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Nav1.7 and other voltage-gated sodium channels as drug targets for pain relief
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ABSTRACT
Introduction: Chronic pain is a massive clinical problem. We discuss the potential of subtype selective
sodium channel blockers that may provide analgesia with limited side effects.
Areas covered: Sodium channel subtypes have been linked to human pain syndromes through genetic
studies. Gain of function mutations in Nav1.7, 1.8 and 1.9 can cause pain, whilst loss of function Nav1.7
mutations lead to loss of pain in otherwise normal people. Intriguingly, both human and mouse Nav1.7
null mutants have increased opioid drive, because naloxone, an opioid antagonist, can reverse the
analgesia associated with the loss of Nav1.7 expression.
Expert Opinion: We believe there is a great future for sodium channel antagonists, particularly Nav1.7
antagonists in treating most pain syndromes. This review deals with recent attempts to develop specific
sodium channel blockers, the mechanisms that underpin the Nav1.7 null pain-free phenotype and new
routes to analgesia using, for example, gene therapy or combination therapy with subtype specific
sodium channel blockers and opioids. The use of selective Nav1.7 antagonists together with either
enkephalinase inhibitors or low dose opioids has the potential for side effect-free analgesia, as well as
an important opioid sparing function that may be clinically very significant.
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1. Introduction

Human-validated analgesic targets such as the sodium chan-
nels Nav1.7, Nav1.8 and Nav1.9 are of great interest for the
development of new pain therapies and are the topic of the
present review. Pain severely afflicts about half a billion peo-
ple on the planet but has not seen the remarkable progress in
treatment that other areas of medicine such as cardiovascular
disease or cancer have undergone. One reason for this is that
we know very little about the mechanisms that underlie dif-
ferent sorts of pain. Genetic analyses of mouse loss-of-function
mutants, particularly tissue-specific knock-outs, suggest that
there are many distinct cellular and molecular mechanisms
that can give rise to apparently similar pain conditions, such
as mechanical, thermal or cold allodynia, where innocuous
stimuli cause pain.[1] In humans, major efforts to phenotype
neuropathic pain patients and examine different drug regi-
mens are paying dividends, but we still have a limited knowl-
edge of the types of sensory neurons involved in different
human pain conditions, let alone the central mechanisms that
modulate pain or the location of pain sensations. Given this
ignorance, blocking peripheral nerves as a route to treating
many different types of pain is attractive. Nerve block has
been used for decades as an effective treatment for most
pain conditions and relies upon suppressing the electrical
signals carried by voltage-gated sodium channels.[2–4]
Molecular cloning techniques have revealed nine related vol-
tage-gated sodium channels with distinct biophysical proper-
ties, interacting proteins and cellular patterns of expression

that are involved in electrical signaling. If specific sodium
channels subtypes are involved in particular pain mechanisms,
subtype-specific sodium channel antagonists could, in theory,
produce side effect-free pain treatment. This has been the
goal of many research groups over the past two decades.

2. Genetically defined sodium channel targets

In the post genomic era it has become straightforward to
identify the genes linked to human monogenic disorders,
and to produce transgenic models in mice for mechanistic
studies. These approaches have been particularly fruitful in
the study of the role of sodium channels in pain processing.
The three sodium channels Nav1.7, Nav1.8 and Nav1.9 are
predominantly associated with peripheral neurons rather
than central neurons and have all been linked to human
monogenic pain disorders.[5,6] The encoding genes, main
anatomical expression sites, involvement in diseases/syn-
dromes and pharmacological and electrophysiological fea-
tures of these three channels are displayed in Table 1.

