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Abstract

We present a model of articular cartilage lesion formation to simulate the effects of cyclic loading. 

This model extends and modifies the reaction-diffusion-delay model by Graham et al. [20] for the 

spread of a lesion formed though a single traumatic event. Our model represents “implicitly” the 

effects of loading, meaning through a cyclic sink term in the equations for live cells.

Our model forms the basis for in silico studies of cartilage damage relevant to questions in 

osteoarthritis, for example, that may not be easily answered through in vivo or in vitro studies.

Computational results are presented that indicate the impact of differing levels of EPO on articular 

cartilage lesion abatement.

 1 Introduction

Cartilage is a tissue that thrives in a mechanically-active environment and has been well 

established to be biologically responsive to physical stimuli. The effect of dynamic loads on 

articular cartilage is partly of interest because periodic changes in loading profiles are 

physiological (e.g., walking, running, etc.) and pertinent to cartilage health and disease 

progression.

Articular cartilage that lines the surfaces of lower extremity joints in humans is routinely 

exposed to dynamic contact stresses in the 1–5 megapascal range [16]. At frequencies and 

rates commonly encountered in activities of daily life, stress levels in this range are not only 

tolerated by cartilage, but are necessary for long-term stability [1]. On the other hand, 

stresses much above 5 MPa, or stresses delivered outside physiologic norms of frequency or 

rate, can lead to progressive cartilage degeneration, a hallmark of osteoarthritis (OA) [25]. 

These observations have focused OA research on the cellular and molecular basis of 
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cartilage mechano-responses. Although a great deal of progress has been made in 

understanding short-term responses at the tissue level, it is still unclear how these processes 

unfold to cause the slowly developing, organ-wide breakdown that occurs in osteoarthritic 

joints. As a result, though mechanical stresses probably play a decisive role in many cases of 

OA, there are currently no therapies targeting biologic mechanoresponses.

While the chronic effects of over- or under-loading can be studied in in vivo models, the 

actual stresses on cartilage in most experimental animals are a matter of conjecture and 

difficult to precisely control. In contrast, stresses can be closely monitored and controlled in 

in vitro systems, but only short-term responses can be studied due to culture-related 

instability. These limitations leave a knowledge gap that is unlikely to be bridged by further 

experimental work. However, it may still be possible to extrapolate from short term in vitro 
data to OA-relevant time frames using in silico models [20, 31]. Here we describe advanced 

biomathematical models that draw on the wealth of knowledge of chondrocyte 

mechanotransduction to portray realistic cartilage stress responses.

Articular cartilage response to mechanical loading is viscoelastic, largely due to the 

interaction between the solid and fluid phases of its composition. To this end, cartilage is 

described as a biphasic material and is generally studied as a mixture of an elastic solid and 

interstitial fluid. The diffusive momentum exchange between the two phases regulates 

matrix deformation (via fluid exudation) when mechanical stimulus is imposed.

In this investigation, we attempt to extend and modify a reaction-diffusion-delay model of 

cartilage lesion formation [20] by adding features of the linear biphasic theory to simulate 

cyclic compressive loading. The governing equations of this model would be able to predict 

displacement of the solid matrix of the tissue (referred to as tissue strain) when a cyclic 

loading waveform is applied. As opposed to a single blunt impact injury (as was the case in 

[20] and explored more fully in [19]), the objective of this study is to simulate cartilage 

response to injurious cyclic compressive loading.

Physiological cyclic loading generally produces tissue deformations of less than 20%, which 

are not considered to cause any meaningful destruction. The underlying criterion in this 

model is that chondrocytes die when consolidated tissue strains of large magnitudes (greater 

than 40% of original tissue thickness) are induced.

We make the following implicit modeling assumptions in our loading term about the 

material properties of articular cartilage: it is a composite structure with an intrinsically 

incompressible, porous and elastic solid phase (chondrocytes, collagen and proteoglycans); 

and the fluid phase is assumed to be intrinsically incompressible and inviscid. Moreover, we 

assume cyclic loading of cartilage is imposed on a known region of cartilage surrounded by 

unloaded tissue. The loaded region is simplified to be a radially symmetric one-dimensional 

case of cyclic compression via a porous filter in a confined configuration.

