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Abstract
Adipose (AD) tissue development and function relies on the ability of adipocytes to proliferate and differentiate into lipid-containing

cells that also have endocrine function. Research suggests that certain conditions can induce AD tissue stem cells to differentiate

into various cell types and that the microenvironment of the cell, including the extracellular matrix (ECM), is essential in maintaining

cell and tissue function. This review provides an overview of factors involved in the proliferation and differentiation of adipocytes.

A brief review of the numerous factors that influence PPARg, the transcription factor thought to be the master regulator of

adipocyte differentiation, provides context of established pathways that regulate adipogenesis. Thought provoking findings

from research with hypoxia that is supported by earlier research that vascular development is related to adipogenesis are

reviewed. Finally, our understanding of the critical role of the ECM and environment in adipogenesis is discussed and compared

with studies that suggest that adipocytes may dedifferentiate and can convert into other cell types.
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Introduction

Viable animal tissue development involves the commitment
of pluripotent stem cells to lineages with a restricted cap-
ability to form other cell types, differentiation that includes
a cell’s commitment to a specific cell type, morphogenesis,
maturation, and senescence. Adipose (AD) tissue originates
in the embryonic mesoderm and contains a variety of cells,
including mesenchymal cells, preadipocytes, fibroblasts,
and adipocytes. Research conducted on AD tissue and its
various cell types has provided insights into the regulation
of AD tissue growth, metabolism, endocrine function,1,2 and
determination of adipocyte stem cells fate. It is well estab-
lished that peroxisome proliferator-activated receptor g
(PPARg), the master regulator of adipocyte differentiation,
and other transcription factors such as CAAT enhancer
binding protein (C/EBP) a play critical roles in the cell’s
commitment to the adipocyte phenotype and function.
Early work showed that the co-expression of C/EBPa and
PPARg was essential for a differentiated and functional adi-
pocyte. For example, insulin response in cultured fibro-
blasts from C/EBPa-deficient mice was wholly dependent
on the presence of the C/EBP� gene despite the presence of
PPARg. Our current understanding of adipocyte develop-
ment suggests that (1) AD tissue contains stem cells that
may differentiate into other cell types as well as a variety
of other differentiated cell types, (2) adipocytes may

dedifferentiate and evidence, in vitro, suggests that they
can be induced to form other cell types when exposed to
specific conditions, and (3) the microenvironment of the
cell, including the extracellular matrix (ECM), is essential
in maintaining cell and tissue function. Our knowledge of
the macroenvironment within AD tissue is also increasing.
This review will focus on the most recent knowledge, from
both in vitro and in vivo studies, of the regulation of adipo-
cyte and AD tissue differentiation.

AD tissue cellularity

AD tissue contains several cell types, one of which is the
lipid-laden adipocyte. When tissue is isolated and enzyma-
tically digested, lipid-filled adipocytes tend to float while
various other cells, collectively termed the stromal vascular
(SV) fraction, sink. It has been suggested that SV cells can be
identified phenotypically as cluster-differentiation protein
(CD) 45�, CD235a�, CD31�, and CD34þ whereas SV and
AD-derived stem cells (ASC) retain reactivity for CD90,
CD73, CD105, and CD44 but are not reactive for CD45
and CD31 markers.3

A number of studies that generated monoclonal antiadi-
pocyte antibodies (MAB) in pigs4–8 provided insights into
the identification of preadipocyte progenitors and the regu-
lation of preadipocyte growth and development.4,9

Antibody development included the immunization of
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mice with porcine adipocyte plasma membranes,4 iodin-
ation of adipocyte plasma membrane proteins, followed
by immunoprecipitation with MAB to demonstrate protein
antigens, and detection of antigens against MAB on mature
adipocytes and a proportion of non-lipid-containing cells in
SV cultures. Treatment of SV cultures with a combination of
MAB and complement before adipogenesis demonstrated
that adipocyte lineage cells were eliminated by MAB treat-
ment.5 Immunoreactive SV cells in primary cultures and in
AD tissue markedly increased in the number between 60 d
fetuses and newborn pigs,5 which was established as a time
of AD tissue expansion in this species. These data suggest
that cells progressing along the adipogenic lineage possess
cell surface antigens that may be unique to adipogenic cells
and exhibit differential expression with age within AD
tissues.