3. Nav1.7 dependent and independent pain states

The first evidence that Nav1.7 was important in peripheral pain
pathways came from a conditional knockout study in a subset of
mouse sensory neurons expressing another sodium channel,
Nav1.8.[13] These sensory neurons are known to be important
for inflammatory pain, and the conditional deletion of Nav1.7 in
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these cells produced a dramatic loss in inflammatory pain.[13,14]
In 2004 a Chinese group identified mutations in Nav1.7 in humans
suffering from inherited erythromelalgia (IEM) which is a chronic
inflammatory condition characterized by pain attacks.[15] The
mechanism underlying this condition was unraveled by the
laboratory of Stephen Waxman who showed that a large number
of different IEM-associated mutations all lead to increased excit-
ability of Nav1.7.[16,17] Another related gain-of-function human
pain condition, originally defined as familial rectal pain (FRP) and
subsequently renamed paroxysmal extreme pain disorder (PEPD),
maps to mutations in the region of Nav1.7 involved in channel
inactivation.[18] This disorder is associated with excruciating
mechanically evoked pain. Much effort has been made to try
and underpin themechanistic changes in Nav1.7 channel function
that give rise to IEM and PEPD. It has been hypothesized that IEM
is principally caused by a shift in channel activation, whereas PEPD
is caused by a shift in channel inactivation. This hypothesis was
further supported by the discovery of a mutation that causes
changes in both activation and inactivation kinetics of Nav1.7,
which subsequently results in a clinical phenotype that is indica-
tive of both IEM and PEPD.[19] Furthermore, a link between
enhanced resurgent currents in PEPD mutations but not IEM-
linked mutations has also been noted.[20] More recently several
IEM-causingmutations have been discovered that do not have the
characteristic shift in channel activation, suggesting that the etiol-
ogy of these pain disorders, particularly IEM, is more complex than
first thought.[21,22] Such human gain-of-function pain-related
mutations in Nav1.7 have stimulated considerable interest in the
pharmaceutical industry.

In 2006 James Cox and Geoff Woods found that loss-of-func-
tion recessive mutations in Nav1.7 resulted in congenital insensi-
tivity to pain (CIP).[23] This dramatic discovery energized the field
to focus on this particular sodium channel isoform for the devel-
opment of new analgesic drugs that should, in principal, be side-
effect free. As global sodium channel blockers are effective
analgesics, a critical issue in the development of such drugs is a
demonstration of specificity for Nav1.7, a vital element that is
lacking in many Nav1.7 drug development programs. Patents
filed in the area have recently been reviewed [24], whilst clinical
trial data are summarized in Table 2.

Importantly, although acute pain and some types of inflam-
matory and neuropathic pain appear to be Nav1.7 dependent,
not all pain states are dependent on Nav1.7. Recently, examples

Article highlights

● Non-specific sodium channel blockers are very effective analgesics for
most pain syndromes.

● Sodium channel Nav1.7 is essential for human pain, but specific
antagonists have weak analgesic activity.

● Nav1.7 not only propagates action potentials but has other actions,
notably in control of the expression of opioid peptides.

● Animal models show that Nav1.7 antagonists, when co-administered
with low dose opioids do give effective analgesia.

● The role of Nav1.8 and Nav1.9 in pain syndromes is explored.
● Small molecule blockers and gene therapy approaches to down-

regulating Nav1.7 sodium channel expression are described.

This box summarizes the key points contained in the article.
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of pain states that are not dependent upon the expression of
Nav1.7 have been identified in both mice and humans. In mice,
bone cancer pain and oxaliplatin-evoked mechanical and cold
allodynia all occur normally in Nav1.7 null mutant mice.[1] In
humans a recent case report suggests that individuals who
carry loss-of-function mutations in SCN9A, associated with CIP,
still have the potential of developing neuropathic pain.[39]
Thus Nav1.7-targeted antagonists are not the panacea for all
pain syndromes, despite the remarkably broad role of the
channel in acute and inflammatory pain states.

Given the fact that many Nav1.7 drug development pro-
grams have been underway for several years, success has been
limited. Potent specific stable antagonists have been devel-
oped and tested in humans (see Table 2). Disappointingly, a
recent claim that neutralizing monoclonal antibodies to Nav1.7
are effective analgesics has not been replicated.[40] Why has
this promising area of drug development apparently as yet
failed to produce good analgesics? The impression gained is
that the more selective an inhibitor is for Nav1.7 (e.g. protoxin
II), the less potent the analgesia, whilst less selective antago-
nists (e.g. CNV-1014802 and lidocaine) that may exert effects
on a broader spectrum of sodium channels are very effective.

