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Abstract
This review focuses on the concept of immunoisolation and how this method has evolved over the last few decades. The concept

of immunoisolation came out of the need to protect allogeneic transplant tissue from the host immune system and avoid systemic

side effects of immunosuppression. The latter remains a significant hurdle in clinical translation of using tissue transplants for

restoring endocrine function in diabetes, growth hormone deficiency, and other conditions. Herein, we review the most significant

works studying the use of hydrogels, specifically alginate and poly (ethylene glycol), and membranes for immunoisolation and

discuss how this approach can be applied in reproductive biology.
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Introduction

Tissue transplantation, unlike whole organ transplantation,
aims to restore cellular, usually endocrine, function. On
the other hand, even small tissue transplant requires sys-
temic immunosuppression to prevent rejection. Systemic
immunosuppression in turn carries significant side effects,
at times more debilitating than the disease treated by the
transplant. Immunoisolation of the graft can elegantly solve
this problem by providing local protection and avoiding
systemic immunosuppression.

An immunoisolating construct or device creates a phys-
ical barrier around the implanted cells or tissues, and pre-
cludes contact with immune cells from the host. To provide
graft viability, the design of such a device must allow the
diffusion of nutrients and oxygen, as well as endocrine and
paracrine factors to allow the implanted cells to survive and
interact with the environment for an extended period of
time. To date, most studies have focused on immunoisola-
tion of pancreatic islets in an allogeneic mice model for the
treatment diabetes.

History of immunoisolation

One of the early attempts to implement immunoisolation
goes back to 1933, when an Italian scientist Bisceglie
enclosed mice tumor cells in a polymer membrane and
transplanted these cells into peritoneum in guinea pigs.
He observed that the cells survived for 12 days and con-
cluded that tumor cells were not attacked by the immune

system of the host while receiving the nutrients through
diffusion.1 It was not until the 1960–1970s that the idea of
using encapsulation of cells for immune protection gained
traction again.2 Chick et al.3 and Lim and Sun4 were the first
to successfully use encapsulated pancreas islets in a hydro-
gel to develop a functional pancreatic transplant. Following
these early experiments, substantial progress has been
made in biological and polymer sciences leading to devel-
opment of encapsulation devices for delivery of drugs and
peptides for treatment of renal failure,5 hemophilia,6 and
diabetes.7–9

Types of immunoisolation

Immunoisolation can be achieved through either hydrogels
or synthetic devices based on membranes. The advantage of
natural and synthetic hydrogels in biomedical applications
comes from their excellent biocompatibility and high-
equilibrium water content. These characteristics allow
them to have mechanical properties similar to that of
native extracellular matrix.10 Importantly, these properties
can be tuned to mimic the environment that is most com-
patible with a specific tissue requirement in order to opti-
mize graft viability and functionality. Tuning is achieved by
modifying crosslinking density, molecular weight, and con-
centration of the polymeric material, which in turn defines
the mechanical properties of the hydrogel, such as swelling
ratio, mesh size, and diffusivity.11–14

There are a few commercially available membrane-based
immunoisolation devices. One of them is TheraCyte� which
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is comprised of a 0.4 -mm pore cell-impermeable polytetra-
fluoroethylene (PTFE) membrane, laminated to a 5-mm
pore membrane was developed to protect the cells from
immune rejection. The outer membranes support neovascu-
larization, whereas the inner membrane prevents the
encapsulated tissue within it to come in contact with the
host immune cells.15 Encaptra� created by ViaCyte
company is another example. This device was tested with
pancreatic endoderm cells derived from human embryonic
cells. After device implantation in mice, pancreatic cells
matured and secreted insulin in response to rising blood
glucose levels.16,17 The design of both TheraCyte� and
Encaptra� permits their retrieval once the tissue inside
stops functioning, with a potential follow-up implantation
of a new device to sustain graft function.

Hydrogels as immunoisolators

The most commonly used hydrogels for encapsulation
include natural hydrogels, such as alginate,7 chitosan,18

agarose,19 fibrin,20 and synthetic hydrogels, such as poly-
ethylene glycol (PEG).21 The versatility of hydrogels allows
them to mimic the natural environment and extracellular
matrix to provide cues for transplanted cells/tissue and
elicit a desired cellular response. We will elaborate on the
use of alginate and PEG, while the rest has been reviewed
elsewhere.22–23 Synthetic hydrogels are useful in tissue
engineering applications as they have a high degree of
reproducibility, tunability, and biocompatibility, whereas
natural hydrogels have a higher degree of biological
specificity.

