten-
tial for CFU-EPCs to promote inflammatory response.84 At
the same time, ECFCs became incorporated into retinal vas-
culature, preventing neovascularization in a mouse model
of ischemic retinopathy.84 Thus, ECFCs appear to be the

true EPCs, making their clinical assessment as a homogen-
ous cell type an important issue.

There are some problems with regard to EPCs use for cell
replacement. First, it should be noted that intravenously
injected EPCs tend to accumulate in liver and spleen.89

Also, similar to MSCs, a diabetic host environment is a hos-
tile one for EPCs and hinders their migration and adhe-
sion,90 thus decreasing EPCs reparative potential.
Noteworthy, the eye has an advantage, compared to other
organs, associated with the opportunity to directly and
accurately deliver therapeutic cells to the area of ischemia.
This helped to start a clinical trial on the safety of intravi-
treally injected BM-derived CD34þ cells in hereditary ret-
inal dystrophy.91

Diabetic retinopathy, EPC dysfunction and cell therapy

Retinal vasodegeneration is a hallmark of an earlier DR
stage, that is, NPDR. In the diabetic environment that is
characterized by elevated levels of reactive oxygen species
(ROS), vascular progenitors switch to producing pathologic
cytokines such as tumor necrosis factor (TNF)-a, IL-8, and
to increased expression of pathologic inducible nitric oxide
synthase (iNOS) instead of eNOS.21 As a result, diabetic
EPCs have reduced bioavailable NO due to either decreased
eNOS activity or increased generation of ROS via upregu-
lated NADPH oxidase.92 NO-mediated signaling events are
also important for the mobilization of EPCs from the bone
marrow and in their homing to ischemic regions.93,94 As
shown by the Grant’s group, the function of diabetic EPCs
can be partially restored by increasing eNOS expression,
either by using NO donors, or by reducing NADPH oxi-
dase-dependent ROS production.95,96 Besides increased
ROS and reduced bioavailable NO, several other molecular
alterations have been found in dysfunctional diabetic EPCs,
including decreased cathepsin L activity97 and elevated
expression of thrombospondin-1.98

Regarding the late stage proliferative disease, or PDR,
recent studies suggest that the high numbers of bone
marrow-derived EPCs constitute a major factor in the
development of such serious complications as pathologic
neovascularization of ischemic tissues. Although increased
numbers of circulating CD34þCD45� endothelial colony-
forming cells (ECFCs) were found in PDR patients com-
pared with controls,99 these cells were defective in their
ability to migrate toward SDF-1, incorporate into and
form vascular tubes. These data suggest that even though
the ECFCs from PDR patients are mobilized into the circu-
lation, they are unable to properly migrate and repair
damaged vascular endothelium.99

Despite these caveats, cell-based therapy may still repre-
sent an effective alternative strategy for the current
approaches to the treatment of end-stage DR and other
ischemic retinopathies. Cell therapies are designed to
target early and intermediate stages of vasodegeneration
to promote vascular repair, reverse ischemia, reduce hyp-
oxic or inflammatory signaling, and prevent progression to
the late and sight-threatening DR stages.21 This strategy
may prove to be successful if autologous progenitors
could be modified to function properly. In recent years,
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a number of approaches have been developed to reverse
EPC defects in diabetic patients, including improvement
of EPC mobilization and homing with G-CSF100 and SDF-
1,101,102 or use of an NO donor to alleviate SDF-1-mediated
migration defects.95 Further, some evidence suggests that
diabetic EPC dysfunction can be improved or corrected by
treatment with peroxisome proliferator-activated receptor
(PPAR)-d and -g agonists GW501516,103 rosiglitazone,104 or
atorvastatin.105 Additionally, it was found that the levels of
transforming growth factor (TGF)-b1 were significantly
increased both in the EPCs (Figure 2) and in the serum of
type 2 diabetic patients.106 TGF-b1 inhibition in CD34þ cells
increased cell survival, NO release, and in vivo vascular
reparative ability (Figure 2), suggesting that this approach
could be used for improving the vasoreparative potential of
dysfunctional diabetic CD34þ cells for autologous
therapy.106

Another potential approach for fighting pathological
neovascularization at the late proliferative stage of DR
may be based on inhibiting protein kinase CK2 that is
involved in retinal angiogenesis.107,108 CK2 inhibitors pre-
vented recruitment of EPCs (Sca-1þ/c-kitþ BM-derived
HSC) to areas of retinal neovascularization in mouse
oxygen-induced retinopathy (OIR) model.109

ASC and iPSC

Adipose stem cells (ASCs) are another class of progenitor
cells that share characteristics of both MSCs and EPCs. They
can be relatively easily harvested by liposuction, isolated
from stromal-vascular fraction of fat, and expanded
in vitro to promote angiogenesis.110 CD34þ cells isolated
from the adipose tissue prevent endothelial apoptosis and
stabilize vasculature,111 and are believed to originate from
resident pericytes.112

Intravitreally injected ASCs incorporate into retinal vas-
culature, acquire pericyte position, and prevent retinal
endothelial apoptosis and capillary dropout by about 50%
and 80%, as was shown in OIR mouse model and Akimba
diabetic mice, respectively.113 Interestingly, similar to native
retinal pericytes, the pericyte phenotype of ASCs can be
enhanced by TGF-b1 treatment making such ASCs more
suitable for cell therapy.113 Moreover, ASCs intravitreal
inoculation into type I diabetic athymic nude rat led to
improvement of electroretinogram, thus also providing
neuroprotection.114

