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Abstract
Recent strides in the development of multifunctional synthetic biomimetic materials through the self-assembly of multi-domain

peptides and proteins over the past decade have been realized. Such engineered systems have wide-ranging application

in bioengineering and medicine. This review focuses on fundamental fiber forming a-helical coiled-coil peptides, peptide

amphiphiles, and amyloid-based self-assembling peptides; followed by higher order collagen- and elastin-mimetic peptides

with an emphasis on chemical / biological characterization and biomimicry.
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Introduction

Numerous advances in biomimicry have transformed
our understanding of the fundamental requirements for
recapitulating the extracellular environment. Mimicry of
supramolecular structures that provide an instructive
scaffolding for cells, tissues, and organs is a mainstay for
the fields of biomaterials, materials chemistry, and tissue
engineering.1–5 Through advances in nanotechnology and
peptide chemistry it is now possible to recreate the funda-
mental building blocks of mammalian life—such as colla-
gen and elastin in their native hierarchical structures.6–8

Peptide-based materials stand at the forefront of several
tissue engineering strategies.9–18 Owing to the modular
nature peptide-based materials, a variety of different
moieties can be introduced.19 These moieties can guide
self-assembly, bioactivity or both—as discussed in this
review. Peptide-based materials originally focused on
pharmaceutics. With a better understanding of secondary
protein structure and how to tailor supramolecular self-
assembly, short polypeptides have been used for a variety
of applications from drug/ growth factor mimicry,20 drug
delivery,21 inflammation modulation,22 and orthogonal self-
assembly with loaded liposomes.23 Additionally, as detailed
in this review, stable large scale hydrogels formed by non-
covalent interactions of these peptide-based materials allow
recapitulation of a nanofibrous extracellular matrix (ECM)
mimetic scaffold.19,24 Variants of these scaffolds have
allowed for excellent cellular spreading in vitro and rapid
infiltration without the formation of fibrous capsules
in vivo.20–23 Together, these biological and mechanical cues
inform the design and application of a host of peptide-based

materials, whose organization and core structure are ana-
lyzed in this review.

Two specific approaches can be used to fabricate novel
biomaterials: top-down and bottom-up approaches.24 The
former utilizes understanding global structure with subse-
quent deconstruction and mimicry of macromolecular con-
stituents. The top-down approach oftentimes fails at
achieving specific structure and assembly. The consensus
in the field is that construction of larger subunits of proteins
and organized tissue requires a building-block bottom-up
approach where assembly is dictated at the molecular level.
De novo engineering with inspiration from nature allows
programmed folding and self-assembly. Ultimately, second-
ary and tertiary protein structure dictate molecular arrange-
ment of bioinspired materials.17 Thermodynamic, entropic,
and stereochemical factors guide non-covalent self-assembly
of supramolecular structures that dictate mechanical and bio-
logical functionality.3,25–27 Ranging from alternating hydro-
phobic and hydrophilic amino acids that create facial
ampiphiles28–30 to Xxx-Yyy-Gly sequences that predispose
a-helix formation, nature has evolved a set of rules that
govern arrangement at the molecular, nano, micro, meso,
and macroscales.31–33 The rational design of fiber forming
biologically inspired materials, requires an understanding
of these interactions for directed molecular self-assembly.34

a-Helical coiled-coils

a-Helical building blocks are fundamental supramolecular
structures which comprise the majority of biological tissue.4

By rationally designing sequence-to-structure relationships
between a-helices, rules for engineered protein folding and
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assembly can be achieved. At the amino acid level,
Woolfson’s group reports the predisposition of specific
amino acids alanine, glutamine, glutamic acid, and lysine
for a-helices over threonine and valine for b-structure.17,35

Furthermore, given the small size and ability to pack effi-
ciently, glycine and valine are commonly found at a-helical
turns.4 The canonical a-helical coiled-coil architecture
involves a repeating abcdefg heptad that assembles to form
an amphipathic a-helix secondary structure, and further
into a left-handed dimer.35 Noncanonical a-helical coiled-
coils do not contain this characteristic heptad repeat, and as
a result, do not necessarily form dimeric supercoils.35

Similar to the majority of self-assembling peptide struc-
tures, non-covalent hydrophobic interactions between
the side chains of different a-helices drive folding.
Consequently, hydrophobic amino acids are usually
spaced three to four amino acids apart to satisfy the
hypothesized 3.6 amino acid a-helix geometry.17,36 Most
commonly, coiled-coil sequences take the form
(HPPHPPP)n�4, where hydrophobic (H) amino acids are
at the a and d positions and polar (P) amino acids at all
other positions.37

