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Abstract

Positron emission tomography (PET) neuroimaging of ion channel linked receptors is a 

developing area of preclinical and clinical research. The present review focuses on recent advances 

with radiochemistry, preclinical and clinical PET imaging studies of three receptors that are 

actively pursued in neuropsychiatric drug discovery: namely the γ-aminobutyric acid-

benzodiazapine (GABA) receptor, nicotinic acetylcholine receptor (nAChR), and N-methyl-D-

aspartate (NMDA) receptor. Recent efforts to develop new PET radioligands for these targets with 

improved brain uptake, selectivity, stability and pharmacokinetics are highlighted.
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 Introduction

Positron emission tomography (PET) is a non-invasive functional imaging technique used to 

probe biological processes in vivo, via administration of radiotracers. Positron-emitting 

radionuclides such as carbon-11 (11C; t1/2 = 20.3 min) and fluorine-18 (18F; t1/2 = 109.7 

min) decay with the emission of a positron, which subsequently annihilates upon contact 

with an electron to produce two 511 keV annihilation photons emitted at approximately 180° 

to each other.1,2,3,4 These photons can be observed by detectors positioned in an array 

around the visualized object, and when both are detected simultaneously the emission event 

can be traced back to its location in vivo by analysis of the coincidence lines. In order to 

image a particular biological target using PET, the positron-emitting radionuclide must be 

“embedded” in a chemical scaffold, constituting the radiotracer (imaging probe), with the 

desired biological properties to both transport the radionuclide over the existing biological 

obstacles such as the blood brain barrier and reach the desired tissue, and interact with the 

molecular target of interest. PET imaging has been applied to a variety of biological 

processes, and can be used to diagnose and monitor the progression of numerous disease 

states, including cancers, cardiac disease and neurological disorders.5 PET imaging probes 

can also be used to guide medicinal chemistry and drug development efforts at both 

preclinical and clinical stages by providing in vivo insights into drug binding and correlating 

receptor occupancy with pharmacological response. The quantitative data provided by PET 

is particularly useful for facilitating drug development to follow disease progression, 

treatment monitoring and longitudinal studies.6

Ion channels are membrane proteins which control the flow of ions passing through the cell 

membrane in almost all living species. Ion channel linked receptors are bound in cell 

membranes and mediated via the conformational interaction between ion channels and 

chemical ligands. Despite a large number of putative ion channels and related receptors 

proposed and identified in human genome, only few have been thoroughly studied and 

characterized.7 Although PET ligand development and imaging studies in ion channel 

related receptors have been reviewed in the past,8,9,10 the present review is focused on recent 

advances (2010 – present) with three of these receptor protein targets that we and others are 

interested for neuropsychiatric PET radiopharmaceutical development: the γ-aminobutyric 

acid-benzodiazapine (GABA) receptor, the nicotinic acetylcholine receptor (nAChR), and 

the N-methyl-D-aspartate receptor (NMDA) receptor from publications. This review 

highlights selected radiochemical scaffolds with emphasis on promising preclinical and 

clinical PET neuroimaging studies with lead tracers.

 γ-Aminobutyric Acid-Benzodiazapine Receptor

 Recent Preclinical and Clinical Research

The most commonly used PET radiotracer for imaging the γ-Aminobutyric Acid-

Benzodiazapine Receptor (GABA-BZD) is radiolabeled flumazenil, an imidazo-

benzodiazapine derivative which binds allosterically to the receptor.11 This tracer can be 

radiolabeled with either 18F (Figure 1, compound a; [18F]flumazenil) or 11C (Figure 1, 

compound b; [11C]flumazenil) and an azide derivative of flumazenil, Ro15-4513 (Figure 1, 

compound c; [11C]Ro15-4513) is also widely used. Table 1 summarizes recent preclinical 
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PET imaging studies with [11C]flumazenil, [18F]flumazenil, or [11C]Ro15-4513 carried out 

in rodents or nonhuman primates. Rodent studies were used to investigate binding and 

saturation of [11C]flumazenil to the GABA receptor, and demonstrated that both receptor 

density and binding affinity of the tracer could be obtained in a single PET scan using a 

novel full saturation method.12 [11C]Flumazenil brain uptake was also monitored in 

anesthetized and awake (minimally restrained) nonhuman primates, and differences between 

the groups were shown to be minimal, though cortisol levels were significantly higher in 

awake animals.13 Interestingly, [11C]flumazenil brain uptake was found to be influenced by 

the P-glycoprotein, a blood-brain barrier brain efflux transporter, in rodents.14