 2 One-dimensional model with implicit mechanical loading

In articular cartilage, dynamic mechanical loads can stimulate biosynthetic activity. Studying 

the environment of chondrocytes under dynamic loading conditions can help explain this 
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mechanical-biological phenomenon. In the model in this section, we modify a reaction-

diffusion-delay model by Graham et al. [20]. In [20], the lesion was formed by an initial, 

severe traumatic event with no further loading. In the model in this section, we assume 

instead that there is no initial damage, but rather cyclic compressive loading on a small part 

of the cartilage. The loading is expressed through a deformation term in the system of partial 

differential equations, rather than through explicit mechanical terms.

We assume circular symmetry so that the system components depend only on radius (r), time 

(t) and time delays (τ1, τ2). We simulate an oscillating load on a small region near the origin 

(0 ≤ r ≤ 0.5 cm).

The components of our system fall into two main categories, cells and chemicals. We also 

track extracellular matrix density. A schematic of the system is presented in Figure 1. The 

cellular components of our system are

• C(r, t) = population density (cells per unit area) of healthy chondrocytes.

• ST(r, t) = population density of “catabolic” chondrocytes. Catabolic 

chondrocytes have been signaled by alarmins and are capable of 

synthesizing TNF-α and other cytokines associated with inflammation. 

Healthy cells signaled by DAMPs or TNF-α enter into the catabolic state 

and begin to synthesize TNF-α and produce reactive oxygen species 

(ROS).

• SA(r, t) = population density of EPOR-active chondrocytes. EPOR-active 

chondrocytes are cells that have been signaled by TNF-α and express a 

receptor (EPOR) for EPO. It should be noted that there is a time delay of 

8–12 hours before a cell expresses the EPO receptor after being signaled 

to become EPOR-active [14].

• DN(r, t) = population density of necrotic chondrocytes. Necrotic (lysing) 

cells release DAMPs.

• DA(r, t) = population density of apoptotic chondrocytes. Apoptotic cells 

no longer play a role in the system, and are tracked explicitly to verify the 

conservation of cell quantities.

Since EPOR-active cells express a receptor for EPO, they may switch back to the healthy 

state if signaled by EPO. However, as discussed in [14], TNF-α limits production of EPO. 

Thus there is a balance between EPO and TNF-α that determines the spreading behavior of 

cartilage lesions. The catabolic and EPOR-active “sick” classes form the penumbra, the 

boundary region between the lesion and healthy tissue. Because of the continuing role they 

play in the system, we explicitly track lysing necrotic cell densities (DN). Cells that have 

become apoptotic (DA) no longer play a relevant role in the system (by definition of 

apoptosis). Their densities are tracked explicitly in the mathematical model for bookkeeping 

purposes and as a placeholder for further models where cell volume fractions may be the 

quantities of interest. This differs from the model in [20] where apoptotic cells were not 

tracked explicitly, but were instead represented by sink terms in the equations for ST and SA.
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We assume chondrocytes in all states have negligible motility, although we track them 

explicitly in space since their densities will differ as they respond to the biochemical 

components of the system.

The chemical and material components of our system are

• R(r, t) = concentration of reactive oxygen species (ROS). ROS affects the 

production of EPO by healthy cells.

• M(r, t) = concentration of alarmins (DAMPs). DAMPs signal healthy cells 

to enter the catabolic state, which in turn produce TNF-α.

• F(r, t) = concentration of tumor necrosis factor alpha (TNF-α). TNF-α, 

along with EPO, is the main driver of our system. TNF-α

– causes healthy cells to become catabolic,

– causes catabolic cells to enter the EPOR-active state [14],

– influences apoptosis of catabolic and EPOR-active cells,

– causes a chain of events that leads to the degradation of 

extracellular matrix, which in turn increases the 

concentration of DAMPs (for mathematical convenience 

we represent these as direct effects),

– limits the production of EPO [14].

• P(r, t) = concentration of erythropoietin (EPO). EPO causes EPOR-active 

cells to return to the healthy state, and thus, in our model, is the check on 

the spread of the inflammation.

• U(r, t) = density of extracellular matrix (ECM). ECM is degraded by TNF-

α, and in the process releases DAMPs.

The spatial dynamics of the system are governed by the diffusion of the four chemical 

components (R, M, F, P). The extracellular matrix, like the chondrocytes, is assumed to have 

negligible motility.

