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Abstract

In this Letter, we implement a maximum-likelihood estimator to interpret optical coherence 

tomography (OCT) data for the first time, based on Fourier-domain OCT and a two-interface tear 

film model. We use the root mean square error as a figure of merit to quantify the system 

performance of estimating the tear film thickness. With the methodology of task-based 

assessment, we study the trade-off between system imaging speed (temporal resolution of the 

dynamics) and the precision of the estimation. Finally, the estimator is validated with a digital tear-

film dynamics phantom.

Dry eye disease (DED) is a serious public health problem, which affects 40–60 million 

Americans alone [1]. However, therapeutics for DED is elusive; one of the major obstacles is 

the lack of a quantitative diagnosis method with high repeatability, as well as the lack of 

correlation between signs and symptoms [2]. We hypothesize that the tear film stability is a 

key indicator of DED. Stability is characterized by temporal variation in tear film thickness. 

Optical coherence tomography (OCT) is a relatively novel biomedical imaging method that 

has emerged in the last two decades. We are seeking the next breakthrough in DED 

diagnosis by combining the OCT technique and statistical decision theory, to monitor and 

quantify the tear film dynamics. Considering the fast changes in tear film dynamics, where 

the tear film must reestablish a smooth surface rapidly after each blink to provide a high-

quality optical surface for refraction, Fourier-domain OCT (FD-OCT) is most suitable for 

this problem. To capture the tear film dynamics we need to determine how well we can infer 
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specimen information from the data measured by the OCT system. Statistical decision 

theory, which takes into account random processes associated in the imaging chain, was first 

successfully introduced into time domain OCT for classification tasks [3]. In this Letter, we 

combine statistical decision theory with FD-OCT for the task of estimating tear film 

thickness. Specifically, we implement a maximum-likelihood (ML) estimator based on 

Gaussian statistics [4] to interpret the OCT data for the first time. The ML estimator is 

adopted because it does not require a priori knowledge of the varying parameter (i.e., the 

tear film thickness distribution) and also it is either efficient as an estimator or efficient 

asymptotically.

In an FD-OCT system, the output will be a number array N of readings from a line-scan 

camera. For the xth pixel, the number of the accumulated electrons N(x, Δt) within an 

integration time Δt can be expressed as

(1)

where Np(x, Δt) is the number of electrons induced by photons, and Nd(x, Δt) is the number 

of electrons generated by dark current. Since ML estimation with Gaussian statistics requires 

information about the first-order and second-order statistics of the output, we will formulate 

the ensemble average and covariance of N(x, Δt). In this study, we assume a source with 

circular Gaussian statistics, and a photon-counting device that has Poisson statistics and dark 

noise. Thus the ensemble average of N(x, Δt) is related to Np(x, Δt) and Nd(x, Δt) by

(2)

where G, P, and D denote Gaussian statistics, Poisson statistics, and dark noise, respectively. 

Since Np(x, Δt) and Nd(x, Δt) are independent, the covariance of N(x, Δt) can be written as

(3)

where KNp and KNd are the covariances of Np(x, Δt) and Nd(x, Δt), respectively. The 

statistics of the dark noise is quantified by experiment or given by the camera’s manufacture 

manual. The statistical quantities of Np(x, Δt) are formulated in [5] to be

(4)
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(5)

where R(x) is the xth pixel’s responsivity, e is the charge of an electron, S(x) is the power 

spectral density of the source, m(ω) is the response from the OCT system, and δxx′ is the 

Kronecker delta function.

The tear film is a three-layer structure consisting, from the anterior to posterior, of the lipid 

layer (oily layer that slows down evaporation, 0.02–0.05 μm thick); the aqueous layer 

(primarily water, 3–5 μm thick); and the mucus layer (covers the cornea, 0.2–0.5 μm thick). 

The aqueous layer is what is commonly thought of as tears; as such, in this first model we 

model the tear film as a one-layer structure with two interfaces, the tear film–air interface 

and the tear film–cornea interface (neglecting here the nanometer-thick lipid layer). The 

cornea is a bumpy surface with features on the scale of 20–200 nm. Considering the 

roughness of the corneal surface, the system response m(ω) may be expressed as [5,6]

(6)

where n1, n2, and n3 are the refractive indexes of the air, tear film, and cornea, respectively; 

d is the thickness of the tear film; σ is the root mean square height of the corneal surface to 

describe the roughness; rref is the reflectivity of the reference mirror; lref and lsam are the 

length of the reference arm and the sample arm, respectively; and k is the wave number.