[18F]flumazenil was recently employed in a rat model of temporal lobe epilepsy, which 

elucidated a decline in hippocampal receptor density in status epilepticus rats when 

compared with healthy controls.17 In Rhesus monkeys, socially dominant females were 

shown to have lower GABA receptor density in the prefrontal cortex than socially 

submissive animals by PET studies using [18F]flumazenil, but administration of the 

corticotropin-releasing hormone astressin B to submissive females eliminated this effect.16 

[11C]Ro15-4513 and [3H]Ro15-4513 were used in in vitro studies of rat brain tissue to 

investigate the effects of vigabatrin, tiagabine, and SNAP-5114 on receptor agonist 

distribution.18

11C- and 18F-labeled flumazenil have also been used extensively in clinical research studies, 

as summarized in Table 2. For instance, a significant decrease in cerebellar binding of 

[11C]flumazenil was reported in three patients with cerebellar ataxia compared with healthy 

controls.19 PET imaging with [11C]flumazenil was also used to determine enhanced 

cognition effect of the specific GABA-α5 receptor agonist a5IA (LS-193,268) in patients 

without demonstrating the anxiogenic effects produced by nonspecific GABA agonists.20 

Low cerebellar binding of [11C]flumazenil was also reported in infants with epileptic 

seizures.21 Tiagibine was demonstrated to increase [11C]flumazenil binding in a dose-

dependent manner.22 [11C]Flumazenil PET imaging detected a decrease in GABA receptor 

expression and affinity in patients with primary dystonia.23 The effectiveness of 

[18F]flumazenil as a PET radiotracer was recently assessed in patients with temporal lobe 

epilepsy.24 [18F]Flumazenil imaging was used in stroke patients to monitor GABA 

neuroplasticity during the recovery phase, and increased GABA receptor density was 

correlated with the recovery of upper extremity motor function.25 Men at ultra-high risk for 

psychosis showed significantly lower uptake of [18F]flumazenil in the right caudate region 

of the brain.26 Schizophrenic men taking aripiprazole had decreased [18F]flumazenil uptake 

in several regions of the prefrontal cortex as compared with patients taking risperidone and 

healthy controls.27 Differences in GABA receptor binding potential with [18F]flumazenil 

were observed in several regions of the brain when subject awareness was directed internally 

verses externally.28 [18F]Flumazenil measurements of neuronal density were used to 

elucidate differences between MRI-based measurements of surface cortical thickness and 

actual cytoachitectonics in several brain structures.29 [11C]Ro15-4513 has also been used in 

clinical studies. This tracer was recently used to detect acute increases in synaptic GABA 

following the administration of tiagibine.30 Individuals with a history of smoking showed 

higher distribution volume in limbic regions than nonsmokers even after a long period of 
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abstinence from smoking.31 [11C]Ro15-4513 was shown to have higher specificity for the 

GABA-α5 receptor subtype than flumazenil as demonstrated by dosage with the GABA-α1 

selective agonist zolpidem.32

 Novel PET Tracers and Radiochemistry

Though the vast majority of PET imaging studies of the GABA receptor are performed with 

the well characterized radiotracers flumazenil and Ro15-4513, new PET ligands and 

radiochemistry have been reported and much of the new research focuses on the 

development of derivatives of the imidazo-benzodiazapine core present in both of these 

known tracers, with the aim to show improvement of binding affinity and radiochemical 

method to improve yield in a variety of ways. The synthesis of [18F]flumazenil has been 

previously reported,37 but low yields are reported and variability is high. In our experience, 

the synthesis of [18F]flumazenil is complicated by the relatively large amounts of nitro-

precursor (nitromazenil; Figure 1, compound d) required (5-10 mg) as decomposition rates 

compete with the radiolabeling step. An improved radiosynthesis for [18F]flumazenil is 

therefore desirable.