Our model equations are

(1a)
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(1b)

(1c)

(1d)

(1e)

(1f)

(1g)

(1h)

(1i)
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(1j)

for t > 0 and 0 ≤ r ≤ rm where rm = 2.5 cm is the radius of our tissue sample.

The function H(θ) is the Heaviside function. From [14] we have Pc = 1 nanomolar.

For spatial densities, we assume uniformity in the top centimeter of the cartilage so that 

densities per cm3 are also densities per cm2 on the surface.

Initial conditions are C(r, t) = 105 cells/cm2, U(r, t) = 30 mg/cm2, and ST(r, t) = SA(r, t) = 

DN(r, t) = DA(r, t) = R(r, 0) = M(r, 0) = F(r, 0) = P(r, 0) = 0. We use homogeneous Neumann 

boundary conditions for the chemical concentrations:

and

 2.1 The cyclic loading term

Central to our cyclic loading model is the function Γ(ε, U, r) that represents the damage 

caused by cyclic loading. Cyclic loading in our case is continuous and leads to a steady-state 

strain. The goal of the model described in system (1) is to give a simple, conceptual 

mathematical model and simulation of the effects of cyclic loading on articular cartilage 

lesion formation. The model in this section extends the model in [20] in a simple, yet still 

relevant way.

To represent the effects of loading we use the function

(2)

for 0 ≤ r ≤ rl, and Γ(ε, U, r) = 0 for r > rl, where rl = 0.25 cm is the radius of the region of 

tissue experiencing loading. We note that Γ is non-negative.

The form of Γ in (2) is based on recent results on cell death as a function of equilibrium 

strain [15]. There are some limitations to using this data, even though it is the best available. 

The death rate is measured one hour after loading; further results are needed to build a 
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function with respect to both strain and time. Cells may not keep dying; death may stop at 

some point even if the same loading process continues.

In section 2.3 we present results for different values of the strain ε, which has unit of 

percent.

 2.2 Parameterization

The dependence of Γ on ECM density U means that our equation for U is relevant to cell 

death. We assume that ECM is only degraded by the effects of TNF-α. The degradation of 

ECM is measured by the decrease in concentration of SO4. The sulfite groups decorating the 

aggrecan proteins are the groups that matter – the aggrecan protein is just an elaborate 

means to keep sulfates in the solid phase and in place in the matrix (so-called “fixed 

charges”). In an “sGAG” assay [18] there is an average of 30 gSO4/L cartilage. The 

molecular weight of SO4 is 96 g/mol so that the molarity of SO4 is

To obtain the parameter δU for ECM decay we note that the decay rate of SO4 under one 

nanomolar of TNF-α is about 16% per week under 25 ng/ml = 1.4706 nanomolar of TNF-α 

[24]. Then the decay modulus of SO4 is

Using F = 1.4706 nM and λF = 0.5 nM we get δU = 0.0193/day.

For δF we have that the half life of TNF-α is around 100 hrs [30]. So 

. For The coefficient δP, the half life of EPO is around 30 hrs [17]. 

So . For δM, the half life of DAMPs is around 30 hrs [21]. So 

. To obtain decay rates from the experimental results in [21, 30], 

we used the “N-end rule” [29].

For the coefficient δR, the natural half life of ROS is around 14 hrs at 0.1 nanomolar 

concentration. So . However, under the superoxide dismute SOD, 

the decay of ROS is almost instantaneous. We don’t know when this reaction will happen, as 

it is hard to measure. So we assume the coefficient δR = 60 in our model, which means the 

half life of ROS is less than 20 mins.

To obtain the parameter σU for the release of DAMPs from ECM, we assume 30 mg/cm3 of 

ECM (i.e., SO4) might release 10 ng/ml of DAMPs when exposed to 25 ng/ml of TNF-α. To 

estimate the molecular weight of DAMPs we consider the weight of one species, HMGB1, 
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which has a molecular weight of 29 kDA. Recall the source term for DAMPs is . 

Then

Using U = 30 mg/cm3, F = 1.4706 nM and λF = 0.5 nM, we get

We need to reconcile the dimension to our model. The behavior of the cartilage is 

sufficiently homogeneous at the top 1 cm layer that we can use in the model the parameter 

.