To assess proliferation of primary porcine preadipocytes,
a technique was developed for measuring the proliferation
of preadipocytes in cultures of SV cells from subcutaneous
AD tissue using flow cytometry of propidium iodide DNA-
labeled cell cultures.7 Among other factors, the proportion
of replicating cells was dependent on serum concentration
and cell density. Using the AD 1 MAB, the preadipocyte
subpopulation within the SV cells was 8–10% of the total
whereas the proportion of replicating preadipocytes (AD-
1þ) was 2–6%. Insulin-like growth factor-1 (IGF-1) is critical
for mitotic activity of preadipocyte cell lines and primary
SV cells. Treatment with IGF-1 had several results. It
increased the proportion of preadipocytes at all densities
although the effect was greatest in the cultures with the
greatest densities. Fat cell cluster development was also
increased with IGF-1 treatment and higher densities. The
proportion of replicating cells decreased with increasing
density and IGF-1 significantly increased replication at all
densities. These results provide direct evidence of hormo-
nal regulation of primary preadipocyte replication.

More recently, preadipocyte factor 1 (Pref-1), also known
as Delta-like 1 homolog (Dlk1), has been shown to inhibit
preadipocyte proliferation and adipocyte differentiation by
regulating the cell’s entry into G1/S-phase and the molecu-
lar switch causing cell differentiation.10 Established as a
transmembrane protein that is a member of epidermal
growth factor-like protein family, Pref-1 acts in an auto-
crine/paracrine manner to inhibit adipogenesis by interact-
ing with fibronectin.11 Pref-1 may have a potential role in
early commitment stage whereby stem-like cells commit to
the adipocyte lineage.12 Pref-1 blood concentrations are
higher in newborn small for gestational age infants com-
pared with appropriate for gestational age infants or late-
gestational women, but the differences in Pref-1 concentra-
tion were no longer apparent by 4 months of age.13 This
may provide insight to the previous descriptions that
small for gestational age increases adiposity.14–17

Adipogenesis

Numerous adipogenic stimulators have been described and
more continue to be identified. To date, PPAR g, IGF-1,
macrophage colony stimulating factor, fatty acids, prosta-
glandins (PGs), and glucocorticoids appear to mediate

these adipogenic stimulators.18 Of these, PPARg is
considered a master regulator of adipocyte differentiation.
This transcription factor is a clinical target for the insulin-
sensitizing agents known as thiazolidinediones.19,20 Almost
a decade of research was conducted before two groups
independently reported that PPARg was predominantly
expressed in adipocytes and induced during adipogen-
esis21,22 and, in 1995, a third group determined that
PPARg was the ligand for thiazolidinediones.23 Since then,
numerous studies have evaluated both direct and indirect
effects of PPARg on adipogenesis. In vitro, PPARg-binding
studies using differentiated primary murine adipocytes iso-
lated from epididymal, inguinal, and brown AD tissues
suggest that depot-selective binding of PPARg may regulate
depot-specific induction of gene expression.24 One class of
compounds associated with the regulation of PPARg
function in adipocytes is PG. Prostacyclin promotes adipo-
cyte-precursor cell differentiation to AD cells by activating
the expression of C/EBPb and d. Preceding adipocyte mat-
uration, these proteins activate the expression of PPARg. PG
E-2 and PGF-2a inhibit the early phase of adipocyte differ-
entiation by upregulating their own production and
suppressing PPARg function. In contrast, PGD-2 and its
non-enzymatic metabolite �(12)-PGJ(2) appear to induce
the middle-late phase of adipocyte differentiation through
both DP2 receptors and PPARg.25 In other studies, PG
metabolism was positively implicated in AD tissue devel-
opment since the upregulation of PG reductase (PTGR) 1
gene expression was associated with porcine subcutaneous
AD tissue accretion.26 While the association between
PTGR1 gene expression and adipogenesis was novel, pre-
vious research had identified biological activity of PTGR1.
In swine tissues, PTGR1 catalyzes reduction of the
D13 double bond of 15-ketoprostaglandins to yield
15-keto-13,14-dihydroprostaglandins which result in a fur-
ther reduction of the biological activities of PGs.27 Enzyme
assays of PTGR1 activity found that AD tissue contained the
highest PTGR1-specific activity in pigs.27 It is important
to consider PG reductase, PTGR2 which is also a
15-oxoprostaglandin 13-reductase28, since it is also predom-
inantly distributed in AD tissue and, like PTGR1, also
results in a further reduction of the biological activities of
PGs. Overexpression of PTGR2 represses transcriptional
activity of PPARg and inhibits 3T3-L1 adipocyte differenti-
ation.28 These observations may indicate that PTGR1 has a
role in adipogenesis in porcine AD tissue. Additionally, a
link between PGE2 catabolism and regulation of ligand-
induced PPARg activation of adipogenesis has been
established.28