Pioneering this structure of self-assembling peptides, in
1998 Petka’s group produced an early synthetic coiled-
coiled a-helix that reversibly self-assembled into a hydro-
gel.38 This peptide used a triblock architecture with two
flanking leucine zipper motifs separated by a flexible ala-
nylglycine-rich repeat. Each terminal leucine zipper com-
prised the characteristic a-helical abcdefg heptad repeat,
with Leu frequently at positions a and d. Hydrophobic
interactions between each of the amphipathic helices pro-
moted the assembly of coiled-coil dimers between peptide
strands, promoting aggregation, and subsequent gelation.
Similarly, elevating pH or temperature disrupted coiled-coil
aggregation, and thereby melted the hydrogel to a viscous
liquid state.38 Building upon this work, various a-helical
coiled-coil systems have since been developed.37,39–43 In
2000 Woolfson’s group designed the first ‘‘sticky-ended’’
heterodimer that promoted the formation of long fibers.37

Since then they have demonstrated the design of the
MagicWand peptide, a single peptide that assembles to
nanoscale fibers. This architecture directed the staggered
assembly of a-helices to promote coiled-coil fibrillogenesis
by incorporating an anionic core region with cationic flank-
ing regions.44 Another system they have developed pro-
motes longitudinal fiber assembly of a-helical coiled-coils
by substituting the b and c positions of the heptad repeat
with oppositely charged residues to form complementary
offset-register dimers with ‘‘sticky-ended’’ overhangs.45

Ionic interactions between helices promoted strong fibril
aggregation resulting in precipitation, limiting the utility
of this system.

More recently, work on engineered a-helical architec-
tures has shifted towards fiber-forming biocompatible
hydrogels for application in mimicking the extracellular
milieu.42,46 For example, these hydrogel scaffolds are pro-
mising for the controlled delivery of drugs as well as sup-
ports for cell growth and tissue engineering.17,47 Designer
heptad repeats with altered b, c, and f positions substituted
with either Ala or Glu residues were used to form weaker

and more general hydrophobic interactions and hydrogen
bonds between fibrils.46 Instead of thick fiber aggregation
and precipitation, a hydrogel with thinner, more flexible
fiber bundles assembled. The incorporation of hydro-
phobic interactions was useful in controlling gelation, as
an increase in temperature resulted in a stronger gel when
the altered b, c, and f positions were Ala substituted.
Cytocompatibility of hydrogels was tested by seeding
rodent adrenal phechromocytoma cells and measuring neu-
trite outgrowth.48 Hartgerink’s group has demonstrated the
design of blunt-ended coiled-coiled architectures that self-
assemble into long nanofibers and form a hydrogel.42 They
have shown that the thickness of fibers can be controlled by
varying the amino acids found at the b, c, and f positions of
the heptad. Moreover, charged Lys residues at the periph-
ery increased repulsion between coils resulting in thinner
fibrils, while non-covalent interactions between hydrophilic
amino acids promoted thicker fiber bundles.42

b-Hairpin peptides

b-Secondary structures constitute another underlying motif
for self-assembly that incorporates both distinct material
properties, biofunctionality and are commonly known for
their preponderance in pathological amyloidosis.49 These
peptides usually integrate alternating hydrophobic (H)
and polar (P) residues (HPHPHP)n and assemble to form
facial amphiphiles with opposing hydrophobic and hydro-
philic faces. As a result of non-covalent intermolecular van
der Waals forces and hydrophobic packing, these secondary
structures further assemble into higher order structures,
including fibers, micelles, bilayers, and extended b-sheets.
One important subset of b-based peptides is the b-hairpin
motif. These sequences include two antiparallel b-strands
that are joined by a tetrapeptide type-II b-turn.48–50 The
b-turn is one of the most common peptide secondary struc-
tures and is largely used for directional change in a poly-
peptide sequence.51 In the b-hairpin architecture, this loop,
along with the flanking b-strands, are critical components
for the conformation and stability of the overall structure.52

