
Usher syndrome (USH) is an autosomal recessive 
disease in which sensorineural hearing impairment (HI) is 
associated with retinitis pigmentosa (RP) causing progres-
sive retina photoreceptor degeneration [1,2]. Moreover, some 
patients suffer from vestibular dysfunction. USH is usually 
distinguished in three subtypes [3]. Individuals with Usher 
syndrome type 1 (USH1), the most severe form, are generally 
born completely deaf or lose most of their hearing early. Deaf-
ness is then followed by progressive visual impairment caused 
by RP, which usually becomes apparent in childhood. Patients 
often have difficulties maintaining their balance owing to 
problems in their vestibular system. USH1 (OMIM 276900) 
is genetically heterogeneous, and thus far, six USH1 genes 

have been identified: MYO7A (Gene ID:4647; OMIM 276903), 
USH1C (Gene ID:10083; OMIM 605242), CDH23 (Gene ID: 
64072; OMIM 605516), PCDH15 (Gene ID:65217; OMIM 
605516), USH1G (Gene ID: 124590; OMIM 607696), and 
CIB2 (Gene ID:10518; OMIM 605564) [4]. The range of prev-
alence of USH1 is 3.2–6.2/100,000 depending on the study 
[5]. Variants in the MYO7A gene cause the most common 
form of USH1, USH1B, accounting for approximately 50% of 
cases; approximately 30% of cases associated are with muta-
tions in CDH23 and PCDH15 [6]. Mutations in MYO7A [7,8], 
USH1C [9], CDH23 [10], PCDH15 [11], and CIB2 [12] have 
also been reported in patients affected by non-syndromic HI. 
Remarkably, the identified USH genes encode for proteins 
from different classes and families with different functions. 
MYO7A encodes actin-based molecular motor known to trans-
port cargos and position sensory hair cell stereocilia upper 
tip-link insertion (UTLI) complex thus tensing the tip-link. 
USH1C encodes multipostsynaptic density, disc large, zonula 
occludens (PDZ) domain-containing protein harmonin [13], 
known as the central organizer of the sub-membranous UTLI 
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Purpose: Usher syndrome accounts for about 50% of all hereditary deaf-blindness cases. The most severe form of this 
syndrome, Usher syndrome type I (USH1), is characterized by profound congenital sensorineural deafness, vestibular 
dysfunction, and retinitis pigmentosa. Six USH1 genes have been identified, MYO7A, CDH23, PCDH15, USH1C, SANS, 
and CIB2, encoding myosin VIIA, cadherin-23, protocadherin-15, harmonin, scaffold protein containing ankyrin repeats 
and a sterile alpha motif (SAM) domain, and calcium- and integrin-binding member 2, respectively.
Methods: In the present study, we recruited four Tunisian families with a diagnosis of USH1, together with healthy 
unrelated controls. Affected members underwent detailed audiologic and ocular examinations. We used the North 
African Deafness (NADf) chip to search for known North African mutations associated with USH. Then, we selected 
microsatellite markers covering USH1 known loci to genotype the DNA samples. Finally, we performed DNA sequencing 
of three known USH1 genes: MYO7A, PCDH15, and USH1C.
Results: Four biallelic mutations, all single base changes, were found in the MYO7A, USH1C, and PCDH15 genes. These 
mutations consist of a previously reported splicing defect c.470+1G>A in MYO7A, three novel variants, including two 
nonsense (p.Arg3X and p.Arg134X) in USH1C and PCDH15, respectively, and one frameshift (p.Lys615Asnfs*6) in 
MYO7A.
Conclusions: We found a remarkable genetic heterogeneity in the studied families with USH1 with a variety of muta-
tions, among which three were novel. These novel mutations will be included in the NADf mutation screening chip 
that will allow a higher diagnosis efficiency of this extremely genetically heterogeneous disease. Ultimately, efficient 
molecular diagnosis of USH in a patient’s early childhood is of utmost importance, allowing better educational and 
therapeutic management.
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complex. Mutations in the genes encoding two cadherin-
related proteins, cadherin 23 and protocadherin 15 that form 
the integral plasma membrane stereocilia tip-links, underlie 
USH1D [14] and USH1F [15], respectively. SANS (Gene ID: 
124590) encodes an UTLI scaffold protein containing ankyrin 
repeats and a sterile alpha motif (SAM) domain. Finally, 
alterations of the calcium- and integrin-binding member 2 
cause USH1J. Growing evidence suggests that these proteins 
are organized in a protein “interactome” in the inner ear and 
the retina, which is critical for the development, maintenance, 
and correct function of the sensorineural cells.