To obtain the parameter σR for the release of ROS from catabolic cells, we assume 1–2% of 

oxygen consumed is converted to superoxides. Zhou et al. [32] estimate the maximum 

oxygen consumption rate to be 10 nMoles per million cells per hour in normal conditions 

(5%–21% oxygen). Then

Simplifying and assuming heterogeneity of the top layer, we get

To obtain the parameter σF, we use that the release rate of TNF-α by catabolic cells is 100 

pg/ml · per 12 hr by 5 × 104 cells/ml [28]. Then

Simplifying and assuming heterogeneity of the top layer, we get
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To obtain the parameter σM, we use that the release rate of HMGB1 is 3 ng/ml · per day by 2 

× 105 cells/ml [28]. Then

Simplifying and assuming heterogeneity of the top layer, we get

To obtain the parameter σP, we use that the release rate of EPO by healthy cells is 18 ng/ml · 

per 4 days by 105 cells/cm2 [14]. Then

Simplifying and assuming heterogeneity of the top layer, we get

For σP we also conduct runs with a higher value corresponding to treatment that increases 

EPO; this is not a “natural” production rate. We choose σP = 0.0033, which is high enough 

to trigger the Heaviside functions in the model so that P becomes larger than Pc and shuts off 

the inflammation response.

The parameters KU and p0 are experimental settings [15]. Diffusion coefficients were 

obtained from measurements presented in [23], delays from [14], and the remaining 

parameters were approximated. The parameters for system (1) are summarized in Table 1.

 2.3 Simulation results

We computed results of our system for four values of the strain, ε = 0.3, 0.4, 0.6, and 0.8, 

crossed with two values of the EPO production parameter: a “low” value of σP = 4.2 · 10−5 

and a “high” value of σP = 3.3 · 10−3. The low value corresponds to the parameter obtained 

from [14] in Section 2.2, whereas the high value is set to trigger the Heaviside functions in 

our system and can correspond, for example, to the effects of treatment. Extremal values at t 
= 10 days of the system variables are presented in Tables 2 and 3 and provide an overview of 

the behavior of entire system. We focus on simulations results most relevant to 

understanding the inflammation process, namely the spatial and temporal dynamics of the 

healthy, catabolic and EPOR-active cell populations.
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To more fully understand the changes in the system due to changes in the strain, we present 

computational results for ε = 0.4, 0.6, and 0.8 at low EPO production in Figures 2–4. To 

understand the effects of increasing EPO production, we present computational results for ε 

= 0.6 at high EPO production, noting that the responses at other strains are similar. 

Computational results for ε = 0.6 at high EPO production are shown in Figure 5.

As expected, higher levels of strain result in lower levels of healthy cells and a larger area of 

inflammation (see the progression in Figures 2–4). Also as expected, elevated EPO levels 

result in a check on the inflammation process (Figure 5). The dynamics in the “penumbra”, 

the region of catabolic and EPOR-active cells, is perhaps the most insightful result, showing 

a preponderance of catabolic over EPOR-active cells (see Figures 2–4). The relative 

numbers of catabolic versus EPOR-active cells is currently difficult to measure.

The success of our model in incorporating a relatively large number of experimentally 

measured parameters and obtaining results matching observed inflammation response [15] 

under our “low” EPO case validates the mechanistic assumptions that went into our model 

(the match is semi-quantitative in that the cell numbers are not known exactly, but the lesion 

sizes are). As such, we find from our simulation results greater confidence that the model 

itself is a firm foundation for a truly predictive model. More importantly at this stage of 

theoretical development, the simulation results indicate that we have brought together 

disparate experiments and piecemeal understandings of system components and formed a 

more holistic understanding of articular cartilage lesion under cyclic loading.

For the “high” EPO case, much more work remains to be done, both in model refinement 

and validation. How one increases EPO or other chemicals that act like EPO in the cartilage 

environment affects both model refinement and model validation.

Although perhaps of less interest to a clinician, knowing the dynamics of live cell subtypes 

within the penubra is an important means of validating these results.

 2.4 Parameter sensitivity

We studied the sensitivity of our estimated parameters (those not taken from experimental 

measurements in the literature). In particular, we considered α, β1, β2, γ, ν, λR, λM, λF, λP, 

λU, μDN, μSA, and Λ. The base values for these parameters are given in Table 1.