Alternating hydrophobic and hydrophilic amino acids
populate the remaining peptide flanks, forming amphi-
philes, which can then associate with other amphiphiles
both facially and laterally to promote a nanoscale fibrillar
structure and hydrogel network. In these strands, amino
acids are organized to maximize interstrand hydrogen
bonding and side-chain interactions.51 In 1993 Blanco et al.
reported Nuclear Overhouser Effect (NOE) NMR showing
that the sequence YQNPDGSQA had a significant popula-
tion of isolated b-hairpins in aqueous solution attributed to
the high turn probability of the central residues.52 Schneider
et al. in 2002 described the self-assembly of a 20-residue
peptide composed of a (-VDPPT-) b-turn with alternating
Val and Lys residue flanking regions, MAX1.53 MAX1
exhibited pH triggered self-assembly into a hydrogel
under basic conditions. Val residues were used to promote
hydrophobic collapse into a b-sheet architecture while Lys
residues were incorporated to control gelation—at suffi-
ciently low pH, electrostatic repulsion between positively
charged Lys residues resulted in b-hairpin dissolution and
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subsequent hydrogel dissolution.53 Pochan et al. have since
designed variations of MAX1 and have demonstrated pre-
cise control over hydrogelation of these peptides by chan-
ging conditions such as temperature,54 pH,55 ionic
strength,56 and light.57 They have shown a rise in tempera-
ture triggered gelation by inducing a stronger degree of
hydrophobic collapse between Val residues,54 while an
increase in ionic strength screened electrostatic repulsion
between Lys residues.56 As a result of built-in physical
cross-linking, these gels also have a remarkable ability to
shear-thin.58 Demonstrating the tunability of the system for
physiologic condition, more recently, Haines-Butterick et al.
have designed MAX8, substituting a Lys residue in MAX1
for Glu, which decreases the net positive charge, allowing
MAX8 to gel at physiological pH much more quickly.59

b-Sheet peptides

The principles underlying b-hairpin self-assembly are fun-
damentally similar to the structural organization motifs of
self-assembling peptide amphiphiles. These designs gener-
ally involve the facial self-assembly of amphiphilic peptides
to form long, high-aspect-ratio nanofibers.60 Most com-
monly, these synthetic peptides comprise a region of
b-sheet forming amino acids coupled with a solubilizing
region that allows fiber and hydrogel formation in aqueous
solution.61,62 These assemblies provide a facile method for
bioactive sequence incorporation to promote the adhesion /
infiltration of cells.62–64 There exist several examples of
b-sheet-based peptide amphiphilies including Collier
and Messersmith’s Q11 peptide with alternating polar
and aromatic residues,65 and Goeden-Wood et al.’s
(AEAEAKAKAEAEAKAK)9 peptide which formed strong
nanoscale fibrous hydrogels.66 Jun et al. has demonstrated
fiber-forming and hydrogelating systems with built-in bio-
active functionality through the development of ‘‘ionically
complementary’’ peptides, known as Lego peptides.67 The
formation of complementary ionic pairs between amino
acids from different peptide chains can lead to self-assem-
bling, electrostatically stable, higher-order aggregates, such
as nanofibers or globular structures.24 Zhang et al.’s first
peptide of this type, EAK16-II was composed of comple-
mentary (AEAEAKAK)2 sequences and associated into a
b-sheet membrane structure through hydrophobic inter-
actions and the formation of ionic bonds between
oppositely charged Glu and Lys residues.68,69 This stable
self-complementary 12-amino-acid peptide gelled upon
the addition of salt into a membranous structure, and
demonstrated stability in heat, reducing conditions, and
pH variations.69 Derivations of this peptide—EAK16-I
(nanofibers) and EAK16-IV (globular structures)—
comprising identical amino acid compositions but with dif-
ferent sequence organizations were also demonstrated.67 Of
particular note—RADA16—has arguably gained much
repute and is currently marketed under the name
Puramatrix� by BD Biosciences.70 This peptide substitutes
Glu and Lys residues for Arg and Asp and undergoes
molecular self-assembly into nanofibers to form a hydrogel
scaffold.71 The reader is directed to the following articles for
more information on self-assembly, cytocompatibility and

in vivo studies of Zhang and co-worker’s work.3,8,70,72,73

Aggeli et al. have reported the development of self-
assembling amphiphilic b-sheet tapes, capable of forming
hydrogels composed of nanometer-long fibers.74–76

Fundamentally, these peptides aggregate to form antiparal-
lel b-sheet tapes through cross-strand weak attractive
forces.74 To prevent the precipitation of aggregated
b-sheet structures, lateral, one-dimensional assembly is
ensured by incorporating molecular recognition mechan-
isms into side chain interactions: for example, aromatic resi-
dues can be used to provide intermolecular recognition
by p–p stacking interactions. Moreover, strong solvent-
to-surface interactions are ensured to control solubility in
solvents of different polarity. The earliest of the group’s
designed peptides include the 24-residue peptide K24 and
11-residue peptide DN1, which self assemble in non-
aqueous and aqueous solvents, respectively.74 K24 was
designed with an amphipathic primary sequence, with
polar residues at the termini and nonpolar and aromatic
residues in the core region, which was hypothesized to con-
trol one-dimensional b-sheet propagation. Similarly, the
much shorter DN1 assembled through intermolecular p–p,
hydrophobic, and ionic interactions. In both cases, associ-
ation between aromatic amino acid residues significantly
contributes to the peptides’ self-assembly properties.
More recent work by their group has demonstrated the
self-assembly of stable b-sheet tapes without the use aro-
matic p–p interactions.75 7mer and 9mer peptides P7-6 and
P9-6 contained predominantly aliphatic Leu residues on
their hydrophobic faces, and still underwent a transition
from monomeric random coils to b-sheet tapes at higher
peptide concentration and neutral pH. At lower pH, proto-
nated side chains decreased intermolecular attraction,
and thus increased the critical concentration necessary for
self-assembly. This study also demonstrated the increased
propensity for self-assembly in polar organic solvents such
as methanol, and the lower critical concentration needed for
the self-assembly of longer peptides.