There are several reports that suggest that there are inter-
actions of several known adipogenic mediators of regula-
tory pathways that all ultimately lead to changes in PPARg.
Regulatory T (Treg) cells found in visceral AD tissue were
recently implicated in controlling the inflammatory state of
AD tissue. PPAR-g expression by Treg cells was required for
complete restoration of thiazolidinedione-induced insulin
sensitivity in obese mice,29 suggesting that PPARg activity
in AD tissue may also involve cell types other than adipo-
cytes. While the critical role of the nuclear PPAR receptor
during adipogenesis and for adipocyte functions has been
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well established, an additional role in inducing the IGF sig-
naling pathway through constitutive enhancers has been
described.30 Additionally, the endogenously produced
PPARg antagonist, 2,3-cyclic phosphatidic acid (cPA),
appears to regulate PPARg function by stabilizing the bind-
ing of the corepressor protein, silencing mediator of retinoic
acid and thyroid hormone receptor resulting in suppressed
adipocyte differentiation and lipid accumulation.31 There
are also significant roles attributed to the other PPAR sub-
types. For example, it is well established that C/EBPa is
most important for insulin response, the activation of
PPARg causes insulin sensitization and enhances glucose
metabolism. However, PPARb/d play important roles in
energy metabolism including fatty acid metabolism and
regulation and PPARa activation has as role in reducing
triglycerides and regulating energy homeostasis.32

More recently, research using stem cells and interest in
cell survival after implantation has resulted in significant
findings about the effects of hypoxia on adipogenesis. For
example, research using human mesenchymal stem cells
(MSC) showed that both mitochondrial biogenesis and
oxygen consumption increase during adipocyte differenti-
ation.33 Fluorescently tagged SV cells co-implanted with
minced AD tissue into nude mice showed approximately
17% of the original fluorescent tag signal even after 56 d
post-implantation. The authors suggest that some cells dif-
ferentiated into adipocytes while others were incorporated
into new blood vessels, and it appears that SV cells may not
only survive in an ischemic microenvironment but also par-
ticipate in both adipogenesis and angiogenesis.34 This
notion is supported by the expanding research in the area
of hypoxia-induced adipogenesis and the interrelationship
of adipogenesis and angiogenesis in vivo,35,36 and research
showing that adipogenesis and angiogenesis appear to be
spatially and temporally associated.35 For example, it has
been suggested that hypoxia causes AD tissue dysfunction
with extensive effects including increased glucose metabol-
ism and concomitant lactate production, insulin resistance,
inflammation and fibrosis, and increased cell differentiation
and adipokine secretion in AD tissue.36,37 Experiments with
varying oxygen levels have shown that the fate of differen-
tiating stem cells is impacted by hypoxia. For example,
reducing mitochondrial respiration induced by hypoxic
growing conditions for human MSC reduced adipocyte dif-
ferentiation.33 Experimentally reducing mitochondrial tran-
scription factor A by siRNA-based knockdown reduced
both mitochondrial respiration and adipocyte differenti-
ation.33 Others have shown that hypoxic conditions
increase adipocyte differentiation in human AD tissue
MSC38 and in the myogenic cell lines, C2C12 and G8.39

Hypoxic conditions appear to increase vascular endothelial
growth factor (VEGF) and basic fibroblast growth factor
expression, which can both promote angiogenesis,40 and
leptin transcripts in human AD tissue-derived stem
cells.41 Furthermore, conditioned media collected from
cells grown in hypoxic conditions increased the viability
of human umbilical vein endothelial cells.40