Recent research by Jackson et al. focused on improving upon existing methods for the 

radiofluorination of flumazenil while simultaneously investigating related structures with 

more accessible routes of fluorination. The flumazenil derivatives were synthesized in 

13-24% radiochemical yield and specific activity around 2 GBq/μmol. Eleven of these 

derivatives were deemed to be suitable for initial in vivo PET imaging studies. Two of the 

original compounds ([18F]AH114726 and [18F]GEH120348; Figure 1, compounds e and f) 

showed radiofluorination results at levels comparable with [18F]flumazenil, and all showed 

improved capacity for radiofluorination.38 A blocking study performed in rodents showed 

that these compounds showed tracer kinetics with similar or improved quality compared 

with [18F]flumazenil. A blocking study was also carried out for the tracers in Rhesus 

monkey, and one compound ([18F]AH114726) displayed pharmacodynamics similar to those 

of [18F]flumazenil.38 Though most novel radiochemistry focuses on imidazo-

benzodiazapine derivatives, some have attempted to produce radioligands from other core 

structures. Our laboratory has focused on a novel class of tracers based on a quinoline core 

(Figure 1, compound g).15 Two members of this class were synthesized and shown to be 

more selective to specific receptor subtype, i.e., GABAA, than flumazenil and related 

benzodiazepine derivatives in in vivo PET imaging studies in rodents. These quinolines 

represent a new class of PET radiotracers for imaging the benzodiazepine site of GABAA. In 

particular, [11C]compound g readily penetrated the rat brain (>1 standard uptake value in 

cortical regions), had an appropriate regional brain distribution and reversible binding for 

GABAA receptors.

 Nicotinic Acetylcholine Receptor

Central neuronal nicotinic acetylcholine receptors are involved in various neurological 

process and neurodegenerative diseases, including epilepsy, depression, schizophrenia and 

dementia. Among all the 17 identified subtypes, α4β2-nAChR and α7-nAChR are two most 

prominent targets in human brain. The development of PET ligand targeting subtype α4β2 
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has been reviewed thoroughly9a and we aim to provide a brief and recent summary of 

preclinical and clinical use of these PET probes and recent ligand development therein.

 Recent Preclinical and Clinical Research

Several radiotracers targeting the nicotinic acetylcholine receptor (nAChR) have recently 

been characterized in a variety of preclinical and clinical studies (Tables 3 and 4). There are 

four PET radiotracers, namely, [11C]nicotine, [18F]2-FA, [18F]6-FA and [18F]AZAN that 

have been used in the imaging of α4β2 subtype in human brain.9a While an ideal PET ligand 

for this receptor has not yet been definitively established, we summarize here recent 

preclinical and clinical advances of PET ligands targeting nAChR, including [18F]2-FA 

(Figure 2, compound a), [18F]Nifene (compound b), [18F]flubatine (compound c) and 

[11C]CHIBA-1001(compound d). Specifically, [18F]2-FA is a nicotinic acetylcholine 

receptor PET ligand with high affinity for the β2 subunit. The clinical applications of this 

tracer have recently included studies of the effects of smoking and psychiatric and 

degenerative disorders. PET imaging with this ligand indicated lower nAChR density in the 

peripheral vasculature of individuals with Parkinson’s disease or multiple system atrophy.39 

A low dose of varenicline in smokers was shown by PET to fully saturate brain nAChR but 

had no effect on the reduction of nicotine withdrawal symptoms.40 Tracer binding potential 

in the thalamus was significantly lower in paranoid schizophrenic smokers than in healthy 

controls.41 Patients with Alzheimer’s disease and mild cognitive impairment were 

demonstrated to have lower tracer binding potential than controls in regions of the brain 

affected by the disease.42 [18F]Nifene is a derivative of 2-FA with a dihydropyrrole ring 

(five-membered cycloamine) rather than an azetidine ring (four-membered cycloamine). 