Recent advances in b-sheet forming systems have incor-
porated ancillary domains for greater control over fiber for-
mation and hydrogelation. An important example of this
has been demonstrated by Hartgerink’s group with multi-
domain ABA triblock peptides that self-assemble to form
highly ordered nanofibers in a hydrogel scaffold.61,62,64,77–79

The self-complementary alternating hydrophobic–hydrophilic
peptide cores pack to exclude hydrophobic residues from
the aqueous environment, and additional peptides can then
assemble laterally by intermolecular backbone hydrogen
bonding, forming high aspect ratio nanofibers. Because
such assembly can continue indefinitely until all mono-
meric peptides are depleted, flanking positively charged
A blocks at neutral pH are incorporated to produce electro-
static repulsion between dimers. These flanks comprise 0-4
frustrated, positively charged lysine residues that counter
the B block’s strong affinity to associate, thus preventing
complete aggregation and subsequent precipitation.
Hydrogelation is optimized by the addition of multivalent
ions that screen charge repulsion allowing a remarkable
level of control over fiber formation and hydrogelation.77

Demonstrably the sequence Kn(QL)mKn showed that

Kumar et al. Rational design of fiber forming supramolecular structures 901
. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . .. . . . . . . . . . . . . .



varying the n/m ratio favored either self-assembly or dis-
assembly; and only when the forces promoting self-
assembly and opposing charge repulsion were balanced
did the formation of controlled length nanofibers become
possible.77 Further, various derivatives of the Kn(QL)mKn

sequence, producing similar fiber-forming self-assembling
hydrogels with added functionality have been developed.
For example, a sequence in which Gln residues were sub-
stituted with Ser residues, K2(SL)6K2, demonstrated a sig-
nificantly greater storage modulus and greater degree of
shear recovery than its Gln counterpart.78 Such a system
with highly tailorable viscoelastic and shear thinning prop-
erties has great implications with respect to injectable
hydrogels for drug delivery and regenerative medi-
cine.20–23,61,64,78 In addition to conventional alternating
hydrophilic–hydrophobic core regions, Hartgerink’s
group has demonstrated the self-assembly of triblock
multi-domain peptide with an alternating hydrophilic-
aromatic core region.61 Recently they described a novel aro-
matic self-assembling peptide amphiphile. In contrast to the
above-mentioned mechanism for self-assembly, the intro-
duction of aromatic amino acids changes the packing
characteristics between peptide chains and allows for the
possibility of interstrand p–p stacking interactions.
Interchanging Leu residues for aromatic Phe, Trp, and Tyr
residues while keeping hydrophilic residues unchanged
caused a significant change in fiber morphology when
observed with electron microscopy. However, despite the
large steric strain afforded by bulky aromatic residues, in
all cases, these multi-domain peptides self-assembled and
retained a basic nanofibrous structure.61

Amyloid-based self-assembly

Another class of b-based peptide biomaterials can be engin-
eered from naturally occurring self-assembling amyloid
fibers. In natural systems, amyloid fibers that arise as
inappropriately folded polypeptides ultimately manifest
as insoluble protein aggregates that have been linked to a
variety of human diseases, including amyloidosis and a
variety of neurodegenerative disorders.80,81 Energetically,
this occurs as conformational shifts from monomeric
unfolded intermediates into b-sheet-rich structures is pre-
ferred. Most commonly, cross-b amyloid structures
comprise b-sheet peptides organized into parallel or anti-
parallel b-strands. Two or more b-strands facially assemble
to produce fibrils, which are stabilized by hydrogen bonds
along the fibril axis and side chain interactions between
fibrils.82 These interactions are so prevalent that amyloid
formation is not completely sequence specific: amyloid for-
mation can be induced by seeding fibrils with the same or
unrelated proteins.83 It has been suggested that with suffi-
cient time, all well-folded proteins undergo an irreversible
structural transition to a ‘‘correctly-folded’’ aggregated
b-sheet structure, which represents a global minimum in
Gibbs energy for protein folding.84 In engineered systems,
however, these supramolecular assemblies, which range in
states from liquid crystals to rigid nanofibers, can lead to
synthetic biomaterials that introduce biological function
and tailored mechanical properties.85 Small oligomers of