For any given tear film thickness d, the output at the xth pixel N(x, Δt) follows a normal 

distribution, with an average of 〈〈〈N(x, Δt)〉〉〉 and a variance of KN(x, x;Δt). In simulations, 

we set the ground truth of the tear film thickness to be l; we can generate one possible output 

observation Nl assuming its elements also follow the normal distribution. Then the 

probability of observing Nl from a possible thickness d can be expressed as

(7)

where M is the number of pixels. The ML method estimates by maximizing P(Nl|d), which 

yields
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(8)

We consider spectra that are Gaussian-shaped, with 1, 2, and 4 μm axial resolutions, 

respectively. The source power is set at 1 mW to be in compliance with the ANSI standard 

for the eye safety in this spectral region. We first set the integration time to 5 μs. The truth 

for the tear film thickness l is set at 0.5 μm, and we assume a root mean square height of the 

corneal surface of 150 nm [7]. Figure 1 plots the negative log of the conditional probability 

P(Nl|d), which describes the possibility that observed data Nl is generated by a tear film 

thickness d. Simulations for three different optical axial resolutions are shown.

Results show that the probability oscillates with the thickness. The distance between two 

adjacent peaks is half of the center wavelength in the sample (i.e., 300 nm in the tear film). 

For a tear film with 0.5 μm thickness, three resolutions of 1, 2, and 4 μm yield estimates of 

505, 485, and 545 nm, respectively. It is important to note that estimates beyond the optical 

axial resolution of this system can be made by this method. However, the precision of the 

estimation is related to the optical axial resolution, which is further quantified in Fig. 2. 

Regardless of the integration time, higher optical axial resolution yields higher precision. We 

also find that among the noise mechanisms we consider, Poisson statistics of the detector is 

dominant when the system is operated at a longer integration time (i.e., ≫1 μs).

In terms of monitoring the tear film dynamics, the imaging speed is a key factor in driving 

the performance. The two parameters that may affect the imaging speed, the repetition rate 

of the pulsed source and the integration time of the detector, need to be considered. A first 

requirement is that the source speed is at least as fast as the detector. Provided that we are 

not limited by the source speed, we set up a simulation to study the impact of the detector 

speed, where a tear film thickness of 0.5 μm is considered and we repeat the estimation 5000 

times per integration time to quantify how the system performance changes with integration 

time. The root mean square error (RMSE) is then computed to evaluate the performance for 

different optical axial resolutions as a function of integration time. Results, plotted in Fig. 2, 

show that for a fixed axial resolution, the RMSE is decreasing exponentially with an 

increase in integration time, eventually reaching a stable value in the nanometer range. The 

trade-offs to consider in pushing the system to a higher speed is the loss in precision. To 

minimize this loss, a higher axial resolution will be necessary. However, this will cause the 

possible reduction in imaging depth if the detector array is unchanged. Indeed as the axial 

resolution increases, the spectral bandwidth increases as well, and for a same size and 

resolution array, the spectral resolution will consequently be lessened. As such the depth of 

imaging is also typically reduced.

Maki et al. are the first to simulate tear film dynamics on an eye-shaped domain. They 

studied the relaxation of a model for the human tear film after a blink on a stationary fully 

opened eye using a mathematical model derived from lubrication theory [8]. The model 

provides the tear film dynamics data at the center of the cornea, after the eye blinks. While 

the current model does not yet include evaporation, it still constitutes a useful first digital 

phantom. We use this model and the ML estimator to estimate the tear film dynamics, 
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operating with an optical axial resolution of 1 μm, and an integration time of 5 and 20 μs, 

respectively, which is plotted in Fig. 3. Results show that the ML estimates are in agreement 

with the ground truth, and the ML estimator is unbiased. Results show that as the integration 

time increases by a factor of 4, the precision is increased by a factor of 2. Results are 

consistent with findings reported in Fig. 2.

In this Letter, we implemented an ML estimator in interpreting OCT data. We quantified the 

trade-off in temporal resolution against the precision of estimation, which will provide 

guidance to the operations of the imaging system. For a 20 volumes/s tear film imaging 

speed (which corresponds to a 5 μs integration time), an axial resolution of less than 2 μm is 

necessary to keep the precision less than 20 nm; 1 μm axial resolution yields errors in the 

nanometer scale. Finally, we validated the estimator with a digital phantom of the tear film 

dynamics. Future studies will, importantly, expand this framework to study other source 

statistics, theoretically investigate all parameters of the system, and experimentally validate 

the key parameters established by the model. This framework provides the theoretical tools 

to develop an optimized OCT system to quantify the tear film dynamics.
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Fig. 1. 
ML estimator for different axial resolutions.
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Fig. 2. 
Impact of integration time.
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Fig. 3. 
Validation with a digital phantom of the tear film dynamics.

Huang et al. Page 8

Opt Lett. Author manuscript; available in PMC 2016 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	References
	Fig. 1
	Fig. 2
	Fig. 3