Given the apparent importance of oxygenation and the
spatial relationship of adipogenesis and vascular develop-
ment, it is tempting to postulate potential factors that are

essential for adipogenesis. Nuclear factor erythroid-derived
2-like 2 regulates key aspects of the antioxidant defense
pathway and has been implicated in regulating adipocyte
differentiation and oxidative stress in adipocytes.42 Another
factor that may be involved is vascular endothelial growth
factor (VEGF), a key factor in angiogenesis, bone formation
and chondrocyte viability, and osteoblast and adipocyte dif-
ferentiation in vitro. VEGF may induce adipocyte differen-
tiation by regulating the levels of Runx2 and PPARg.43

Research evaluating hypoxia, in vivo, suggests that changes
in blood flow and oxygenation are not limited to those
observed conditions in vitro. Subcutaneous AD tissue
appears to have relatively high blood flow which is further
increased after eating or exercise.44 Blood flow to exercising
skeletal muscle increases primarily through vasodilation in
the contracting muscles thereby achieving a relatively con-
stant flow of oxygen to the muscle.45

Recent interest in intramuscular adipogenesis and its
roles in muscle function, disease, and exercise performance
has shown that the interaction between cell types is more
complex than what has been suggested by prior studies of
AD tissue endocrine, autocrine, and paracrine function.
One study has shown that conditioned media and co-
culture of adipocytes or preadipocytes affect myotube for-
mation in vitro differently suggesting that circulating factors
from preadipocytes promote myogenesis while the factors
from adipocytes negatively affect myogenesis and may
result in muscle deterioration and pathologies.46 This line
of research has significant potential for health outcomes and
interventions related to physical activity, obesity, skeletal
muscle disorders, and dietary interventions.

ECM

ECM remodeling and development is critical to AD tissue
maintenance by helping to regulate the development,
expansion, and phenotypic fate of MSC. In a study of
human MSC in vitro, ECM matrices for osteogenesis and
adipogenesis were designed to mimic the stages of differ-
entiation of the two cell types.47 Osteogenesis marked by
increased RUNX2 and decreased PPARg expression was
evident in MSC on matrices that mimicked early osteogen-
esis ECM, whereas adipogenesis was evident on matrices
which mimicked early adipogenesis ECM resulting in
decreased expression of RUNX2, MSX2, and TAZ.
Mimicking tissue- and differentiation stage-specific ECM
regulated the expression of transcription factors which, in
turn, controlled the balance of osteogenesis and adipogen-
esis of MSC.47

Tension and force on the cell also appear to mediate the
ultimate fate of mesenchymal stem cells48 by modifying the
ECM. Changes to ECM include actin and myosin fiber
formation, activity of both the matrix metalloproteinase
(MMP) family peptidases and the tissue inhibitors of
MMPs (TIMPs).48 One bioinformatic network analysis sug-
gests that crosstalk between ECM components and tran-
scription factors, including PPARg, influences adipocyte
differentiation. These pathways appear to be relevant in
maintaining the adipogenic potential of human dedifferen-
tiated fat (DFAT) cells.49 Several other studies also offer
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evidence in support of the importance of the ECM for adi-
pocyte development. The plasminogen activation system,
including the urokinase-type plasminogen activator
(uPA), tissue-type plasminogen activator (tPA) proteases,
and their inhibitor plasminogen activator inhibitor-1
(PAI-1), is a major contributor to extracellular proteolytic
activity with a role in tissue remodeling. Additionally,
PAI-1(�/�)-induced pluripotent stem cells form adipo-
cytes spontaneously.50 One research team suggests that
ascorbic acid may alter adipocyte differentiation by altering
collagen profiles after observing that 50 mg/mL ascorbic
acid reduced type I collagen and a1 (V) procollagen while
mature collagen a1 (V) protein was not detectable by west-
ern blotting proteins from 3T3-L1 cells 8 d after being
induced to differentiate.51 As a major component of the
basal lamina, laminin proteins are important for AD
tissue maintenance. A comprehensive study showed that
laminin (LM)-a4, LM-b1, and LM-g1 mRNAs increased
during adipogenesis of human bone marrow-derived
MSC. Initial basement membrane formation was apparent
after 14 d of culture with basement membrane (BM)-like
structures surrounding fat droplet-containing cells after
28 d. Immunoreactivity suggested that LM-411 and
LM-421 are present in the BM around adipocytes implying
that LM-411 may function as a structural scaffold during
adipogenesis, since it is also expressed in mature human
subcutaneous fat tissue in vivo.52 Earlier studies assessing
the influence of the ECM and ECM components on adipo-
genesis included in vivo studies and studies of primary por-
cine AD tissue SV cell cultures.53 In primary AD tissue SV
cell cultures, immunoreactivity for two major ECM compo-
nents, type IV collagen and laminin, was coincidental with
lipid deposition in preadipocytes but lagged behind
immunoreactivity for the AD-3 preadipocyte marker.53