Alginate. Alginate is a linear block co-polymer of
b-D-mannuronic acid and a-L-guluronic acid. Alginate
forms gels in the presence of divalent cations, such as cal-
cium or barium, at room temperature and physiological pH.
Barium cross-linked alginate capsules are stronger than the
calcium-linked ones; however, calcium-linked alginate gels
are preferred for cell encapsulation procedures due to their
superior compatibility. Barium ions have a greater affinity
than calcium ions, hence the mixing of barium and alginate
results in stronger barium–alginate gel. Lower concentra-
tions of barium (10 mM) compared to calcium (50 mM)
resulted in alginate gels with higher Young’s moduli,
27 kPa compared to 12 kPa, respectively.24 Potential
barium toxicity resulting from barium leaking out of the
gel has been a concern. In an effort to minimize barium
toxicity, Thu et al.25 avoided barium leakage by using
low-barium concentrations and vigorous washings.

Factors that influence immunoprotective ability and cap-
sule biocompatibility include the size of the capsule, wall
thickness, mechanical strength, permeability, and surface
characteristics.26–30 Mechanical strength of the capsules is
important to avoid physical breakage and infiltration of
immune cells through the defects. It was found that coating
of the negatively charged alginate capsules with polyca-
tions, such as poly-L-lysine, poly-D-lysine, and poly-
L-ornithine increases the mechanical stability and restricts
permeability of immune cells.31 However, coating with
poly-L-ornithine and poly-D-lysine increased the

inflammatory responses towards capsules,32 while coating
with poly-L-lysine has been shown to improve the biocom-
patibility and inhibit adhesion of inflammatory cells.27,33

Adherent inflammatory cells secrete cytokines that amplify
the local inflammatory reaction and lead to formation of a
fibrotic capsule around the device. As a result, cells inside
the immunoisolation device cannot receive nutrients and
oxygen, which leads to the failure of the graft.

Size and geometry of the capsule affect the function and
survival of transplanted cells. Veiseh et al.7 examined the
effect of the size and geometry of alginate hydrogels on
local immune response, resulting in fibrosis, as well as the
functionality of the encapsulated cells. When comparing
hydrogels with diameters ranging from 0.3 mm to 1.5 mm
they showed improved survival and function in larger cap-
sules. Islets encapsulated in 1.5 mm alginate spheres were
able to restore blood glucose levels for a period of 180 days,
while islets encapsulated in 0.5 mm capsules lasted for only
25 days. The larger size of the hydrogel did not have a
negative effect on graft functionality. In addition to main-
tenance of normoglycemia, they found that 1.5 mm alginate
spheres were largely devoid of cellular deposition, whereas
0.3 mm spheres evoked significant deposition of fibrotic
tissue. Other materials used in this study, such as stainless
steel, glass, polycaprolactone and polystyrene, demon-
strated a higher degree of fibrosis around the material com-
pared to alginate.7

PEG. PEG is a synthetic polymer used in biomedical and
immunoisolating applications. Biological inertness and
easy manipulation of mechanical properties provide a
high degree of reproducibility.34 By controlling the PEG
concentration in the hydrogel, one can tune the mechanical
properties (i.e. shear modulus) to elicit a wanted cellular
response.35,36 This is essential because the stiffness of the
hydrogel impacts the severity of the foreign body response
(FBR).37 Softer gels cause a less extensive reaction compared
to stiffer gels. Additionally, softer gels induce secretion of
lower levels of inflammatory cytokines, such as TNF-a,
IL-1b, and IL-6, compared to stiffer gels in vitro.37

Through the process of mechanotransduction, macro-
phages behave differently based on F-actin localization.
On softer gels, the force macrophages experience is less
than that on stiffer gels leading to a pronounced effect on
macrophage spreading and attachment.38 Furthermore, the
crosslinking mechanism and density of PEG hydrogels can
be manipulated. Although PEG’s molecular structure is
conserved – PEG diol with two hydroxyl end groups – the
structure can be modified and functionalized allowing for a
high degree of versatility and crosslinking chemistry, such
as free radical polymerization39–43 and Michael-type
addition.44,45