We conducted simulations with both high and low EPO production at strains of 0.3, 0.4, 0.6, 

and 0.8. We varied each parameter from the base values according to

(3a)

(3b)
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(3c)

(3d)

(3e)

(3f)

(3g)

(3h)

(3i)

(3j)

(3k)

(3l)

(3m)

For most parameters, we found only quantitative, rather than qualitative, differences in runs 

using the perturbed parameters. The exception was for the Michaelis-Menten constants λF, 

λM, and λR. For small values of these parameters (0.1, 0.1, and 1, respectively), the 

Michaelis-Menten functions behave closer to constant functions. The results are non-
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monotone behavior near the boundary of the strike zone and the rest of the tissue, in 

particular abiological spikes. This is a reminder that the Michaelis-Menten forms constitute 

switches. Values of the Michaelis-Menten constants that are too low result in a qualitatively 

different term in the equations, which render qualitatively different results.

 2.5 Numerical methodology

We first did a semi-discretization in space, using the radially symmetric finite difference 

scheme presented in Appendix C of [2]. The semi-discrete system of delay-differential 

equations was then solved in MATLAB by using dde23 [26]. This approach is suitable for 

the models in this paper and was also used to solve the model equations in [20]. 

Computational convergence studies for each dependent variable in system (1) are shown in 

Tables 4–7.

The relative errors found are well within experimental or real world measurement error, are 

primarily due to tracking a sharp front, and there is no indication that the computed solutions 

differ qualitatively from the true solutions. We include such detailed error results in keeping 

with the theme of the journal.

 3 Conclusions

In this paper we presented biomathematical models based on observations of chondrocyte 

mechanotransduction. When run in concert with a finite element program to incorporate the 

physical effects of mechanical compression, our new model may prove to be useful for 

predicting the consequences of long-term exposure to the broad range stresses experienced 

by cartilage in human joints. As such the model may be useful for identifying critical stress 

thresholds that, over time, increase the risk for osteoarthritis.

We have demonstrated that using delay differential equations to model the delays in the 

cellular responses to cytokines in articular cartilage lesion formation is a reasonable 

approach for models with the complexity of those in this paper. However, as model 

complexity increases, the use of delay differential equations will lead to computational 

challenges down the line due to the need to keep in memory vast past history information. 

Adding somewhat to these challenges is that the commercial off-the-shelf (COTS) solution, 

dde23 in Matlab, uses an explicit time integration method for the differential equations. The 

stability constraints introduced by the semi-discretization in space force dde23 to take time 

steps much smaller than what truncation error alone would dictate. This, in turn, exasperates 

the memory issues caused by the need to store the past history of the system.

One solution may be to use a different time discretization. Ho we only have cell death near 

the strike zone, so that the lesion is abated despite low EPO. However, wever, even a “stiff” 

DDE solver for the programming environment R was found not to be appreciably faster [27]. 

Going further, we could write tailor-made compiled code for this problem, but the solver 

will still have the underlying challenge of needing to store the time histories of the system to 

compute the delay terms. These data sets can be quite large and create memory issues on all 

but the largest nodes in cluster, for example.
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The limitations of using delay differential equations and the computational methods for them 

may be ameliorated by converting the delay into a physiological property of individual cells, 

namely time since exposure to the relevant cytokine. The partial differential equations for 

the cell populations that result from this approach include an additional independent variable 

and a derivative term for “age” structure. Essentially, one would be taking the equivalent of a 

non-Markov process and converting it into the equivalent of a Markov process. Although the 

addition of an extra dimension to the problem may seem like an unwanted complication, the 

reality is that the delays in a delay-differential equation require the retention of time histories 

of the system that can quickly become much larger to store in memory than the extra age 

dimension. This difference in cost is even more pronounced if we use highly efficient 

methods for age- and space-structured problems [3, 5, 9, 10]. These methods have a history 

of effective use in the modeling and simulation of biofilms [8, 11, 12, 22], avascular tumor 

invasion [13], and Proteus mirabilis swarm colony development [4, 6, 7]. Using age structure 

to represent the delays in cellular responses to cytokines is an approach suggested by our 

experiences with the simulations in this paper.

Despite the challenges the use of delay terms presents for computational studies with greater 

complexity, the use of delays in the first efforts in [20] and in this paper is warranted; we 

have the tautology that delay terms are more easily understood to represent delays. 