This tracer has not yet been approved for clinical use but has demonstrated improved 

binding kinetics in preclinical studies over 2-FA, which often requires several hours to 

obtain a high resolution PET scan. Imaging with [18F]nifene was used to map nAChR in the 

brain of rats, and a potential role for this receptor in sensory-cognitive function was 

evaluated.43 Brain distribution of tracer uptake was investigated in rhesus monkeys,44 and 

pharmacokinetics of the tracer was also evaluated,45 and a blocking study was conducted.46 

[18F]Flubatine is a nAChR PET radioligand with specificity for the α4β2 subtype.47 This 

tracer was demonstrated to detect differences in synaptic acetylcholine concentration 

induced by receptor inhibitors in Rhesus monkeys.48 The first fully automated 

radiosynthesis of this compound validated for human use49 was reported in 2013 and first-

in-human results of administration of the radiotracer showed no adverse effects in humans.50 

Tracer binding to plasma proteins in human blood was demonstrated in vitro and ex vivo to 

show no differences between patients with Alzheimer’s disease and healthy controls.51 

[11C]CHIBA-1001 is a PET radiotracer for the α-7 subtype of nAChR.52 The tracer 

demonstrated has low specific binding for the α-7 subtype.53 However, tracer biodistribution 

and kinetics have been shown to be very different in humans from the analogous rodent 

properties, and clinical results showed homogeneous brain uptake with low specificity.54 

Dosage with tropesitron, an α-7 receptor agonist, decreased overall brain uptake of 

CHIBA-1001 in humans.55 Other radiotracers for this target include [18F]NS-10743 (Figure 
2, compound e), [18F]AZAN (compound f), [11C]NS-14492 (compound g), [18F]nifzetidine 

and [18F]ZW-104, and have been overviewed in recent publications.56
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 Novel PET Tracers and Radiochemistry

Improvement in selectivity for the α7 subtype of the nicotinic acetylcholine receptor, which 

has been linked to several neurological disorders, is the focus of the majority of new 

radiochemistry and ligand development for this receptor. Ettrup et al. recently published a 

blocking study evaluating the in vivo characteristics of the nAChR α7 receptor subtype PET 

radioligand [11C]NS-14492.67 This radiotracer demonstrated high binding affinity for the 

target in vitro and high stability and selectivity in vivo in pigs, and was the first tracer to 

show dose-dependent blockade of this receptor subtype. [18F]AZ11637326 (Figure 2, 

compound h), an α7-nAChR radioligand, was developed by Ravert et al.68 This radiotracer 

was prepared via nucleophilic [18F]fluorination with a subsequent decarboxylation step, 

resulting in about 3% overall radiochemical yield and specific activity of 140 GBq/μmol. 

This tracer was evaluated in vivo in rodents and nonhuman primates. While some level of 

brain uptake was observed in rodents, no specific binding was shown in nonhuman primates. 

Kuruvilla et al. developed an alternative radiotracer 2-fluoro-5-iodo-3-[2-(S)-3-

dehydropyrrolinylmethoxy]pyridine, (Figure 2, compound i; [18F]niofene) in an attempt to 

improve the binding kinetics of the known tracer [18F]nifene and develop a compound suited 

to both PET and SPECT imaging.69 Niofene exhibited two-fold improved binding affinity 

over nifene in vitro. In rodent PET studies, niofene showed rapid brain uptake and indicated 

some selectivity for the nAChR. A series of novel quinuclidine derivatives were investigated 

by Pin et al. as α7-nAChR radiotracers.66 Amide derivatives within the series demonstrated 

promising in vitro binding results, and some of these compounds were selected for 

radiolabeling. One compound from the series (Figure 2, compound j) was evaluated in a 

rodent PET study and showed good penetration of the blood-brain-barrier, but also appeared 

to have fast clearance. [18F]ASEM (Figure 2, compound k) is a radioligand developed by 