Furthermore, immunoreactivity for type IV collagen and
laminin was coincidental with the transition to a round
shape and lipid deposition. Therefore, ECM expression
may be associated with the morphological transition of pre-
adipocytes to adipocytes. Studies of laminin also showed
that preadipocytes just converting into adipocytes (possess-
ing small lipid droplets) in SV cultures had a high affinity
for a laminin substratum. Furthermore, laminin substratum
markedly alters the morphology of preadipocytes with
lipid, whereas other substrata of different ECM compo-
nents had no such influence on preadipocytes.
Imunocytochemistry for laminin in fetal AD tissue indi-
cated that laminin may play a critical role in morphological
aspects of preadipocyte development in vivo and in vitro.
While causal relationships have not been well established,
there is evidence that ECM components may be clinically
relevant. Young, healthy children appear to have less total
collagen in the subcutaneous AD tissue depot when over-
weight compared with normal weight children. In addition,
adipocyte size was negatively correlated with the percent-
age of total and peri-cellular collagen54 supporting the vast
in vitro data that suggest that the ECM plays a critical role in
AD tissue development. While many of the findings
reported here are focused on the role of ECM components
on adipogenesis, it is important to note that many of the
adipokines secreted are ECM proteins.55

With increasing evidence of the influence of the ECM on
adipogenesis, one can hypothesize that the physiology of
cells and tissues being evaluated may be critically import-
ant. A number of studies have evaluated the mechanical
properties of cells as well as various mechanical stress pro-
cedures during differentiation in vitro. One study reports
that the mechanical properties of AD tissue-derived stem
cells, including elasticity, viscoelasticity, and cell height,
change with passage number.56 The phospholipid mono-
layer surrounding the lipid droplet in 3T3-L1 adipocytes
appears to increase in monounsaturated and polyunsatur-
ated fatty acids while the saturated fatty acid content in the
monolayer is decreased during differentiation suggesting
that the fluid nature of cells may be altered by incorporating
fatty acids that differ in physical characteristics.57 In this
regard, several studies have described an increase in cell
stiffness with adipocyte differentiation. A study of differ-
entiating 3T3L1 cells indicated that lipid droplets are stiffer
than cytoplasm and the accumulation of lipid increases
adipocyte stiffness,58 additionally, MSC that are induced
to differentiate into adipocytes also show similar increases
in cytoskeletal stiffness.59,60 It is conceivable that the mech-
anical property changes described with increasing passage
number may also be relevant to two-dimensional (2-D)
compared with three-dimensional (3-D) cell cultures com-
pared with in vivo conditions. One example of differences
between 2-D and 3-D cultures has been described in the
requirements for MMP14.61 The collagenase MMP14, also
known as MT1-MMP, initially appeared to be unnecessary
for differentiation in a 2-D culture. However, in vivo and 3-D
conditions demonstrated that MMP14 plays a critical role in
adipogenesis.61 Human ASC grown on gels whose stiffness
was modified using decellularized human lipoaspirate
showed that increasing substrate resulted in cells that had
increased spread and decreased rounded morphology and
also failed to upregulate adipogenic markers.62 As more 3-D
study methods are published, it is likely that these methods
will provide valuable insight about AD development, the
ECM, and communication of cells that may be different
from what has been described in 2-D systems. One newly
described method suggests that AD tissue-derived MSC
seeded as �270mm diameter spheroids had improved scaf-
fold vascularization and microvessel density compared
with non-seeded scaffolds and scaffolds seeded with indi-
vidual MSC implanted in mice.63 Another method modified
from chondrogenic differentiation of MSC has been devel-
oped using cultures of 3-D cell aggregates and may be
useful in high-throughput screening of adipocyte differen-
tiation agents.64