Genetic analysis of patients with USH is complicated by 
the large number of genes involved in USH and the many 
exons comprising the coding regions of these genes. There-
fore, patients with USH are studied genetically by linkage 
analysis in those informative families, or gene by gene, 
according to their established prevalence in the analyzed 
population. This method is costly and a burden on medical 
resources, as well as being time-consuming. Microarray 
approaches have been used for screening for specific muta-
tions in HI genes and have demonstrated accurate and reliable 
results [16]. A specific genotyping microarray for USH was 
developed by Asper Biotech (Tartu, Estonia) to facilitate the 
genetic study of patients. Cremers et al. [17] evaluated the 
first version of the microarray, detecting mutations in 46% 
of patients with USH1, 24% of patients with USH2, 29% of 
patients with USH3, and 30% of patients with atypical USH. 
Chakchouk et al. [16] designed a cost-effective North African 
Deafness (NADf) chip for rapid and simultaneous analysis of 
58 mutations using multiplex PCR coupled with a dual-color 
arrayed primer extension. Recent technological advances in 
target-enrichment methods and next-generation sequencing 
offer a unique opportunity to break through the barriers of 
limitations imposed by gene arrays [18]. However, imple-
menting such technology for clinical diagnosis is expensive 
in developing countries. In addition, managing, analyzing, 
and interpreting data easily and clearly for clinical purposes 
such as the NADf chip is not feasible.

In the present study, we report the results of a genetic 
investigation of four Tunisian families with USH1. First, we 
used the NADf chip, an APEX-based microarray for geno-
typing assays of USH-associated genes in Tunisia only for 
known and confirmed mutations. We identified only one 
splice-site variant in the MYO7A gene that has been previ-
ously described. For the other genes, a total of three novel 
variants, two nonsense and one frameshift mutation, were 
detected with sequencing analysis.

METHODS

Family and clinical data: Four Tunisian consanguineous 
families from southern Tunisia (the Sfax and Douz regions) 
with a clinical diagnosis of USH1 (28 patients) and control 
subjects were sampled and studied. In the Table 1 we provide 
all information about patient gender and age. The ethics 
committee of the University Hospital of Sfax (Tunisia) 
approved this study. Written informed consents were obtained 
from both parents. Our study adhered to the tenets of the 
Declaration of Helsinki and The Association for Research 
in Vision and Ophthalmology (ARVO) statement on human 
subjects. The pedigrees were drawn after interviews with the 
parents (Figure 1).

Twenty-eight members from the four Tunisian families 
(11 male and 17 female members) were subjected to audio-
logic examination. The degree of HI was assessed with the 
pure audiometry test for air and bone conduction at the 0.25, 
0.5, 1, 2, 4, and 8 kHz frequencies for each ear. Vestibular 
function was evaluated based on the caloric test. For ophthal-
mology examinations, dilated funduscopy was performed for 
all patients. Electroretinography (ERG) and an automated 
visual field test were performed only on two patients with 
sine pigmento fundus appearance to improve the visualiza-
tion of the retinal dystrophy (USHTF1IV5, USHTF4II3). 
Patients were identified as having USH1 according to the 
criteria recommended by the Usher Syndrome Consortium 
[19]. Clinical history and physical examinations of family 
members ruled out the implication of environmental factors 
in the etiology of HI and RP. Blood samples were collected, 
and genomic DNA was extracted using standard methods. 
Blood samples were collected in EDTA tubes, mixed by 
inversion 8-10 times after being drawn and stored at 4 °C for 
up to a month prior to gDNA isolation. Phenol–chloroform 
extraction technique was used to purify nucleic acids and to 
eliminate proteins and lipids. In brief, aqueous samples are 
mixed with equal volumes of a phenol:chloroform mixture. 
After mixing, the mixture is centrifuged and two distinct 
phases are formed. The proteins and hydrophobic lipids will 
partition into the lower organic phase while the nucleic acids 
remain in the upper aqueous phase.