Gao et. al targeting the α7 nAChr. The original synthesis of the tracer involved substitution 

from a nitro derivative, resulting in 16% radiochemical yield with greater than 99% 

radiochemical purity and specific activity ranging from 330-1260 GBq/μmol.62 More 

recently, an improved method using microwave synthesis has been reported70 which results 

in 20% radiochemical yield with 856 GBq/μmol specific activity. In an initial blocking study 

in mice, [18F]ASEM was demonstrated to have higher in vivo binding potential to the target 

than previously developed radioligands.62 Specific binding to the receptor was later 

demonstrated to be in the range of 80-90% in baboons.63 In a recent blocking study in 

healthy humans, the average binding potential of [18F]ASEM was 10.8%.65 Another α7 

nAChR radioligand, 5-(5-(6-[11C]methyl-3,6-diazabicyclo[3.2.0]heptan-3-yl)pyridin-2-

yl)-1H-indole (Figure 2, compound l; [11C]rac-(1)) was also recently developed by the same 

group.71 The compound showed promising initial selectivity for the α7 receptor subtype in 

an ex vivo biodistribution study in rodents. Horti et al. also investigated [11C]A-833834 

(Figure 2, compound m) and [11C]A-752274 (Figure 2, compound n), two radioligands for 

the α7-nAChR.72 In PET studies in rodents, both ligands showed somewhat low brain 

uptake but high specificity indicated by ex vivo localization in the thalamus. In a nonhuman 

primate PET study, there was very little brain uptake of [11C]A-752274. A new synthesis 

method for the nAChR radiotracer [18F]NS14490 (Figure 2, compound o) proposed by 

Rotering et al. allows for the direct nucleophilic substitution of the precursor, resulting in 

70% radiochemical yield.73 This tracer demonstrated high target affinity as well as 

selectivity in vitro for the α7 receptor subtype. In rodent PET studies, low brain uptake for 
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the tracer was observed, but the compound had high stability in brain tissue and in plasma. 

[18F]XTRA (Figure 2, compound p) is another radioligand developed by Gao et. al which 

targets the α4β2 nAChr (this compound was developed alongside [18F]AZAN).74 The 

original synthesis of [18F]XTRA from a bromo precursor resulted in a radiochemical yield 

of 16-47%, radiochemical purity greater than 98%, and specific activity ranging from 185 

GBq – 1.8TBq/μmol.64 An improved synthetic strategy for the bromo precursor was later 

reported.75 In a baboon blocking study, both [18F]XTRA and [18F]AZAN were 

demonstrated to have rapid, reversible brain kinetics.64

 N-methyl-D-aspartate Receptor

 Recent Clinical Research

N-Methyl-D-aspartate receptor agonists have been shown to treat symptoms of Alzheimer’s 

disease, though no reduction in disease progression has been demonstrated. The response to 

NDMA receptor agonists has been monitored by PET using [18F]FDG.76 No PET 

radioligands developed for this receptor have been suitable for clinical use,77 though it has 

been investigated with SPECT.78

 Novel PET Tracers and Radiochemistry

The N-methyl D-aspartate (NMDA) receptor is involved in neurodegenerative disease 

pathways, but currently has no PET-suitable radioligands available for monitoring its activity 

in vivo. Several 11C- and 18F-labeled compounds have been assessed as potential ligands, 

but further improvement is necessary before a satisfactory PET radiotracer is developed. 

Since the development of PET imaging ligand for NMDA receptor has been recently 

reviewed,11 we aim to provide a brief overview of these PET probes and recent ligand 

development particularly after 2010. Figure 3a showed several representative NMDA ligands 

targeting ion channel/PCP site (CNS1261,6, 56, 79 CNS 5161,7, 80 GE-17981 and GMOM82), 

glycine binding site (L-70371783) or NR2B subunit (MK-065784). In particular, Robins et al. 
fluoroalkylated two diarylguanidine derivatives (fluoroethyl derivative is called GE-179, 