peptides serve as nucleation points for further aggregation
and ultimately fibril formation, dictated by non-covalent
bonds, notably hydrogen bonds,86 hydrophobic inter-
actions,84 and p–p stacking.87 One of the early examples of
this architecture was designed by Hecht et al., who demon-
strated that simple alternating patterns of hydrophobic and
polar amino acids resulted in aggregation between amphi-
philic b-strands, forming b-amyloid fibers.88 More sophis-
ticated amyloid-based fiber-forming and hydrogelating
biomaterials have since been designed. Notably, the
Nilsson group has utilized p–p and hydrophobic side-
chain interactions to demonstrate the formation of self-
assembled materials inspired by amyloid materials.89–91

To set the stage for his future work, Nilsson demonstrated
that aromatic residues and p–p stacking interactions were
not strictly necessary for amyloid formation with the
amphipathic sequence (FKFE)2.89,91 Instead, residues with
sufficient hydrophobicity or b-sheet propensity could drive
amyloid fibril formation. When non-aromatic, highly
hydrophobic cyclohexylalanine was substituted for phenyl-
alanine residues, self-assembly still occurred and even
exhibited enhanced hydrogelation properties. Using these
principles, Nilsson has developed modified designs with
wide-ranging applications as biomaterials. For example, a
designed peptide sequence with the (FKFE)2 motif and
flanking cysteine residues takes on a cyclic structure
when intermolecular disulfide bonding is present, but can
undergo self-assembly into a linear b-sheet conformation
and hydrogel with the addition of a reductive trigger.92

Similarly, the Nilsson lab has also demonstrated the
design of the coassembly of enantiomeric L-/D-peptides
into rippled b-sheet fibrils with enhanced viscoelastic
hydrogel properties.93 Other recent examples of bioinspired
self-assembling amyloid peptides includes work done by
the Guler group. They have demonstrated the formation
of a hydrogelating nanofiber scaffold with amyloid charac-
teristics from oppositely charged peptides -E-FFAA-E- and
-K-FFAA-K- at neutral pH.94 In addition to the tailorability
of this peptide architecture with respect to fiber formation
and hydrogelation, engineered amyloid fibrils can also be
chemically modified by incorporating functional peptide
sequences.85 The reader is directed to Bowerman and
Nilsson for more details.95

Peptide amphiphiles

In addition to facially amphiphilic b-based self-assembling
peptides, a class of peptide amphiphiles with appended
alkyl chains have demonstrated various applications for
tissue regeneration and bioengineering.28,60,96 Pioneered
by the Tirrell group, in 1995, a diblock system incorporating
a long-chain dialkyl-ester lipid tail and collagen-model pep-
tide head-group was used to form a biologically active cyto-
compatible evenly dispersed bilayer.97 Since then, the Stupp
lab has continued with the development of these straight-
chain amphiphilic sequences. These peptide amphiphiles
are composed of 4–5 regions: region 1 is composed of a
long alkyl chain to promote hydrophobic collapse of indi-
vidual molecules; region 2 largely drives the lateral associ-
ation of peptide amphiphile molecules through either a
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b-sheet forming segment stabilized by intramolecular back-
bone hydrogen bonding or covalent disulfide bonding;
region 3 comprises a flexible glycine spacer or charged
amino acids for solubility; and region 4 and 5 are functio-
nalized to contain the specific peptide epitope for biological
function or signaling. Hartgerink et al., in 2001, produced a
novel self-assembling peptide-amphiphile that formed
cylindrical micelles and a nanoscale fibrous scaffold with
properties similar to those of the ECM.28 This peptide con-
tained the characteristic peptide amphiphile motifs, with
regions 4 and 5 containing a phosphorylated serine residue
and arginyl-glycyl-aspartyl (RGD) epitope to promote
hydroxyapatite mineralization and cell adhesion, respect-
ively. Ultimately, this peptide amphiphile demonstrated
the pH-triggered assembly of a chemically robust nanofiber
scaffold that could direct ordered hydroxyapatite mineral-
ization and support cell growth. Further studies on this
peptide have shown conditions for triggering self-assembly
by pH, ionic strength, and concentration, as well as varying
amino acids and the alkyl chain for nanofibers of varying
morphology and bioactivity.98