The molecular weight cut-off (MWCO) of the molecules
that can diffuse through the PEG hydrogel is a tunable
property as well. Tugba et al.46 compared the diffusion of
a physiologically active glucagon like peptide-1 (GLP-1)
and a relatively inert bovine serum albumin (BSA) through
PEG diacrylate (PEGDA) hydrogels. Given a PEG concen-
tration of 5% w/v, 100% of encapsulated BSA was released
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from 20 kDa PEG hydrogels in the initial 30 h of the release
experiment, while only 84% BSA was released over the
same period for 10 kDa PEG. Whereas, in 10% w/v PEG,
BSA release decreased to 73% and 67% for 20 kDa and
10 kDa PEGDA hydrogels, respectively. They determined
that diffusivity was dependent on PEG concentration and
molecular weight of the PEG macromer enabling only mol-
ecules of a specific size and below to diffuse through the
PEG hydrogels. When tuning the size exclusion of a poly-
meric membrane, one must be vigilant, as a MWCO of
approximately 20 kDa would be needed to exclude secreted
cytokines, but this may also affect cell viability due to
restricted diffusion of large proteins.47 A balance needs to
be reached to prevent infiltration of host immune cells
while not inhibiting the exchange of nutrients and oxygen.

Several studies proved that encapsulation of pancreatic
islets in PEG hydrogels can restore glucose to physiological
levels in vitro and in vivo.48–51 Cruise et al.48 showed that
PEGDA can act as a passive membrane barrier to encapsu-
lated islets. Additionally, PEGDA did not affect islet cell
functionality as streptozotocin-induced mice maintained
normoglycemia up to four months.49 Although PEGDA
has been shown to support islet survival and act as a pas-
sive barrier to host immune cells, its immunoprotective
qualities are limited in time due to its hydrolytically
degradable structure. To further promote the functionality
of the encapsulated cells, Weber et al.50 created a dual PEG
hydrogel system. This multilayered hydrogel consists of a
PEG-laminin core and an exterior inert PEG layer. The core
provides a biologically active environment for the islets
allowing the islets to survive 28 days in culture, while the
outer shell provides a protective barrier against a host
immune response.50 Headen et al.51 showed that encapsu-
lation of islets in PEG-maleimide has no negative effects on

cell viability and provides a tunable hydrogel network for
creating a robust environment. Cell viability was assessed
by encapsulation of human mesenchymal stem cells in the
PEG-maleimide hydrogels and no significant difference in
viability was observed after seven days in culture.
Additionally, no difference in insulin production was
observed between encapsulated human islets compared to
the non-encapsulated islets in culture.51

Due to PEG’s non-fouling properties, PEGylation of
other materials has been investigated as a method for
immunoprotecting islet cells, and it has been shown that
the capsules that contained PEG on the surface reduced
IL-2 secretion compared to alginate-poly-L-ornithine cap-
sules.9 Although PEG protects from infiltration of cytotoxic
T-cells and reduces host-cell interactions, smaller compo-
nents of the immune system, such as cytokines and antibo-
dies produced by immune cells can still potentially diffuse
through the passive barrier. This may lead to islet destruc-
tion, and shorten graft longevity.52 To address this
deficiency, Cheung and Anseth53 demonstrated that conju-
gating apoptosis-inducing anti-Fas monoclonal antibodies
to the surface of PEG hydrogels attenuates the immune
response to the pancreatic islet cells further by destroying
auto-reactive T-cells. The inclusion of anti-Fas monoclonal
antibodies on the surface of the hydrogels induced
apoptosis of Fas-sensitive Jurkat Tcells. Table 1 summarizes
the various ways PEGDA has been configured to attenuate
the response of different components of the immune
system.

TheraCyte� in diabetic models

TheraCyte�, which is a membrane immunoisolator,15 has
been used for encapsulation of pancreatic tissue to restore

Table 1 Various PEGDA configurations to attenuate host immune response

Gel/device Composition (s) Application Major results

PEG-DA 5 and 10% w/v Controlled release of

bio-active molecules

A higher degree of swelling leads to a

higher diffusion coefficient for a

respective molecule46

10–13 and 25% w/v Show the ability of

PEG to prevent immune

rejection in a xenograft model

Higher rates of insulin release occur in

lower concentrations (10–13%)

PEG-DA49

PEG-DA-RGD 10,20, and 40% w/v Host response to hydrogels

based on stiffness

Softer hydrogels lead to a reduced for-

eign body response by decreasing

macrophage activation37

MnTPPyP-Acryla-PEGDA 10% w/v PEG DA and .5,1,

and 2 mol% MnTPPyP-Acryl

Forming hydrogel networks

that reduce reactive oxygen

species damage

Copolymerizing does not impact the

mechanical integrity of the gel at low

quantities. Copolymerization of

MnTPPyP-Acryl with PEG-DA

decreases ROS damage54

Anti-Fas MAbs conjugated

with PEG-DA-co-NPAb

95/5 to 50/50 (wt)

PEGDA-to-NPA ratio.