Figure 3, compound c) using thiol precursors.85 The [18F]fluoroalkyl compounds were 

prepared in 4-9% yield and up to 2.5 GBq/μmol specific activity, showing promising results 

regarding lipophilicity, binding affinity and selectivity for the PCP-binding site. The Sobrio 

research group has investigated fluoropiperidine derivatives as selective radioligands 

targeting NMDA receptors containing NR2B subunits. Greater brain penetration and target 

binding was exhibited by [18F]cis-4-methylbenzyl 4-[(pyrimidin-2-ylamino)methyl]-3-

fluoro-piperidine-1-carboxylate and its trans isomer (Figure 3, compound f; [18F]MK-0567) 

as indicated by ex vivo autoradiography experiments.86 Radiochemical yields for synthetic 

trials ranged from 31-45%, and the trans compound was produced with higher specific 

activity than the cis compound (236 vs. 170 GBq/μmol). Although logD7.4 values in in vitro 
assays indicated the potential for good brain penetration, low brain uptake of both 18F-

isomers failed to provide satisfactory properties for imaging NMDA receptor in the living 

brain.84b

A recent example of guanidine derivative targeting NMDA NR2B subunit, PK-209, showed 

more than 50 fold selectivity over other targets, including adrenergic, muscarinic and opioid 
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receptors, as well as NMDA-PCP binding site, sigma-1 and -2, calcium and sodium ion 

channels. Although this tracer is metabolized rapidly in vivo, the distribution volume can be 

quantified in the primate brain (Figure 3b, compound a).87 Two 4-(4-

fluorobenzyl)piperidine compounds (Figure 3b, compounds b and c) were radiolabeled 

using nucleophilic aromatic substitution.88 These compounds demonstrated very little brain 

uptake (0.035%-0.054% ID/g) in rat μPET experiments, as well as high uptake in bone 

tissue indicating radiodefluorination. Christiaans et al. recently developed a 11C-labeled 

radiotracer with high uptake in the rodent brain.77 N-((5-(4-Fluoro-2-

[11C]methoxyphenyl)pyridin-3-yl)methyl) cyclopentanamine (Figure 3b, compound d) was 

labeled in 49% yield and 78 GBq/μmol specific activity. Rodent PET studies indicated 

binding to the NR2B binding site in vivo, but selectivity was not ideal as some binding to the 

sigma-1 receptor was also observed. Ametamey et al. demonstrated a new class of NMDA 

ligandm namely NB1, targeting GluN2B/NR2B subunit.89 The autoradiography studies 

showed specific binding in rat brain cryosections and blocking studies demonstrated an up to 

32% reduction of tracer binding, which represents a promising radiotracer for imaging 

NR2B subunit (Figure 3b, compound e). It is worthy of mention that other approaches, 

including NMDA SPECT agents,90 radiolabeled drug candidate ASP077791, a NR2A 

selective radioligand [18F]FP-PEAQX92 and an array of candidate compounds based on 

CNS 1261,93 are also disclosed in the literature in the pursue of NMDA imaging ligand.

 New Radiochemistry for PET Imaging of Other Ion Channel linked 

Receptor Proteins

Several noteworthy biologically active radioligands for other receptor proteins94 have been 

recently reported. Specifically, investigation of chemical probes for ion channels and 

receptors such as the transient receptor potential vanilloid subfamily member 1 (TRPV1) 

receptor has yielded promising results, and a few of these results are discussed here. PET 

radioligands targeting TRPV1 have recently been investigated by van Veghel et al.95 

[11C]DVV24 (Figure 4, compound a), a derivative of cinnamic acid, was obtained in up to 

75% yield. This radiotracer, as well as the aminoquinazoline [18F]DVV54 (Figure 4, 

compound b) were evaluated for biological activity in mice. Though selectivity for TRPV1 

was indicated by [11C]DVV24 retention in the trigeminal nerve, the binding affinity of both 

tracers was just above 100 nM, not high enough to indicate success as PET radioligands. 