Pluripotent stem cells (PSC) represented until recent dis-
covery of induced PSC (iPSC) mostly by embryonic stem
cells (ESC) are able to differentiate into any cell type of all
three main lineages. ESC-derived retinal progenitor cells
showed their ability to integrate and differentiate into func-
tional photoreceptors, as evidenced by a significant
improvement of vision in mouse models of retinal degen-
eration,115,116 although it is unclear whether neuroretinal
replacement is likely to be successful in diabetes. Much
promise for treatment of retinal pigment epithelium (RPE)
dystrophies, such as age-related macular degeneration, is
associated with ESC-derived RPE117 that are currently being
tested in clinical trials.118 In diabetes, tight junctions of RPE
are compromised leading to breakdown of RPE barrier at

late stage hypoxia,119,120 which suggests that RPE replace-
ment might be also important for managing DR.

Latest advancements in reprogramming adult somatic
cells into iPSCs may allow developing a promising strategy
for DR treatment. Recently, vascular progenitors have been
generated from iPSC derived from CD34þ cord blood
cells.121 Those iPSCs were stimulated to become CD31þ/
CD146þ vascular progenitors by treatment with high levels
of VEGF.122 Interestingly, engraftment of vascular progeni-
tors generated from iPSCs may occur in different positions
in the capillary depending on the way of their delivery.
CD31þ/CD146þ vascular progenitors injected into the vit-
reous of NOD/SCID mice that had endured ischemic injury
to retina resulting in acellular capillaries, migrated to the
abluminal pericyte location of the acellular capillaries.
When the cells were administered intravenously, they
were incorporated into a lumenal position, assuming their
role as endothelial cells.123 The use of iPSCs made from cord
blood CD34þ cells presents a feasible approach to regener-
ate acellular capillaries. As during reprogramming, iPSC
may shed some of their epigenetic changes that are the
basis of diabetic metabolic memory, their use for generation
of relatively normal autologous vascular progenitors may
constitute a viable strategy for an auxiliary DR treatment.

Corneal stem cells changes in diabetes

If one considers diabetic eye disease at large, stem cells
could contribute to future treatments not only for retinal
vasculature, but also for diabetic corneal alterations
known as diabetic keratopathy. The severity of these alter-
ations, e.g. of neuropathy, correlates with the severity of
retinopathy.124 We have recently documented a significant
decrease in the expression of a number of putative stem cell
markers in the corneolimbal epithelial stem cell compart-
ment.125 As corneal epithelium is renewed by limbal stem
cells, this might explain clinically observed delays in dia-
betic wound healing, for example, after epithelial debride-
ment for vitrectomy126 or refractive surgery.127 Adenoviral
gene therapy with overexpression of c-met proto-oncogene
and/or silencing of matrix metalloproteinase-10 and cathe-
psin F normalized epithelial wound healing and stem cell
marker expression in human organ-cultured diabetic cor-
neas.125,128 Importantly, gene therapy of the limbal stem cell
niche only produced the same normalization of stem cell
marker expression and wound healing.129 In the future,
gene therapy or replacement of ailing stem cells with cul-
tured normal cells including those made from iPSC130 could
become viable options for alleviating diabetic corneal
disease.

In summary, stem cells may offer new ways of retarding
progression or alleviating symptoms of DR. Currently, their
use is considered for earlier stages of DR, before the onset of
PDR. Some of these cells secreting special growth factors
could serve for neuroprotection in the diabetic retina.
Endothelial progenitor cells could be used for preventing
and/or repairing capillary closure and reduce pericyte
dropout. New strategies to normalize functions of diabetic
progenitors offer ways to use them for autologous therapy.
The emerging ESC and iPSC technologies may also help
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Figure 2 Diabetic dysfunction in the BM mobilization of stem/progenitor cells and paracrine regulation of ischemic vascular repair. In normal conditions, factors

released by ischemic/injured tissue cause mobilization of BM cells. In diabetes, there is reduced mobilization of BM cells into circulation. Cell therapy in diabetic

retinopathy would ideally restore perfusion to areas of the retina that have undergone vasodegeneration associated with NPDR and would prevent the development of

advanced disease, PDR.

BM: bone marrow; CACs: circulating angiogenic cells; eEPCs: early endothelial progenitor cells; eNOS: endothelial nitric oxide synthase; EPCs: endothelial progenitor

cells; EPO: erythropoietin; HSCs: hematopoietic stem cells; IL: interleukin; iNOS: inducible nitric oxide synthase; MCP-1: monocyte chemoattractant protein-1;

MnSOD: manganese superoxide dismutase; NO: nitric oxide; NPDR: nonproliferative diabetic retinopathy; OECs: outgrowth endothelial cells; PDR: proliferative

diabetic retinopathy; PPAR-d: peroxisome proliferator-activated receptor-d; RAAS: renin-angiotensin-aldosterone system; ROS: reactive oxygen species; SCF: stem

cell factor; SDF-1: stromal cell–derived factor-1; TGF-b: transforming growth factor-b; TNF-a: tumor necrosis factor-a; VEGF: vascular endothelial growth factor.

Reproduced with permission from Shaw et al.21 (A color version of this figure is available in the online journal.)
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generate bankable and renewable sources of stem cells cap-
able upon proper differentiation to enhance cellular regen-
eration in the diabetic retina.
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