An explanation for this conundrum comes from the sur-
prising discovery that there is a major role for enhanced
opioid signaling in the analgesia associated with Nav1.7 null
mutant CIP. Studies on CIP patients that were potentially
Nav1.7 null mutants in the pre-genomic era had already
provided evidence that the endogenous opioid system con-
tributed substantially to the pain free state.[41] When
analgesia is established by the deletion of SCN9A encoding
Nav1.7 in mice, the vast majority of analgesia is naloxone
reversible. In a single human Nav1.7 null subject, noxious
stimuli could be detected 80% of the time after naloxone
treatment, but not before.[42] In other words, opioid-
mediated analgesia seemingly accounts for most of the
hypoalgesic phenotype of Nav1.7 null mutant mice and
humans. Loss of Nav1.7 expression is linked to a transcrip-
tional upregulation of Penk, the precursor of met-enkepha-
lin, that is found at high levels in the central terminals of
Nav1.7 null sensory neurons.[42] Complete channel block in
wild type DRG neurons in culture with high levels (0.5 µM)
of tetrodotoxin (TTX), a sodium channel pore blocker [42],
also leads to upregulated expression of opioid peptides in
sensory neurons. However, TTX at five times the IC50 for
Nav1.7 does not lead to enhanced enkephalin expression,
suggesting that any compound that recapitulates the CIP
phenotype of loss-of-function mutants will have to provide
100% Nav1.7 channel block, which is an unrealistic pharma-
cological goal. As opioid-dependent analgesia seems to
account for the vast majority of the CIP phenotype, intrigu-
ingly implying a life-long endogenous opioid action with no
tolerance [42], a combination of a specific Nav1.7 antagonist
and low doses of opioids or enkephalinase blockers should
recapitulate CIP if this mechanism is correct. In animal
models, this conclusion has been confirmed for a number
of acute, inflammatory and neuropathic pain models.
[1,43,44] In Figure 1, the combination of a selective toxin
that blocks Nav1.7, phlotoxin 1, with buprenorphine at con-
centrations that are ineffective alone produces a dramatic

analgesia when applied together (Patent number:
WO2015036734). The development of new enkephalinase
inhibitors [45] provides an alternative strategy of combining
enkephalinase inhibitors and Nav1.7 antagonists to cause
analgesia.

How does the presence of a voltage-gated sodium
channel influence the expression of opioid peptides? This
is a fascinating mechanistic puzzle. Importantly, altering
intracellular calcium levels does not seem to link sodium
channel activity and enkephalin expression.[42] In contrast,
manipulating intracellular sodium levels can alter expres-
sion of the penk mRNA that produces leu and met-enke-
phalins; the sodium ionophore monensin down-regulates
expression, whilst channel block with very high dose TTX
upregulates penk mRNA.[42] Sodium thus seems to be
functioning as a second messenger, and this parallels the
situation in the kidney where tonicity regulates gene
expression through effects on salt kinases and a transcrip-
tion factor NFAT5, that is also expressed at very high levels
in sensory neurons.[46] This potential mechanism is an
area of research interest. Should this mechanism be at
play, it is hard to understand why it is linked to voltage-
gated Nav1.7 channel activity and not to other sodium
channels such as Nav1.8 that are present in the same
cells. A possible explanation is that sodium ingress
through the Nav1.7 window current has a much greater
effect on intracellular sodium concentrations than any
other sodium channels. Consistent with this hypothesis,
HEK293 cell lines permanently expressing Nav1.7 have rest-
ing intracellular sodium levels that are double the level of
the parental cell line (data not shown). This could explain a
specific link between persistent Nav1.7 channel activity and
substantial changes in intracellular sodium concentrations
that may have effects as a second messenger. Nav1.9 win-
dow currents are also substantial, but loss of this channel
does not alter penk expression.[42] Thus the link between
intracellular sodium levels and penk expression remains
uncertain, although channel subcellular localization as
well as expression may be an important aspect of such
potential signaling mechanisms.