Microsatellite genotyping: To determine whether USH1 
syndrome in these families is linked to one of the known loci, 
microsatellite markers were selected based on their map posi-
tion and heterozygosity coefficient (UCSC Genome Browser). 
Microsatellite markers were genotyped for all participating 
family members (Table 2). Fluorescently-labeled alleles were 
analyzed on an ABI Prism 3100-Avant automated DNA 
Analyzer (Applied Biosystems, Foster City, CA).

http://www.molvis.org/molvis/v22/827
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Mutation screening: Screening of known North African 
mutations associated with USH was performed with a cost-
effective NADf chip using multiplex-PCR coupled with 
dual-color arrayed primer extension as described by Chak-
chouk et al. [16]. Multiplex-PCR was performed in a total 
volume of 50 μl, including 40 μl of the 12 multiplex PCR 
fragmented products, 0.5 μl of each fluorescent ddNTP, and 
1 U of thermosequenase (GE Healthcare, Chalfont St. Giles, 
UK). Arrays were hybridized with the reaction mixture for 30 

min at 60 °C using the FAST Frame Cassette (Sigma-Aldrich, 
Dorset, UK). The arrays were then washed briefly with 0.3% 
Alconox detergent (Sigma-Aldrich, Munich, Germany) and 
distilled water. Slides were then dried before scanning. The 
coding exons and flanking intronic sequences of all three 
USH1 genes (MYO7A, USH1C, and PCDH15) were amplified 
using forward and reverse primers. Mutations were identified 
by sequencing the PCR products from one affected individual 
from each family on an ABI Prism 3100-Avant automated 

Table 1. Clinical information of patients with pathogenic mutations.

Families Age Sex Age of clinic 
examination

Fundus of 
the eye

Visual 
field

ERG Caloric test Severity of HI

USHTF1IV2 22 F 12 RP ND ND BP Profound
USHTF1IV3 25 F 15 RP ND ND BP Profound
USHTF1IV4 33 M 23 RP ND ND BP Profound
USHTF1IV5 40 M 30 RP 5–10° 

(V/4e)
Done BP Profound

USHTF2III2 29 F 19 RP ND ND BP Profound
USHTF2III3 27 F 17 RP ND ND BP Profound
USHTF2III4 35 M 25 RP ND ND BP Profound
USHTF2III6 25 F 15 RP ND ND BP Profound
USHTF3II1 22 M 12 RP ND ND BP Profound
USHTF3II2 13 F 3 RP ND ND BP Profound
USHTF4II3 47 F 37 RP 5–10° 

(V/4e)
Done BP Profound

USHTF4II4 33 M 23 RP ND ND BP Profound

Abbreviations: ERG: electroretinography; HI: hearing impairment; RP: Retinitis pigmentosa; BP: Balance Problems. ND: Not done.

Figure 1. Pedigree and haplotype for four consanguineous Tunisian families who segregate Usher type 1. In the pedigree, the square symbol 
indicates male, the circle symbol denotes female, and the black squares represent affected individuals. Linkage analysis performed on all 
families showed that two were linked to USH1B, and the remaining families with USH1 were linked to USH1C and USH1F.

http://www.molvis.org/molvis/v22/827
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DNA Analyzer (Applied Biosystems). Exons harboring 
mutations were amplified on 40 ng genomic DNA, and then 
either Sanger sequencing or PCR-restriction fragment length 
polymorphism (RFLP) analysis was used to examine whether 
the mutations segregated with the disease in the families and 
were not present in the 50 control individuals.

RESULTS

The pedigrees in Figure 1 display four consanguineous 
Tunisian families originating from two regions of Tunisia 
and segregating USH1, based on clinical, audiometric, and 
ophthalmologic data. The audiometric test showed profound 
congenital and bilateral sensorineural hearing loss. Vestibular 
dysfunction was detected in all patients using the caloric test 
(Table 1). Parents reported that their children presented a 
delay in motor development and began sitting independently 
and walking later than usual.

Onset of retinitis pigmentosa occurs during childhood, 
resulting in a progressively constricted visual field and 
night blindness. The fundus examination detected retinal 
degeneration in all of the patients (Table 1). The visual fields 
(Goldmann targets III/4e) of two older patients were signifi-
cantly reduced to a 5° concentric field and temporal island 
fields for both eyes (Figure 2). The Ganzfeld-ERG recorded 
in the same patients showed an almost normal response flash 
visual-evoked potential in both eyes and significant bilateral 
global retinal degeneration. Only cone flicker responses of 
less than 15% of the normal mean were recordable under 
photopic conditions while all other responses were below 
noise level, a typical finding for patients with RP (Figure 2). 
Taken together, the clinical signs observed in the affected 
subjects indicated a form of USH1.