0.05 to 1 mg/mL mouse

anti-human IgG and

0–0.25 mg/mL anti-Fas MAbs

To down-regulate the autoimmune

response by inducing apoptosis

of auto-reactive T cells

that destroy transplanted

pancreatic cells

Anti-Fas conjugated hydrogels demon-

strated the induced apoptosis of

Fas-sensitive Jurkat T cells53

aMNTPPyP-Acryl, Mn(III) Tetrakis[1-(3-acryloxy-propyl)-4-pyridyl] porphyrin.
bNPA, N-hydroxysuccinimide-PEG-acrylate.
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glucose levels in different animal models. Itkin-Ansari’s
group showed that TheraCyte� was able to provide
immune protection of pancreatic allograft in Rhesus mon-
keys for 1 year compared to a free graft, which did not last
beyond 14 days.55 A study by Kumagai-Braesch et al.56

showed that TheraCyte� supports islet allografts for six
months in rats with normal and sensitized immune
system. Bruin et al.57 showed that human embryonic stem
cells can differentiate into pancreatic progenitors in
TheraCyte� and were able to restore glucose levels in dia-
betic mice. Recently, Boettler et al.8 encapsulated pancreatic
tissue in TheraCyte� and observed that the diabetic mice
were able to maintain normoglycemia following implant-
ation of TheraCyte�. Table 2 illustrates the advantages and
limitations of these natural and synthetic devices.

Applications to reproductive biology –
Current and future

The experimental success with allogeneic implantations of
pancreatic islets and parathyroid cells led to the investiga-
tion of the feasibility of treatment of additional endocrine
disorders, such as ovarian insufficiency in young female
patients. Premature ovarian failure is a common side
effect of anticancer treatments in girls and young women.
Allogeneic ovarian tissue implantation has a promising

potential as a means to restore ovarian endocrine function
physiologically and avoid the side effects associated with
delayed puberty and ovarian insufficiency.

The application of biomaterials for immunoisolation of a
gonadal tissue has promising potential for restoring endo-
crine function in males and females who suffer from pre-
mature gonadal insufficiency caused by cytotoxic therapy
or autoimmune diseases. Just as islet transplantation is used
to treat endocrine disruption in Type 1 Diabetes7–9,48–51 as
depicted in Figure 1, transplantation of ovarian follicles
secreting sex hormones in response to endogenous circulat-
ing gonadotropins, could establish normal physiological
endocrine ovarian function. The transplantation of ovarian
follicles has similarities to islets, yet also presents unique
challenges as well as opportunities. Follicles have a similar
initial size to islets and secrete sex hormones (estradiol and
progesterone) in response to a circulating stimulus. Unlike
islets, however, follicles expand and contract as they
undergo structural and functional changes during the men-
strual cycle. Furthermore, follicles are avascular and rela-
tively resistant to hypoxia, allowing them to survive when
implanted as larger structures. Due to these similarities and
advantages compared to islets, immunoisolation methods
can be utilized towards follicles or ovarian tissue (Figure 2).
By protecting ovarian follicles or tissue from the host using

Table 2 Advantages and disadvantages of alginate, PEG, and TheraCyte

Gel/device Advantages Disadvantages

Alginate (a) Low toxicity towards encapsulated cells25

(b) Bio inert

(c) Minimal FBR27,33

(d) Low cost

(a) Limited control of mechanical properties

(b) Ion-leaching leading to instability

PEG (a) Easily tunable mechanical properties34

(b) Low toxicity34

(c) Synthesis reproducible (GMP grade)