Moreover, some modelers may find the models with delays are better suited for inclusion in 

their own efforts. Other modelers may find that the greater flexibility inherent in using 

“age”, or some other physiologically structured variable, makes that approach preferable.

The value to the lab of our modeling and simulation effort is two-fold. First, the model 

serves as a “container” for a range of existing experimental data sets, and relates these data 

sets to one another in a manner that may not have been apparent beforehand. Second, the 

model validates and/or challenges assumptions about what mechanisms underlie what 

phenomena, and in doing so suggests what future experiments are most likely to lead to 

increased insight into articular cartilage lesion formation. A model fully parameterized by 

experiment is, in turn, a powerful predictive tool and thus serves to translate the work of the 

lab into products relevant to the clinic, such as the appropriate boosting of EPO 

concentrations at the lesion.
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Figure 1. 
Schmatic of the articular cartiage lesion formation process under cyclic loading.
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Figure 2. 
The density of the healthy, catabolic and EPOR-active chondrocytes (C(r, t), ST(r, t), SA(r, 
t)) at t = 2, 4, 6, 8, 10 days with ε = 0.4 and σP = 4.2 · 10−5 (light strain with low EPO 

production). We see that with relatively light strain we have a relatively narrow penumbra 

(the region dominated by ST and SA) compared to cases of higher strain with low EPO, 

constituting a relatively narrow lesion.

Wang et al. Page 17

Int J Numer Method Biomed Eng. Author manuscript; available in PMC 2016 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
The density of the healthy, catabolic and EPOR-active chondrocytes (C(r, t), ST(r, t), SA(r, 
t)) at t = 2, 4, 6, 8, 10 days with ε = 0.6 and σP = 4.2 · 10−5 (medium strain with low EPO 

production). We see that with medium strain our penumbra (the region dominated by ST and 

SA) has widened compared to the low strain case, constituting a potentially larger lesion.
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Figure 4. 
The density of the healthy, catabolic and EPOR-active chondrocytes (C(r, t), ST(r, t), SA(r, 
t)) at t = 2, 4, 6, 8, 10 days with ε = 0.8 and σP = 4.2 · 10−5 (heavy strain with low EPO 

production). With high strain we have cell death further from the strike zone and our 

penumbra (the region dominated by ST and SA) has widened compared to the low and 

medium strain cases, resulting in a much larger lesion.
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Figure 5. 
The density of the healthy, catabolic and EPOR-active chondrocytes (C(r, t), ST(r, t), SA(r, 
t)) at t = 2, 4, 6, 8, 10 days with ε = 0.6 and σP = 3.3 · 10−3(medium loading with high EPO 

production). With high EPO production, we see abatement of the penumbra (the region 

dominated by ST and SA) and thus control of the lesion when compared to the low EPO 

production cases.
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Table 1

Parameter Values

Parameter Value Units Reason

DR 0.1 Determined from [23]

DM 0.05 Determined from [23]

DP 0.005 Determined from [23]

DF 0.05 Determined from [23]

δR 60 Approximated

δM 0.5545 Determined from [21]

δF 0.1664 Determined from [30]

δP 3.326 Taken from [17]

δU 0.0193 Determined from [24]

σR 0.0024 Determined from [32]

σM 5.17 · 10−7 Determined from [28]

σF 2.35 · 10−7 Determined from [28]

σP 4.2 · 10−5 or 0.0033 Determined from [14]

σU 0.0154 Determined from [24]

Λ 0.5 nanomolar Approximated

λR 10 nanomolar Approximated

λM 0.5 nanomolar Approximated

λF 0.5 nanomolar Approximated

λP 0.5 nanomolar Approximated

λU 1 mg/cm2 Approximated

KU 0.0545 proportion Experimental setting [15]

α 1 Approximated

β1 10 Approximated
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Parameter Value Units Reason

β2 5 Approximated

γ 1 Approximated

ν 0.05 Approximated

p0 1 Experimental setting [15]

μSA 0.1 Approximated

μDN 0.05 Approximated

Pc 1 nanomolar Taken from [14]

τ1 0.5 day Taken from [14]

τ2 1 day Taken from [14]
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Table 2