Other examples of designed peptide amphiphiles that
self-assemble to form nanoscale fibers include the pH-
induced assembly of hydrogel C(12)-GAGAGAGY based
on silk fibroin,99,100 aromatic Fmoc utilizing hydrogels,101

and even binary mixtures of peptide amphiphiles contain-
ing oppositely charged residues.102 Advances in this facile
design allow tailoring the material properties of peptide
amphiphile forming hydrogels.103 A change in the position
and increase in the number of Val residues were reported to
form stronger, stiffer hydrogels, while an increase in Ala
residues decreased the mechanical stiffness. Fourier trans-
form infrared spectroscopy suggests that this effect is pre-
sumably due to the alteration in the alignment of hydrogen
bonds along the long axis of the peptide amphiphile fibers:
Val residues were hypothesized to form tightly packed, stiff
b-sheet micelles/fibers, while the Ala-residue-populated
b-sheet cores could not form hydrogen bonds as effectively,
leading to more disordered peptide amphiphile micelles
with twisted geometries.103 Not only does this work dem-
onstrate the significance of strong, ordered intermolecular
hydrogen bonding in the mechanical properties of the
resulting hydrogel, but also the potential to create softer
hydrogels as potential injectable materials. More recently,
work on nanofibrous peptide amphiphiles has focused on
incorporating a variety of bioactive epitopes for biomater-
ials with tailored functionality. Peptide amphiphiles con-
taining the neuron lineage driving IKVAV epitope have
been developed,104 as well as, an injectable vascular endo-
thelial growth factor-mimetic peptide amphiphile with pro-
angiogenic properties capable of restoring blood flow in a
hind-limb ischemia model.105 Moreover, peptide amphi-
philes containing the heparin binding domain,106,107

growth factor release domains,108,109 hydroxyapatite nucle-
ation domains,110,111 RGD cell adhesion motif,112–114 and
cell-apoptosis-promoting regions for cancer treatment115

have been reported. The reader is directed to reviews
by Webber et al., Cui et al., and Matson and Stupp for
details.5,60,116

Collagen-mimetic peptides

Building upon fundamental a- and b-secondary structures,
a variety of other secondary structures have been explored
as self-assembling biomaterials. The prime example of this
has been recent work in the study of developing synthetic
collagen mimetic peptides (CMPs).117,118 These short pep-
tide strands mimic natural collagen’s Xxx-Yyy-Gly repeat-
ing triplet. Here, short-chain polypeptides, consisting of
approximately 24–36 amino acids, self-assemble into triple
helices and can further mimic all stages of natural collagen’s
multi-hierarchical self-assembly.6,119 Most commonly, pro-
line and 4-hydroxyproline occupy the Xxx and Yyy pos-
itions of natural collagen, while recent studies have begun
to investigate self-assembling CMPs with a variety of amino
acid mutations.34 This repeating triplet plays a role in sta-
bilizing triple helix formation. Glycine, the only necessary
amino acid in the collagen-repeating motif, provides a com-
pact methylene side chain that is oriented towards the inter-
ior of the triple helix and allows for the tight packing of
individual polypeptide strands.120 This close proximity
facilitates inter-strand hydrogen bonding, in which the
amine of glycine acts as a hydrogen donor to the carbonyl
of proline on an adjacent polypeptide strand.1,121 This fur-
ther stabilizes triple helix assembly. In addition, the side-
chain rings of proline and hydroxyproline have low degrees
of freedom, contributing to the rigidity of the collagen back-
bone.122,123 Inter-strand salt bridges between charged resi-
dues can also serve to stabilize peptide strands and triple
helix formation.124 Individual tropocollagen molecules then
pack both linearly and laterally to form collagen nanofi-
brils.125 Assembly can further continue to produce triple
helices that pack into nanofibers, and finally compose a
hydrogel scaffold.96

Self-assembly of the first generation CMPs largely stop
after triple helix formation, limiting their widespread use.
Initial studies have shown the substantial stabilizing role of
electrostatic interactions, laying the foundation for higher-
order structures similar to natural collagen. Early work
by Brodsky’s group studied homotrimeric CMP systems.
Venugopal et al. prepared a collagen-like sequence
(POG)4(EKG)(POG)5 in 1994.126 This homotrimeric peptide
self-assembled into a triple helix, and showed an increase in
thermal stability when all ionizable side chain residues
were charged, suggesting the stabilizing role of electrostatic
interactions between ion pairs. To corroborate these results,
a (POG)10 peptide with uncharged amino acids displayed
the least stability at neutral pH, due to charge repulsion
between ionized C- and N-termini.126 Similarly, at higher
pH, in which N-termini were uncharged, the peptide
gained about 2�C of stability in melting experiments.127