Derivatives of N-(3-methoxyphenyl)-4-chlorocinnamide (Figure 4, compound c; 

[11C]SB366791) were subsequently synthesized by van Veghel et al. due to the high affinity 

of this molecule for TRPV1. Radiochemical yield and specific activity for [11C]SB366791 

were comparable to the previous tracers, but improved in vitro binding affinity to both 

mouse (280 nM) and human (780 nM) TRPV1 was observed for this tracer. Despite these 

improvements, binding affinity remained low for application of this tracer to PET. The 

voltage gated sodium ion channels (Navs) were recently targeted for PET imaging by 

Hoehne et al.96 18F-radiolabeled saxitoxin (Figure 4, compound d) was shown to localize at 

the site of recent nerve injuries in rats by in vivo PET and ex vivo biodistribution studies. 

Tetrahydroisoquinolinium derivatives of the small conductance Ca2+-activated K+ (SKCa) 

channel blocker N-methyl-laudanosine (Figure 4, compound e) were investigated as PET 

radioligands of this ion channel by Gao et al.97 These compounds were synthesized from 
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substituted isoquinoline intermediates in 40-65% yields. This series has yet to be 

investigated for biological activity.

 Conclusions

The GABA receptor has well-characterized PET radiotracers available for clinical research 

studies. The current radiochemical synthesis of [18F]flumazenil could benefit from 

improvement and development of receptor subtype specific radiotracers for this target 

remain an ongoing area of development. Current nAChR radiotracer development focuses on 

improving specificity for the therapeutically relevant α7 subtype, while maintaining or 

improving brain uptake over known tracers. The NMDA receptor does not yet have a 

suitable PET radiotracer, and brain uptake remains a significant obstacle for this target. 

Further development still remains for satisfactory clinical PET radiotracers for ion channel 

linked receptors. New knowledge learned from PET imaging studies will be of importance 

to the design of radiopharmaceuticals for existing and new ion channel targets, and will 

guide neuropsychiatric and neurodegenerative drug development.
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 LIST OF ABBREVIATIONS

FDG 2-Deoxy-2-[18F]fluoroglucose

GABA γ-Aminobutyric Acid-Benzodiazapine

nAChR Nicotinic Acetylcholine Receptor

Navs Voltage-Gated Sodium Ion Channel

NMDA N-Methyl D-Aspartate

PET Positron Emission Tomography

SKCa Small Conductance Ca2+-Activated K+ Channel

TRPV1 Transient Receptor Potential Vanilloid Subfamily Member 1
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Figure 1. Radiolabeled compounds targeting the GABA receptor
a) [18F]Flumazenil; b) [11C]Flumazenil; c) [18F]Ro15-4513; d) Nitromazenil e) 

[18F]AH114726; f) [18F]GEH120348; g) quinoline derivative developed by Moran et al.15.
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Figure 2. Radiolabeled compounds targeting the nACh receptor
a) [18F]2FA; b) [18F]Nifene; c) [18F]Flubatine; d) [11C]CHIBA-1001; e) [18F]NS10743; f) 

[18F]AZAN; g) [11C]NS14492; h) [18F]AZ11637326; i) [18F]Niofene; j) quinuclidine 

derivative developed by Pin et al.66 ; k) [18F]ASEM; l) [11C]Rac-1; m) [11C]A-833834; n) 

[11C]A-752274; o) [18F]NS14490; p) [18F]XTRA.
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Figure 3a. Radiolabeled compounds targeting the NMDA receptor
a-d) ligands targeting ion channel/PCP binding site; e) ligand targeting glycine binding site 

and f) ligand targeting NR2B subunit.
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Figure 4b. 
Recent examples in the development of NMDA imaging ligand

a-c) ligands targeting ion channel/PCP binding site; d-f) ligands targeting NR2B subunit.
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Figure 5. Radiolabeled compounds targeting other receptor proteins
a) [11C]DVV24, a TRPV1 radioligand; b) [18F]DVV54, a TRPV1 radioligand; c) 

[11C]SB366791, a TRPV1 radioligand; d) a saxitoxin derivative developed by Hoehne et al. 
targeting the Navs96; e) tetrahydroisoquinolinium derivative developed by Gao et al. 
targeting the SKCa.97
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Table 1