Table of variable ranges under low EPO production at t=10 days

variable Strain=30% Strain=40% Strain=60% Strain=80%

C min 1.374 × 104 2.58 × 103 71.02 0

ST max 7.254 × 104 8.627 × 104 8.909 × 104 9.07 × 104

SA max 2.79 × 103 5.524 × 103 1.105 × 104 1.533 × 104

DA max 22 64 180 302

DN max 1.213 × 104 2.888 × 104 6.35 × 104 8.616 × 104

U min 29.933 29.894 29.862 29.824

F max 0.0257 0.0332 0.0411 0.0476

M max 0.0253 0.0428 0.0663 0.0744

P max 0.3234 0.3159 0.3038 0.3006

R max 2.7323 3.3031 3.479 3.493
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Table 3

Table of variable ranges under high EPO production at t=10 days

variable Strain=30% Strain=40% Strain=60% Strain=80%

C min 8.029 × 104 5.74 × 104 1.01 × 104 0

ST max 4.778 × 103 7.527 × 103 2.78 × 104 9.022 × 104

SA max 21.29 38.28 118 355

DA max 0.099 0.39 1.648 7

DN max 1.213 × 104 2.887 × 104 6.35 × 104 8.616 × 104

U min 29.999 29.9988 29.9987 29.98

F max 0.0027 0.0037 0.005 0.0073

M max 0.0082 0.0168 0.0349 0.0411

P max 7.919 9.2917 13.718 21.28

R max 0.189 0.2967 0.5139 0.699
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Table 4

∞-norm relative errors under low EPO production

variable Strain=30% Strain=40% Strain=60% Strain=80%

C 0.0242 0.0314 0.0244 0.0220

ST 0.0230 0.0225 0.0219 0.0212

SA 0.0383 0.0352 0.0304 0.0272

DA 0.0525 0.0460 0.0371 0.0318

DN 0.0000 0.0000 0.0000 0.0000

ECM 0.0000 0.0000 0.0000 0.0000

TNF-α 0.0224 0.0204 0.0204 0.0191

EPO 0.0240 0.0244 0.0319 0.0323

DAMPs 0.0219 0.0204 0.0184 0.0171

ROS 0.0230 0.0226 0.0838 0.1085
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Table 5

2-norm relative errors under low EPO production

variable Strain=30% Strain=40% Strain=60% Strain=80%

C 0.0102 0.0132 0.0122 0.0110

SA 0.0140 0.0131 0.01237 0.0118

ST 0.0206 0.0186 0.0153 0.0134

DA 0.0261 0.0230 0.0180 0.0151

DN 0.0000 0.0000 0.0000 0.0000

ECM 0.0000 0.0000 0.0000 0.0000

TNF-α 0.0148 0.0122 0.0204 0.0114

EPO 0.0134 0.0144 0.0170 0.0175

DAMPs 0.0152 0.0137 0.0118 0.0107

ROS 0.0140 0.0133 0.0166 0.0235
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Table 6

∞-norm relative errors under high EPO production

variable Strain=30% Strain=40% Strain=60% Strain=80%

C 0.0006 0.0013 0.0045 0.0141

ST 0.0253 0.0305 0.0219 0.0420

SA 0.0375 0.0362 0.0304 0.0416

DA 0.0430 0.0588 0.0371 0.0559

DN 0.0000 0.0000 0.0000 0.0000

ECM 0.0000 0.0000 0.0000 0.0000

TNF-α 0.0213 0.0204 0.0203 0.0185

EPO 0.0249 0.0246 0.0306 0.0372

DAMPs 0.0188 0.0212 0.0220 0.0192

ROS 0.0253 0.0249 0.0743 0.1144
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Table 7

2-norm relative errors under high EPO production

variable Strain=30% Strain=40% Strain=60% Strain=80%

C 0.0002 0.0003 0.0008 0.0015

SA 0.0138 0.0134 0.0127 0.0116

ST 0.0164 0.0158 0.0143 0.0119

DA 0.0191 0.0192 0.0200 0.0167

DN 0.0000 0.0000 0.0000 0.0000

ECM 0.0000 0.0000 0.0000 0.0000

TNF-α 0.0128 0.0115 0.0204 0.0104

EPO 0.0130 0.0126 0.0135 0.0158

DAMPs 0.0124 0.0120 0.0115 0.0105

ROS 0.0135 0.0132 0.0148 0.0247
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