Further work by Chan et al. has demonstrated the depend-
ence of triple-helix stability on the identity, position, and
environment of charged residues.128 They embedded a
collagen G-Y-X triplet in a host Ac(GPO)3-GXY-(GPO)4-
GG-NH2 sequence and substituted the Xxx and Yyy pos-
itions with ionizable residues. When the Yyy position was
substituted with Glu, Asp, Arg, and Lys residues and the
Xxx position with Pro, a significant range of triple helix
thermal stability was observed. In contrast, when the
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same substitutions were done in the opposite manner, only
a narrow range of thermal stability was noticed. This was
attributed to the Xxx position exhibiting a more favorable
side chain orientation, in which they point outward in
optimal directions for minimizing charge repulsion.
Conversely, ionizable residues in the Yyy position appear
to be slightly destabilizing due to potential charge repulsion
between residues.128 Kotch and Raines, in 2006, further
demonstrated the self-assembly of a cysteine-containing
synthetic collagen triple helix.129 Cysteine disulfide link-
ages between peptide chains served as a means for linking
the individual strands into a natural collagen mimetic triple
helix. These covalent linkages between strands offset the
strands and controlled their register. These ‘‘sticky ends’’,
where the peptide is offset by a number of amino acids,
allow additional peptide strands to add end-to-end, elon-
gating the triple helix and driving fiber formation as previ-
ously demonstrated by Woolfson and others.37,130 These
charged, unpaired flanking sequences drive self-assembly
by satisfying more and more charge pairs with each add-
itional triple helix added. Examination by atomic force and
electron microscopy revealed the self-assembly of one-
dimensional nanofibrils of 20–120 nm in length, which
may have potential as synthetic biocompatible materials.129

Advanced collagen mimetic systems have revealed the self-
assembly of CMPs into triple helices without the necessity
of covalent linkages. In 2007 Chaikof’s group developed the
zwitterionic fiber-forming 36 amino acid sequence
(PRG)4(POG)4(EOG)4. This peptide self-assembled into a
triple helix and subsequently nanofiber, without further
assemble into a hydrogel.33 More recent work on hierarch-
ical constructs that are capable of mimicking both natural
collagen’s higher order fibrillation as well as the biological
effects of specific natural tissue scaffolds, and potentially a
variety of other novel functions, can be architecturally
designed by incorporating specific short-peptide fea-
tures into a single multi-domain peptide.6 For example,
Cejas et al. demonstrated this by adding C-terminal phenyl-
alanine and N-terminal pentafluorophenyl flanks to a
(Pro-Hyp-Gly)10 CMP. Their system produced micro-
meter-length fibers with natural collagen-like properties,
noting that without incorporation of aromatic flanking
regions, fibrillation could not have been achieved.131

Gottlieb et al. produced conductive synthetic nanowires
tens of microns in length by conjugating the collagen
mimetic sequence pentafluoro-F-(GPO)4-GPK-(GPO)5-F
with gold nanoparticles.127

In 2007 the Hartgerink group demonstrated the develop-
ment of a group of electrostatically stabilized ABC collagen
mimetic heterotrimers.132 These heterotrimeric systems
were unique allowing tailored substitution in one, two, or
all three peptide chains. This study demonstrated strategies
for designing heterotrimers with separate net positive, neu-
tral, and negative strands that assemble into triple helices
with net neutral charge. Further, this study suggested that
the formation of an Asp-Lys charge pair within a triple helix
provides equivalent stability to helices containing colla-
gen’s characteristic Pro-Hyp-Gly triplet, which provides a
foundation for designing more sophisticated collagen
mimetic systems. They then demonstrated the first ABC

heterotrimeric collagen mimetic system that self-assembled
utilizing only supramolecular interactions,133 a single-reg-
ister ABC heterotrimer stabilized by electrostatic inter-
actions,134,135 and design strategies for designing collagen
mimetic homotrimers,2 AAB heterotrimers,2 single-
composition ABC heterotrimers.136 This work has allowed
them to determine design principles for register- and
composition-controlled collagen mimetic homotrimers
and heterotrimers. The work on CMPs from triple helix,
to nanofiber, to hydrogel led to the design of the peptide
(PKG)4(POG)4(DOG)4.6 This tri-block peptide (þ,n,�) is
unique since it is a homotrimeric system comprised of pep-
tides with a net neutral charge that incorporates collagen’s
proline-hydroxyproline-glycine repeating unit in the cen-
tral domain. Moreover, assembly is driven by the presence
of stabilizing inter-strand side chain interactions between
lysine and aspartate residues. These salt-bridge hydrogen
bonds between oppositely charged ionized residues serve
to stabilize a sticky ended triple helix formation, which
nucleates fiber formation by allowing additional peptide
strands to add end-to-end elongating the triple helix. As a
result, self-assembly of KOD nanofibers is observed, which
displays the characteristic triple helical packing of natural
collagen fibrils. Current work with this synthetic collagen is
focused on cytocompatibility and utility as a hemostat.6,137