4. Nav1.8

The role of Nav1.8 in nociceptive processing has been exten-
sively studied, with numerous behavioral and functional stu-
dies underlining the importance of Nav1.8 channels, as well as
Nav1.8-expressing neurons, in the development of inflamma-
tory and neuropathic pain conditions.[14,47–50] These studies
have highlighted the potential impact of targeting Nav1.8 for
treating numerous pain conditions; however, in contrast to
SCN9A, naturally occurring loss-of-function mutations occur-
ring in SCN10A are yet to be described in humans, and there-
fore the therapeutic potential of targeting Nav1.8 has to be
extrapolated from studies conducted on mice. Importantly,
however, several gain-of-function mutations have been
reported for SCN10A, which strongly support a role of Nav1.8
in nociceptive processing in humans. Recent genetic analysis
of 104 patients with idiopathic painful neuropathy, for which
mutations in SCN9A had been ruled out, identified seven
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mutations in SCN10A in nine individuals.[51] From the seven
mutations identified, Faber et al. (2012) identified two gain-of-
function mutations in SCN10A (L554P and A1304 T) which
altered the gating properties of Nav1.8 and led to an increase
in excitability in small neurons. Other gain-of-function muta-
tions in SCN10A have been reported and are also associated
with painful neuropathy (predominantly small fiber neuropa-
thy) caused by alterations in channel gating that promote
neuronal hyperexcitability.[52,53] Currently there are no
Nav1.8-specific compounds in clinical testing; however, there
are several compounds that have been shown to be effica-
cious in animals models of inflammatory, and perhaps more
surprisingly, neuropathic pain.[54,55]

Besides nociception, Nav1.8 has also been proposed to
play a significant role in cardiac electrophysiology, being
expressed in intracardiac neurons where it acts to prolong
the PR-interval (atrioventricular conduction) of the cardiac
action potential.[56] A genome-wide association study
(GWAS) published in 2010 showed that genetic variations
in SCN10A can ultimately influence cardiac conduction.[54]
Chambers et al. (2010) associated a nonsynonymous short
nucleotide polymorphism (SNP) in SCN10A with prolonged
atrioventricular conduction, predisposing affected indivi-
duals to a higher risk of heart block. Similar association
studies have also identified a similar link between genetic
variants in SCN10A and atrioventricular conduction proper-
ties as well as atrial fibrillation, adding further support for a
significant role of Nav1.8 in cardiac electrophysiology.[57–
59] Although the deletion or inhibition of Nav1.8 does not
seem to adversely affect cardiac output in mice, the role of
Nav1.8 in cardiac conduction will nevertheless be an impor-
tant consideration when developing potential analgesics.
[54,60]

5. Nav1.9

In animal models of inflammatory pain the participation of
Nav1.9 sodium channels has been well established. Many
papers show a reduction in the pain behavior by inflamma-
tory agents such as formalin, carrageenan, CFA [61,62],

prostaglandin E2 [63], bradykinin, serotonin and ATP [64]
in Nav1.9 knockout mice. The correlation of Nav1.9 sodium
channel activity with nerve injury-induced pain is still some-
what uncertain in mouse models. Nav1.9-null mice showed
unaltered pain-related behavior in various neuropathic pain
models, including partial sciatic nerve injury [64], chronic
constriction injury [65] and spinal nerve transaction.[1]
However, there was a significant reduction in slowly inacti-
vating and persistent TTX-resistant currents in L4/5 DRG
after transection of the sciatic nerve.[66] Furthermore, oro-
facial neuropathic pain produced by constriction of the
infraorbital nerve in mice is dependent on the presence of
Nav1.9.[67]

The presence of seven different mutations in the SCN11A
gene encoding Nav1.9 channels in peripheral neuropathy
patients confirm its participation in neuropathic pain in humans.
Two of those mutations (I381T and L1158P) led to a reduction in
the current threshold and increased firing frequency in response
to suprathreshold stimuli, resulting in increased excitability of
DRG neurons.[68] Zhang et al. (2013) also described two muta-
tions in the SCN11A gene (R225C and A808G) in patients experi-
encing episodic chronic pain.[69] Another Nav1.9 mutation,
G699R, which is located in the DII/S4-5 linker, has been identified
in a patient with symptoms of painful small fiber neuropathy. The
G699Rmutant channels render DRG neurons hyperexcitable.[70]
More recently, a new gain-of-function mutation in the SCN11A
gene (p.V1184A) has been linked to enhanced cold pain in
humans.[7] Furthermore, an intriguing observation correlates
an unusual syndrome of loss-of-pain sensation and inclination
for self-mutilation with a mutation in SCN11A (L811P), which is
associated with a gain of function in Nav1.9 sodium channel
activity.[71] Other Nav1.9 mutations have recently been linked
to enhanced cold pain in humans.[7]

6. Multiple functions for sodium channels

Action potential propagation by sodium channels has long
been the principal interest of electrophysiologists. However,
increasing evidence links sodium channels to a variety of other
functions in both neurons and supposedly non-excitable cells.