(d) Robust chemical modification

with bioactive agents (RGD, FASL)37,53

(a) Certain formulations can cause a more severe FBR

(b) Pore size and stiffness must be adjusted for

each application separately

TheraCyte (a) A proven immunoisolator15

(b) Induces neovascularization15

(c) Commercially available

(d) Easy retrieval and shape maintenance

(a) Limited variability in terms of geometry,

stiffness, size and volume

(b) Prone to physical damage

(c) Limited space for loading of cells

(d) Expensive

Time

Immune cells and antibodies
Semi-permeable membrane

Nutrients, oxygen and glucose

Insulin

Immune cells and antibodies

Nutrients, oxygen and glucose

Islet cells Islet cells

Figure 1 Immunoisolation of islet cells in a hydrogel. The basic principle is encapsulating islets in a semipermeable membrane which after a period of implantation

results in the release of insulin. These hydrogels ideally allow the inflow of nutrients and exchange of hormones while minimizing immune cell infiltration. (A color version

of this figure is available in the online journal.)
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PEG, alginate, and TheraCyte�, successful restoration of
ovarian endocrine function can be potentially achieved.
This is possible by maintaining the viability and function-
ality of a sufficient number of follicles secreting gonadal
hormones in response to the circulating gonadotropic fac-
tors. It has been shown that proteolytically degradable syn-
thetic PEG-based hydrogels support mice follicle growth
and maturation.58 Sittadjody et al.59 encapsulated rat gran-
ulosa and theca cells in multilayered alginate to engineer an
artificial ovarian tissue in vitro. They observed that sex ster-
oids and peptide hormones were released in response to
added gonadotropins. Similar to hydrogels, TheraCyte�

can provide immunoisolation but also can promote vascu-
lar formation essential for long-term functionality of the
encapsulated ovarian follicle/tissue.

Lastly, biological inertness and tunable mechanical prop-
erties of hydrogels are particularly beneficial to applications
in male reproductive biology. Alginate has been used for
controlled release of sperm and shown to improve artificial
insemination. Huang et al.60 observed that the alginate
encapsulation prolongs the storage of spermatozoa, and
that the motility of encapsulated semen was significantly
higher than free semen when stored. Faustini et al.61 encap-
sulated boar spermatozoa in barium alginate and demon-
strated that the encapsulation enhanced the storage of
sperm cells, the acrosome integrity, and in situ enzymatic
activity compared to diluted semen. It has also been shown
that sperm encapsulation in alginate reduces in vitro poly-
spermy rate.62

Conclusion

Immunoisolation mitigates host versus graft reaction by
locally protecting graft tissue and avoids the need for sys-
temic immunosuppression. It opens the door to the use of
allogeneic tissue transplantation for restoring endocrine
function in multiple diseases. However, toxicity, poor con-
trol of physical properties, excessive FBR, and poor survival
of the implanted allogeneic tissue marked the initial appli-
cations of the immuno-isolation approaches. Innovations in
polymer chemistry and bioengineering design over the last
decade greatly contributed to the applications of hydrogels

such as alginate and PEG as effective immunoisolators
while maintaining cell functionality and viability. Tunable
stiffness of PEG hydrogels resulted in an attenuated FBR
and extended survival of the encapsulated cells as a result.
Chemical modifications with immuno-tolerizing peptides,
such as FasL reduced the immune response. Microfluidic
approaches allowed the preparation of microgels with intri-
cate structures contributing to extended survival and func-
tion of the encapsulated cells. Multifunctional dual devices
prepared using the versatile chemistry of PEG hydrogels
promoted vasculogenesis around immunoisolated islets
and contributed to better oxygenation while shielding
from rejection. In addition to hydrogels, the use of mem-
brane-based immunoisolation devices such as TheraCyte
have been shown to be clinically applicable. They support
graft tissue viability and can be replaced as needed. To date,
most immunoisolation applications have focused on the
encapsulation of pancreatic islets for treatment of diabetes.
We are optimistic, however, that given the similarities of the
ovarian follicles and pancreatic islets, and based upon the
knowledge gained from the previous studies, immunoiso-
lation can be successfully used for restoration of endocrine
and reproductive function in women with premature ovar-
ian failure.
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Figure 2 Immunoisolation of multiple follicles in a hydrogel. The basic principle is encapsulating follicles in a semipermeable membrane which after a period of

implantation results in follicular development. These hydrogels ideally allow the inflow of nutrients and exchange of hormones while minimizing immune cell infiltration.

(A color version of this figure is available in the online journal.)
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