The influence of dense type 1 collagen deposition in fetal
pig subcutaneous AD tissue helps to define the structure of
mesenchymal tissues by inhibiting fetal adipogenesis which
can be considered mechanical stress or physical restraint on
adipogenesis. The thickest collagen septa are present in the
fetal pig inner subcutaneous layer and, by the end of fetal
development, the densest collagen layer is in a layer below
the inner subcutaneous layer. Collagen deposition in the
dense layer may physically restrict local fat cell cluster
growth since collagen deposition is greatly reduced and
fat cell cluster development enhanced after removing the
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fetal pig hypothalamus at 45 d (examined at 110 d of fetal
life). Collectively, small and large type 1 collagen bundles
provide the major ECM framework necessary to establish
and sustain the structure and the function of fetal pig sub-
cutaneous mesenchymal tissues. In fetal perirenal AD
tissue, dense collagen is also associated with restricted fat
cell cluster development but the structure and the function
of fetal pig perirenal mesenchymal tissues are less discrete
than in subcutaneous tissues. Collagen XIV has also been
hypothesized to play a role in dedifferentiation since it
reduced de novo DNA synthesis in primary human fibro-
blasts, mouse 3T3 fibroblasts, and 3T3-L1 preadipocytes.65

A comprehensive ECM study included AD tissue depot
ECM gene profiling and examination of ECM remodeling of
C57BL1/6J mice AD tissue MSC from two depots.66 The
gene expressions of adhesion and ECM molecules distin-
guished subcutaneous from visceral fat-derived MSC.
Characteristics of collagenolysis distinguished subcutane-
ous from visceral AD tissue-derived SV cells with higher
expressions of secreted collagens in visceral MSC than in
subcutaneous MSC.66 Therefore, in addition to membrane-
associated ECM collagen, turnover of collagen septa also
distinguishes AD tissue depots.

Several studies have addressed the potential of mechan-
ical force on adipogenesis. Cyclic mechanical stretch of pri-
mary rat ASC,67 MSC,60 and C3H10T1/2 pluripotent MSC68

inhibits adipogenesis. These studies report decreased
PPARg mRNA and protein level,67,69,70 increased Runx2
mRNA and protein levels,67 increased Pref-1 mRNA
level,67 and induced phosphorylation of ECM signal-
regulated protein kinases 1 and 2 (ERK1/2) during the
mechanical stretch period.67 Chung et al.71 observed
changes in the tubulin cytoskeletal distribution that were
positively correlated with marker of pericondensation
(Sox9 alone), negatively correlated with chondrogenesis
(Colllal), and positively correlated with adipogenesis.
Exposure of MSC to stressors that change volume and
shape was critical since they resulted in developing anisot-
ropy of cytoskeletal architecture (structure), which can
impact the emergent cell fate and function. Therefore, the
volume and shape changing stress induced spatiotemporal
organization of cytoskeleton changes that may mirror those
encountered during development.71

The mTOR complex defined by its binding partner rictor,
mTORC2, is activated by mechanical force and has been
implicated in cytoskeletal architecture. Mechanical activa-
tion of mTORC2 signaling participates in mesenchymal
stem cell lineage selection, preventing adipogenesis by pre-
serving b-catenin.60 During strain, mTORC2 becomes asso-
ciated with vinculin and mTORC2 and Akt co-localize with
newly assembled focal adhesions (FA).60 Disrupting
mTORC2 or Akt function prevented mechanically induced
F-actin stress fiber development.60 Knockdown of vinculin
prevents mTORC2 activation while rictor-deficiency accel-
erated adipogenesis in MSCs.60

Transient knockdown of the membrane-cytoskeleton
linker proteins ezrin, radixin, and moesin (ERM) by RNAi
caused disassembly of actin fiber and focal adhesions and
decreased stiffness resulting in impaired adipogenesis.72

Experimentally silencing focal adhesion kinase (FAK)

suppressed BMP4 and downregulated Smad1/5/8 and
p38 while inducing lipid accumulation and expression of
C/EBPa, PPARg, aP2.73 Another example of a potential
mechanism by which external forces may affect an adipo-
genic nuclear transcription factor is C/EBPb, which appears
to be a mechanically responsive transcription factor.
C/EBPb regulated the adipogenesis of C3H10T1/2 pluripo-
tent MSC cultured in adipogenic media with daily mechan-
ical strain indicating that C/EBPb is a mechanical target in
MSC cells.68 However, C/EBPb is not the primary site at
which adipogenesis is regulated since C/EBPb overexpres-
sion did not override mechanical strain’s inhibition of
adipogenesis.68