First, known North African mutations associated with 
USH were analyzed with a cost-effective NADf chip using 
multiplex PCR coupled with a dual-color arrayed primer 
extension [16]. In one family, one previously reported 
splicing defect-causing mutation was detected. The known 
variant was a nucleotide substitution (c.470+1G>A) [8] that 
is predicted to alter the splice donor site of intron 5 and to 
result in the skipping of exon 5 in the mature transcript. This 
DNA variant was analyzed with the following programs: 
NNSPLICE, which evaluates the strength of splice sites [20], 
and Human Splicing Finder (HSF) [21],which includes several 
matrices for analyzing splice sites and splicing silencers and 
enhancers (for example, MaxEnt, ESEfinder, and PESX). 
Second, linkage analysis performed on all three remaining 
USH1 families showed that one member of each family was 
linked to USH1B, USH1C, and USH1F loci. Finally, the 
direct sequencing of MYO7A, USH1C, and PCDH15 detected 
a total of three distinct novel pathogenic mutations: one 
frameshift mutation, and two nonsense mutations (Figure 
3). The frameshift mutation is caused by nucleotide deletion 
c.1845delG that leads to a premature stop codon at position 
615 (p.Lys615Asnfs*6) with probably a loss of 72% of the 
C-terminal region of the protein. The remaining two nonsense 
mutations p.Arg3X and p.Arg134X were revealed in USH1C 
and PCDH15, respectively. According to Alamut 2.3 Interac-
tive Biosoftware (Rouen, France), these truncating mutations 
are expected to result in the absence of synthesized protein 
due to mRNA nonsense mediated decay. All of the mutations 
reported here were observed in a homozygous state. In addi-
tion, all new variants were not present in the exome variant 
server (EVS) database (6448 exomes) and dbSNP databases 
and were absent from the Tunisian control samples (Table 3).

Table 2. Fluorescent dye-labeled microsatellite markers were genotyped 
for linkage analysis in four USH1 Tunisian consanguineous families. 

Markers Position (UCSC genome browser)
MYO7A gene

D11S4179 Chr11:76685129–76685482
D11S2498 Chr11:76.336.884–76337044
D11S4186 Chr11: 77,257,402-77257673

PCDH15 gene
D10S196 Chr10 :50382508–50382689
D10S1642 Chr10 :54655145–54655555
D10S1652 Chr10 :62647735–62648093

USH1C gene
D11S4138 Chr 11:17734173–17734429
D11S902 Chr11 :17466895–17467129

http://www.molvis.org/molvis/v22/827
http://www.interactive-biosoftware.com
http://www.interactive-biosoftware.com
http://evs.gs.washington.edu/EVS/
http://www.ncbi.nlm.nih.gov/projects/SNP/
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Figure 2. Visual field test results obtained for the right (RE) and the left eye (LE) of two patients (USHTF1IV5, USHTF4II3). A: Result of 
measurements of the visual fields. B: Result of eye fundus measurement. A series of random lights of different intensities were flashed in 
the peripheral field of vision of both patients. When they perceived the computer-generated light that suddenly appeared in their field of 
view, they pressed a button to indicate their responses, and then we saw this spot (Dot see). If the patient was unable to see the light in an 
appropriate portion of his field of view, then we saw on the computer a spot (Dot don’t see) indicating vision loss. In all patients, the nasal 
and temporal fields were not preserved, and only the central field was maintained. Fundus ophthalmoscopy showed pigmentary anomalies 
typical of retinitis pigmentosa (RP), attenuated arteriolar vessels and increased brightness of the internal limiting membrane. The visual 
field showed an anular scotoma reduced by 15°. C: Ganzfeld-Electroretinogram of the right and left eyes of two patients (USHTF1IV5, 
USHTF4II3). The electroretinogram (ERG) and the visual-evoked potential (VEP) test the function of the visual pathway from the retina 
(ERG) to the occipital cortex (VEP). These tests were conducted by placing a standard ERG device attached to the skin on 2 mm above the 
orbit. VEPs were recorded simultaneously from the electrode attached to the occipital scalp 2 mm above the region on the midsagittal plane. 
An electrode placed on the forehead provided a ground. The results are directly related to the part of a visual field that might be defective. 
This is based on the anatomic relationship of the retinal images and the visual field. After dark adaptation for 30 min, the doctor placed 
anesthetic drops in the patient’s eye and placed a contact lens on the surface of the eye. Once the contact lens was in place, a series of blue, 
red, and white lights were shown to the patient. The VEP is an evoked electrophysiological potential that can be extracted, using signal 
averaging, from the electroencephalographic activity recorded at the scalp. ERG and VEP were differentially amplified band pass filtered 
(0,1,30 Hz), recorded over 300 ms epochs, and the signals averaged. Two trials were given. The visual evoked potential to flash stimulation 
consists of a series of negative and positive waves. The earliest detectable response has a peak latency of approximately 30 ms post-stimulus. 
For the flash VEP, the most robust components are the N2 (negative) and P2 (positive) peaks. Measurements of the P2 amplitude should be 
made from the positive P2 peak at around 207.3 ms. The ERG recorded in BT189 showed an absence of responses although the VEP showed a 
normal responses in both eyes. These traces confirm evidence of significant bilateral global retinal degeneration. Only cone flicker responses 
of less than 15% of the normal mean were recordable under photopic conditions while all other responses were below noise level, a typical 
finding for patients with retinitis pigmentosa. 