Elastin-mimetic peptides

Similar to CMPs that exhibit tissue-like mechanical proper-
ties and architectures, elastin-mimetic peptides have been
developed to mimic native tissue resilience for example in
blood vessels, the lungs, and skin.138,139 Natural elastin is
found as a cross-linked protein comprising alternating
hydrophilic polar domains rich in Ala and charged Lys
necessary for chemical cross-linking, while the hydrophobic
nonpolar domain, rich in Pro, Gly, and Val, is largely
responsible for the material’s elasticity and flexibility.140,141

The hydrophobic nature elastin serves as a significant driv-
ing force in its self-assembly and aggregation.142 Here, the
well-characterized elastin repeats in the hexapeptide Val-
Gly-Val-Ala-Pro-Gly and pentapeptide Val-Pro-Gly-Val-
Gly are chemically cross-linked by the hydrophilic
domain.143 The cross-linked peptides then supramolecu-
larly organize into a nanoscale fibrillar structures that
orient in the direction of the tissue applied load.142 Work
on elastin-like synthetic sequences has been geared towards
producing recombinant polypeptides that mimic both nat-
ural elastin’s supramolecular assembly and its unique
material properties.142 While mature cross-linked elastin is
insoluble, synthetic peptides mimicking elastin’s character-
istic repeat have been designed to gain a greater under-
standing of the structure–function relationship of the
protein. Such work is consistent with the formation of a
b-turn structure around the Pro-Gly doublet, and an
overall b-spiral secondary structure.144 In 2002 Conticello
developed a recombinant elastin-mimetic polypeptide
[(VPGVG)4(VPGKG)]39 that exhibited mechanical proper-
ties similar to that of natural elastin, as well as its charac-
teristic filamentous morphology.145–147 When crosslinking
reagent N-hydroxysuccimide was added, a reversible,
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temperature dependent hydrogel formed, presumably by
an intermolecular condensation reaction between Lys resi-
dues and N-hydroxysuccimide substrates.138 Work between
Sallach et al. and Wu et al. described the design of a number
of BAB recombinant co-block systems containing elastin-
mimetic sequences.26,148 In these systems, hydrophobic,
elastin-mimetic polypeptide flanking sequences are sepa-
rated by a central hydrophilic block. The elastin-mimetic
domains are characterized by a repeating Val-Pro-Xxx-
Yyy-Gly pentapeptide, while the central elastomeric
domain is hydrophilic due to the presence of charged resi-
dues.148 This co-block peptide can further aggregate,
mimicking natural elastin’s supramolecular structure
while retaining its unique material functionality.
Specifically, hydrophobic packing of the flanking domains
in aqueous solvent drives self-assembly, while the central
domain retains conformational flexibility and elasticity due
to the presence of polar amino acid residues.148 In contrast
to chemical crosslinking between fibers as described by
Wright and Conticello’s 2002 study, this design utilized
physical crosslinking to self-assemble, and demonstrated
a number of advantages, including reversible self-assembly
and the ability to control mechanical properties.26,138

Further work reported similar elastin-mimetic polymers
that combined both physical and chemical cross-linking
into a single design.26 In doing so, they were able to exert
precise control over a variety of material properties unique
to physical and chemical cross-linked systems. Le et al.
demonstrated the design of a series of beaded fiber-forming
elastin-mimetic double-hydrophobic block peptides estab-
lishing examples of next generation systems.25 The reader is
directed to the following reviews for more details.29,149–151

These synthetic elastin matrices, oftentimes combined with
synthetic collagen matrices, have been used to recapitulate
features of the ECM in applications for tissue repair,152–156

drug delivery,29,157,158 and materials with tunable material
properties.150,154,159–161

Conclusion

Bottom-up engineering of peptide-based supramolecular
structures has allowed biomimicry at multiple length
scales, including nanofibrous morphologies that mimic
native ECM. Learning from natural self-assembly cues,
bioinspired scientists can now generate a series of materials
that can closely recapitulate higher order protein structure
by tailoring primary and secondary composition to replace
dependence on synthetic or animal derived matrices that
may cause adverse host reactions.
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