A proteomic analysis suggests that the nucleoskeletal
protein lamin-A and ECM collagens correlate with tissue
elasticity and experimentally induced differentiation of
stem cells into adipocytes was enhanced by low lamin-A
levels. Lamin-A transcription was regulated by the vitamin
A/retinoic acid (RA) pathway with broad roles in develop-
ment, nuclear entry of RA receptors was modulated by
lamin-A protein. Tissue stiffness and stress thus increase
lamin-A levels, which stabilize the nucleus while also con-
tributing to lineage determination.74 Moreover, human
MSC cultured in the presence of various inhibitors suggest
that p38 and ERK1/2 played crucial positive roles in adi-
pogenesis, whereas FAK, RhoA/ROCK, and cytoskeleton
played negative roles. Furthermore, FAK, RhoA/ROCK,
and cytoskeleton affected adipogenesis by regulating the
activities of p38 and ERK1/2 which interacted with each
other in the process of adipogenesis.75

Low-intensity pulsed ultrasound (LIPUS) suppressed
adipogenic differentiation of adipogenic progenitor cell
and MSC lines and also impaired lipid droplet appearance
and decreased gene expression of PPARg2 and fatty acid-
binding protein 4.76 Also, murine AD-derived stem cells
induced to differentiate then treated with compressive
force (2000m", 1 Hz) also showed that adipocyte differenti-
ation is inhibited as evidenced by reduced numbers of oil
droplet-filled cells, down-regulated mRNA levels of both
PPARg1 and APN, and protein level of PPARg.70

Cells originating in non-AD tissue

One elegant study used freshly isolated bone marrow-
derived MSC that had differentiated into adipogenic
lineage cells and then dedifferentiated to analyze the adipo-
genic differentiation of mesenchymal stem cells while
assessing adipogenic-specific marker genes. This study
described gene clusters including cluster 1 containing 307
genes whose expression was upregulated during adipogen-
esis, 198 cluster 2 genes that were downregulated during
adipogenesis but upregulated during dedifferentiation,
cluster 3 containing 277 genes that were downregulated
during adipogenesis but upregulated in dedifferentiated cells,
and 209 genes in cluster 4 that were downregulated during
early adipogenesis and in differentiated cells.77 This
approach not only supports previous evidence of genes
involved in adipogenesis but also provides new data
about gene regulation during dedifferentiation that may
be critical if dedifferentiated cells are used therapeutically
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or in mechanistic studies. However, these results may differ
from mesenchymal stem cells isolated from AD tissue or
from adipocytes isolated from AD tissue and dedifferen-
tiated in an in vitro model.

There is also growing information about liposarcomas
(soft tissue, cancerous tumors that develop from fat).
Dedifferentiated liposarcoma (DDLS) cells underexpressed
C/EBPa and PPARg compared with well-differentiated
liposarcoma and normal adipocytes.78 Cells from DDLS
cell lines did not induce C/EBPa expression, but when
expression was induced, both PPARg expression and apop-
tosis increased.78 These results raise the interesting possi-
bility that two proteins well known for their roles in
differentiation, C/EBPa and PPARg, may be involved in
maintaining differentiation or dedifferentiation of adipo-
cytes. Retinoblastoma protein regulates the cellular G1/S
transition of the cell cycle and to regulate proliferation,
development, and differentiation of adipocytes and several
other cell types.

Summary

While our understanding of the dedifferentiation process of
various cells, including adipocytes, is limited, the research
to date shows that cell regulation is much more complex
than previously thought. Nonetheless, common themes reg-
ulating adipogenesis are apparent. For example, hypoxia
appears to induce AD tissue dysfunction while inhibiting
adipocyte differentiation. Interestingly, hypoxia is con-
sidered to be a main factor involved in the dedifferentiation
of several cell types including DFATs, chondrocytes, and
smooth muscle cells.79 The clear importance of ECM com-
ponents in adipocyte development and function is also par-
alleled by observations in DFAT cells.
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