http://www.molvis.org/molvis/v22/827
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DISCUSSION

Here, we report the results of genomic DNA linkage and 
mutation analyses of four Tunisian families with USH1 
according to the audiologic and ophthalmologic evaluations. 
The examinations showed that the vestibular reflexes were 
abnormal in the patients, and the audiometric and ocular find-
ings did not differ from what has been previously reported 
[19]. Molecular studies confirmed our clinical classification 

of the four families as USH1 with mutations in MYO7A, 
USH1C, and PCDH15 genes. It is well documented that 
mutations in these genes can cause USH1 and nonsyndromic 
HI, DFNB2, DFNB18, and DFNB23, respectively [9,11,22]. 
Moreover, clinically atypical cases that do not fit the three 
definitions of USH have also been reported with mutations 
in these genes. However, the clinical findings did not suggest 
any obvious clinical variance between families.

Figure 3. The direct sequencing of MYO7A, USH1C, and PCDH15 detected a total of three distinct novel pathogenic mutations: one frameshift 
mutation, two nonsense mutations, and one previously reported splicing defect-causing mutation. The known variant was a nucleotide 
substitution (c.470+1G>A), and the frameshift mutation is caused by nucleotide deletion c.1845delG causing USH1B. The molecular screening 
of USH1C and PCDH15 revealed two novel nonsense mutations occurring at the homozygous state: p.Arg3X in USH1C and p.Arg134X in 
PCDH15. 

Table 3. Frequency of USH1 genes in Tunisian population.

Tunisian Famillies Linkage Gene Mutation Protein change References
USHTF1 USH1B MYO7A 470+1G>A -  [8]
USHTF2 USH1B MYO7A 470+1G>A - Our study
USHTF3 USH1B MYO7A c.1935G>A -  [22]
USHTF4 USH1B MYO7A c.1935G>A -  [23]
USHTF5 USH1B MYO7A c.2283–1G>T -  [21]
USHTF6 USH1B MYO7A c.5434G>A p.Glu1812Lys  [21]
USHTF7 USH1B MYO7A c.1845delG p.Lys615Asnfs*6 Our study
USHTF8 USH1C USH1C c.91C>T -  [16]
USHTF9 USH1C USH1C c.7C>T p.R3X Our study
USHTF10 USH1F PCDH15 c.400C>T p.R134X Our study
USHTF11 USH1G SANS c.393insG -  [33]
USHTF12 USH1G SANS c.393insG -  [16]
USHTF13 USH1G SANS c.1195_1196delAG p.Leu399Alafs*24  [21]
USHTF14 USH1G SANS c.52A>T -  [21]