Figure 1. The effect of phlotoxin and/or buprenorphine on the heat hyperalgesia induced by injection of CFA on the hind paw of mice. The latency of paw
withdrawal in response to a nociceptive heat stimulus (Hargreaves test) was evaluated before (baseline) and 24 hours after the intraplantar injection of CFA with
(post-treatment) or without (CFA) the administration of phlotoxin and/or buprenorphine (30 minute administration). Each group is represented by a different
coloured bar (saline – white; phlotoxin – yellow; buprenorphine – blue; phlotoxin + buprenorphine – green) with the administration of test compounds only being
summarized in the post-treatment bars. Values represent means ± SEM of 6–8 mice. *p < 0.05 and ***p < 0.001 when compared to saline group (one-way ANOVA
followed by Bonferroni post hoc test).
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Thus both Nav1.5 and Nav1.7 expression have been linked to
the ability of cancer cells to metastasize.[72] In the pain field,
the ability of sympathetic neurons to form baskets around
sensory neurons in cell bodies and sensitize peripheral pain
pathways is dependent on the expression of Nav1.7 in the
sympathetic neurons.[1] The mechanisms underlying these
events are uncertain. One suggestion has been that accessory
beta subunits with their cell adhesion motifs are involved in
cell migration.[73] An alternative suggestion has been that
sodium channel expression increases baseline intracellular
sodium levels, and sodium proton anti-porters acidify the
extracellular milieu allowing cells to penetrate surrounding
tissue more effectively.[74,75] These suggestions have yet to
be formally proved, and other mechanisms may be at play.

More recently, a link has been made between sodium
channel activity and transcriptional regulation, and a possible
role for sodium as a second messenger has been described in
sensory neurons.[42] The sodium channel Nav1.3 plays an
important role in the pancreas in terms of regulating insulin
secretion, whilst Nav1.7 has a very broad array of functions,
including control of neurotransmitter release in olfactory sen-
sory neurons, as well as regulation of peptide secretion in the
hypothalamus.[76–79] All of these functions may create some
difficulties with respect to the effective use of sodium channel
blockers as side effect-free analgesics.

7. Small molecule blockers of sodium channels as
analgesics

Although Nav1.7 is currently one of the most promising tar-
gets for alleviating chronic pain, progress on the development
of new blockers is intrinsically linked to achieving high levels
of selectivity and efficacy. Currently, the majority of therapeu-
tically used sodium channel blockers bind to highly conserved
residues that are found within the pore domain of the chan-
nel, making selectivity between family members difficult to
achieve. These functionally selective blockers often rely upon
the channel to enter particular states (typically active, inactive
or resting) in order for them to reach their binding site within
the inner vestibule of the channel pore. One way of improving
selectivity is to design compounds that bind to areas outside
of the pore-forming region that are poorly conserved between
family members. These compounds are often termed molecu-
larly selective as their inhibitory action is independent of the
channel’s functional state.[24] One such compound, PF-
05089771 (Pfizer), is currently in clinical trials for use in chronic
pain. This molecularly selective aryl sulfonamide compound
boasts 1000-fold selectivity for Nav1.7 over Nav1.5 and Nav1.8,
and has been reported to be well tolerated in phase I trials.[80]
Interestingly, from the information that is currently available,
sulfonamides (particularly aryl sulfonamides) seem to be one
of the principal classes of compounds used in the develop-
ment of Nav1.7 inhibitors, suggesting that these compounds
may offer a selective advantage over other classes.[24] There
are, however, other compound classes in clinical development
including the pyrrolidine-based compound CNV-1014802
(convergence), which is currently undergoing phase III clinical
trials for use in trigeminal neuralgia.[28] Unfortunately there is
currently no information on how selective this compound is

over other Nav family members, or indeed where the com-
pound binds the channel . A summary of Nav-specific com-
pounds currently undergoing clinical assessment for treating
pain is shown in Table 2; however, owing to the lack of
disclosed information, it is difficult to assess the relative selec-
tivity of many of these compounds.