Preclinical Applications of Flumazenil and Ro15-4513

Tracer PET Nuclide Animal Reference

Flumazenil [18F] Rhesus Monkey 16

Flumazenil [18F] Rat 17

Flumazenil [11C] Rhesus Monkey 13

Flumazenil [11C] Mouse and Rat 14

Flumazenil [11C] Rat 12

Ro15-4513 [3H] Rat 18
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Table 2

Clinical Applications of Flumazenil and Ro15-4513

Tracer PET Nuclide Experimental Condition Reference

Flumazenil [18F] Unilateral Ischemic Stroke 25

Flumazenil [18F] Temporal Lobe Epilepsy 24

Flumazenil [18F] Children with Cerebral Palsy 33

Flumazenil [18F] Ultra-High Risk for Psychosis 26

Flumazenil [18F] Schizophrenics taking Aripiprazole 27

Flumazenil [18F] Aversive-Aversive Stimulus 34

Flumazenil [18F] Internal vs. External Awareness 28

Flumazenil [18F] Healthy – Cortical Thickness 29

Flumazenil [11C] Acute Triazolophthalazine α51A Dose 20

Flumazenil [11C] Cerebellar Ataxia 19

Flumazenil [11C] Epileptic Newborns 21

Flumazenil [11C] Tiagibine GAT-1 Blockade 22

Flumazenil [11C] Primary Distonia 23

Ro15-4513 [11C] Induced Acute GABA increase 30

Ro15-4513 [11C] History of Cigarette Smoking 31

Ro15-4513 [11C] Acute Zolpidem Dose 32

Ro15-4513 [11C] Alcohol-Dependent Men 35

Ro15-4513 [11C] Autism Spectrum Disorder 36
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Table 3

Preclinical Nicotinic Acetylcholine Receptor PET Studies

Tracer PET Nuclide Animal Reference

Nifene [18F] Mice 57

Nifene [18F] Rat 58

Nifene [18F] Rat 59

Nifene [18F] Rat 43

Nifene [18F] Rhesus Monkey 45

Nifene [18F] Rhesus Monkey 44

Nifene [18F] Rhesus Monkey 46

Flubatine [18F] Rhesus Monkey 48

Flubatine [18F] Rhesus Monkey 49

NS10743 [18F] Pig 60

AZAN [18F] Baboon 61

CHIBA-1001 [11C] Rat 53

CHIBA-1001 [131I] Monkey 52

ASEM [18F] Mouse 62

ASEM [18F] Baboon 63

XTRA [18F] Baboon 64
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Table 4

Clinical Nicotinic Acetylcholine Receptor PET Studies

Tracer PET Nuclide Experimental Condition Reference

2FA [18F] Neurodegenerative Disorders 39

2FA [18F] Low Varinicline Dose, Smokers 40

2FA [18F] Schizophrenic Smokers 41

2FA [18F] Mild Cognitive Impairment, Alzheimer’s Disease 42

Flubatine [18F] Healthy 50

Flubatine [18F] Alzheimer’s Disease 51

CHIBA-1001 [11C] Healthy 54

CHIBA-1001 [11C] Tropisetron Dose 55

ASEM [18F] Healthy 65

Curr Top Med Chem. Author manuscript; available in PMC 2016 July 19.


	Abstract
	Graphical abstract
	Introduction
	γ-Aminobutyric Acid-Benzodiazapine Receptor
	Recent Preclinical and Clinical Research
	Novel PET Tracers and Radiochemistry

	Nicotinic Acetylcholine Receptor
	Recent Preclinical and Clinical Research
	Novel PET Tracers and Radiochemistry

	N-methyl-d-aspartate Receptor
	Recent Clinical Research
	Novel PET Tracers and Radiochemistry

	New Radiochemistry for PET Imaging of Other Ion Channel linked Receptor Proteins
	Conclusions
	References
	Figure 1
	Figure 2
	Figure 3a
	Figure 4b
	Figure 5
	Table 1
	Table 2
	Table 3
	Table 4