http://www.molvis.org/molvis/v22/827
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NADf chip analysis and Sanger sequencing of MYO7A 
resulted in the identification of two pathological muta-
tions, c.470+1G>A and p.Lys615Asnfs*6, causing USH1B. 
The splicing defect-causing mutation has been previously 
reported by Adato et al. [8] in Tunisian patients. Recently, 
whole exome sequencing of Tunisian families affected by 
typical Usher syndrome allowed the identification of an 
additional splice acceptor site mutation, c.2283–1G>T, and 
a novel missense mutation, c.5434G>A (p.Glu1812Lys) in 
the MYO7A gene [22]. Mutations in MYO7A have also been 
reported in two Tunisian families affected by atypical Usher 
syndrome [23,24]. These data confirm the presence of a wide 
range of heterogeneity in MYO7A in the Tunisian population. 
However, at least two founder mutations (c.470+1G>A and 
c.1935G>A) were identified [16]. This observation may reflect 
the relative isolation and marriage patterns among the Tuni-
sian population.

However, the two remaining families were linked to 
USH1C and USH1F, respectively. The molecular screening 
of USH1C and PCDH15 revealed two novel nonsense muta-
tions occurring at the homozygous state: p.Arg3X in USH1C 
and p.Arg134X in PCDH15. Linkage and mutation analyses 
have indicated that 29–82% of USH1 cases are possibly the 
result of a mutation in MYO7A, depending on the population 
and number of exons screened [25,26]. For USH1, Kimberling 
et al. [27] evaluated the mutation frequency as about 5% in 
USH1C, 10% in CDH23, and rare for PCDH15 and SANS, 
indicating that MYO7A is the major cause of USH1. In the 
Tunisian population, molecular studies have also confirmed 
that mutations in MYO7A are the major cause for USH1 (Table 
3). SANS is the second most common cause, while mutations 
in USH1C, CDH23, PCDH15, and CIB2 are less frequent in 
Tunisian families. In fact, seven of 14 (50%) families with 
USH1 were linked to the USH1B locus, while four families 
with type 1 were linked to USH1G, two families with type 1 
were linked to the USH1C locus, and the remaining family 
was linked to the USH1F locus (Table 3). These data provide 
an initial estimate of the proportion of the various type 1 
Usher syndrome subtypes in the Tunisian deaf population 
and support the notion of high genetic heterogeneity in that 
population.

Early diagnosis of USH1 is critical for genetic coun-
seling and adapted educational and therapeutic management, 
which may include retinal gene therapy in the future [28,29]. 
Delayed walking is suggested to be the earliest clinical sign 
of Usher syndrome in deaf children [30]. In consanguineous 
families, homozygosity mapping remains a powerful method 
for mapping recessive traits. The method takes advantage of 
the fact that intermarried affected individuals are likely to 

have identical by descent alleles at markers located near the 
disease locus and thus will be homozygous at these markers 
[31]. However, consanguinity and endogamy in a popula-
tion lead to genetic homogeneity with several homozygous 
genomic regions and few informative markers. In addition, 
after homozygosity, mapping genetic analysis of patients 
with USH is complicated by the large number of exons 
comprising the coding regions of USH genes. Recently, 
different high-throughput sequencing strategies were devel-
oped for the detection of mutations in USH-associated genes 
[32]. However, implementing such technology for clinical 
diagnosis is expensive in developing countries. In addition, 
managing, analyzing, and interpreting the data for clinical 
purposes present many challenges. The high number of poly-
morphic variations and the correct interpretation of sequence 
variations with no obvious pathogenic role limit the use of 
such strategies. The microarray assay interrogates only for 
known and confirmed mutations. Interestingly, the NADf 
chip allows the detection of 18 known mutations associated 
with USH1 in North African families [16]. All of the equip-
ment and reagents required to carry out the NADf chip assay 
are generally available in molecular laboratories. In addition, 
despite the genetic heterogeneity of USH in Tunisia, at least 
two founder mutations were described. Hopefully, better 
knowledge of the molecular alterations underlying USH in 
this population and the inclusion of these novel mutations in 
the NADf chip may lead to a more efficient diagnosis and 
will encourage development of therapies for other USH1 
genes. The success of these therapies will depend on our 
understanding of the disease progression and on selecting 
the appropriate time points for treatment.

In conclusion, this study in combination with previous 
reports on Tunisian patients with USH1 show that this 
syndrome is likely quite heterogeneous. Our data also provide 
an initial estimate of the frequency of various mutations that 
may lead to a more efficient diagnostic in the North African 
population.
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