In addition to small molecule inhibitors, several natural
toxins are also being exploited for their potential therapeutic
benefit. Numerous examples are available, with peptide toxins
extracted from tarantula venom (protoxin II) or the venom of
the cone snail (µ-Conotoxin – KIIIA) showing reasonable levels
of specificity against Nav1.7.[38] Another natural toxin that is
being investigated for use in treating pain is tetrodotoxin
(TTX), the guanidine-related venom extracted from the puffer
fish. TTX shows very little selectivity across a number of Nav
family members, with IC50 values for Nav1.1, 1.2, 1.3, 1.4, 1.6
and 1.7 being in the single nanomolar range.[38] Despite the
lack of selectivity, TTX is currently undergoing phase III clinical
trials for treatment in cancer-related pain, where it is adminis-
tered subcutaneously to limit systemic effects.[81] Although
the selectivity and therapeutic index of natural toxins may
limit their therapeutic use, they hold promise as scaffolds for
the development of more specific inhibitors targeting for
example, Nav1.7.

8. Gene therapy focused on sodium channels

Gene therapy has made enormous strides recently, so that it is
at last the focus of interest of reputable groups. AAV mediated
gene delivery is of particular interest, but the irreversible
silencing of sodium channel genes is potentially problematic.
Many genes, as we have seen, have a variety of functions in
both neuronal and non-neuronal tissues, and AAV is not neu-
ron specific. Ideally reversible gene therapy with a drug indu-
cible promoter driving antisense constructs or siRNAs could
obviate many potential problems associated with a complete
irreversible knock down of channel expression. How could this
be achieved? A number of approaches have been investi-
gated. The Tet-on system has been examined thoroughly
using doxyclin in rodents and primates, but the development
of an immune response to components of the viral delivery
system are still impeding progress. Drug regulated control of
gene expression is a vast prize in terms of general utility for
many patients if such technical obstacles can be overcome,
but as yet, they have not.[82] A more recent approach that has
worked in models of epilepsy exploits a designer receptor
activated by a designer drug (DREADD) delivered with AAV.
Application of the DREADD activator effectively silenced the
epileptic activity [83] suggesting that a similar approach could
be effective in pain. Interestingly, an antisense transcript is
found for Nav1.7, but its physiological role and significance
remain to be comprehensively explored.[84]

9. Expert opinion

Three points are worth making. First, the promise of a side-effect
free sodium channel blocking analgesic has yet to be fulfilled,
despite the clear utility of nerve block in pain treatment. One
reason for this is that Nav1.7 is both a conduit for electrical
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signaling, as well as a regulator of opioid activity in mice and
humans.[42] Complete channel block, mimicked in null mutants,
appears to be required for upregulated opioid activity, and this is
currently not achieved by small molecules at acceptable concen-
trations. These observations underscore the essential role for
mouse mechanistic studies in human drug development. Such
information also point the way forward to effective strategies for
treating pain using combination therapy that is very effective in
animal models, but requires confirmation with human data that
should soon be available.

Secondly, a reason for the failure to develop useful
analgesics results from semantic confusion over central ver-
sus peripherally acting drugs. Peripheral sensory neurons
have terminals in the spinal cord within the blood brain
barrier (BBB). These terminals have high concentrations of
Nav1.7 protein that is involved in neurotransmitter release.
Thus BBB permeant Nav1.7 blockers are essential to block all
aspects of Nav1.7 function, even though Nav1.7 is a nominally
peripheral neuron-associated protein. It is important to
remember that even non-steroidal anti-inflammatory drugs
(NSAIDS) that are assumed to work peripherally through the
blockade of sensitizing cyclooxygenase metabolites, such as
prostaglandins, are highly effective when delivered intrathe-
cally, suggesting that actions of neuronal cyclooxygenase
metabolites on the central terminals of sensory neurons are
of great importance in inflammatory pain. Thus peripheral
neuron-targeted drugs may need to be BBB permeant to
affect their actions.

Finally, the great advances made in whole genome sequen-
cing, and the claims of some of the functional imaging com-
munity has led to the specious claim that drug development
work can be carried out without animal studies. This is dan-
gerously naive. Genetic manipulation in mice gives us the
mechanistic insights that allow rational drug design, as
demonstrated emphatically by the present Nav1.7 antagonist
analysis. Of course there are differences between mice and
humans, but many more examples of drug failure between
phase 2 and 3 can be identified than those that occur as a
result of species differences. An investment in basic mechan-
istic research is the key to new drugs, whilst the best medic-
inal chemistry focused on a poorly understood target is likely
to fail.
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