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Abstract

RNA SHAPE chemistry exploits the discovery that conformationally dynamic nucleotides 

preferentially adopt conformations that facilitate reaction between the 2′-OH group and a 

hydroxyl-selective electrophile, such as benzoyl cyanide (BzCN), to form a 2′-O-adduct. BzCN is 

ideally suited for quantitative, time-resolved analysis of RNA folding and RNP assembly 

mechanisms because this reagent both reacts with flexible RNA nucleotides and also undergoes 

auto-inactivating hydrolysis with a half-life of 0.25 s at 37 °C. RNA folding is initiated by addition 

of Mg2+ or protein, or other change in solution conditions, and nucleotide resolution structural 

images are obtained by adding aliquots of the evolving reaction to BzCN and then “waiting” for 1 

sec. Sites of 2′-O-adduct formation are subsequently scored as stops to primer extension using 

reverse transcriptase. This time resolved SHAPE protocol makes it possible to obtain 1 sec 

snapshots in time-resolved kinetic studies for RNAs of arbitrary length and complexity in a 

straightforward and concise experiment.

 INTRODUCTION

RNA structural transitions are central to the ability of RNA to function inside the cell1-3. A 

full understanding of RNA function therefore requires a nucleotide resolution view of the 

time-resolved mechanisms by which RNA molecules fold, interconvert between distinct 

states, and function in higher-order assemblies. RNA folding events occur on a wide range 

of time-scales, ranging from μs to minutes but many rate-determining steps occur on 

timescales spanning tens of seconds to minutes4-7. These critical events might, in principle, 

be conveniently monitored using simple bench top kinetics.

Current, well-established and highly useful, approaches for probing the kinetics of RNA 

folding at nucleotide resolution include dimethyl sulfate (DMS) and hydroxyl radical 

footprinting8-11. In practice, both time-resolved DMS and hydroxyl radical footprinting are 

experimentally challenging to perform and require significant experiment-specific 

optimization. DMS reactivity probes a subset of nucleotides, largely adenosine, and requires 
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that the reagent be quenched in a separate inactivation step8. Hydroxyl radical footprinting is 

a powerful approach for probing the solvent accessibility of the RNA backbone but either 

requires the use of a synchotron10 or adding a separate quench step12. To date, these 

experimental challenges have limited the interest in evaluating folding states and the 

associated folding pathways for large RNAs at nucleotide resolution. Time-resolved RNA 

SHAPE chemistry addresses these limitations and makes possible experimentally 

straightforward single-nucleotide resolution and simultaneous analysis of local structure at 

nearly every position in an RNA with one-second time resolution13.

SHAPE chemistry exploits the discovery that the nucleophilic reactivity of the ribose 2′-

hydroxyl position is strongly gated by the underlying local nucleotide flexibility (Figure 

1a)14-16. Flexible nucleotides preferentially adopt conformations that react with a hydroxyl-

selective electrophile, such as benzoyl cyanide (BzCN), to form a 2′-O-adduct. In contrast, 

base-paired or otherwise conformationally constrained nucleotides are unreactive. Because 

almost all ribonucleotides possess a free 2′-hydroxyl, local nucleotide flexibility at each 

position in an RNA is interrogated simultaneously in a single experiment14,17. Because RNA 

folding and ribonucleoprotein assembly reactions typically involve large changes in the local 

environment at many nucleotides, SHAPE represents an ideal approach for monitoring these 

changes, comprehensively and at single nucleotide resolution.

During the RNA structure-probing reaction, SHAPE electrophiles are concurrently 

inactivated by hydrolysis. Thus, a specific quench step is not required, provided the adduct-

forming reaction with RNA is allowed to continue until all reagent is consumed (Figure 1b). 

BzCN undergoes hydrolysis with a half-life of 0.25 s at 37 °C: the reaction between BzCN 

and RNA is therefore complete in ~1 s.

Once the reaction is complete, sites of 2′-O-adduct formation are identified by annealing a 

5′-labeled DNA primer to the modified RNA and scoring stops to primer extension by 

reverse transcriptase. The length and amount of a cDNA transcript correlates with the 

position and degree of modification at each position in the RNA. The length of each cDNA 

is assigned by comparison with a dideoxy sequencing reaction13,18.

There are two potential limitations of time-resolved SHAPE as described in this protocol. 

SHAPE primarily measures local nucleotide flexibility. In general, this information gives 

good coverage of both secondary and tertiary structure interactions during an RNA folding 

or ribonucleoprotein assembly reaction15,19-21. However, there may be some instances in 

which analysis of backbone solvent accessibility is essential or can provide critical 

additional information. In these cases, fast hydroxyl radical cleavage is a good 

alternative10,11. The method outlined here emphasizes using time-resolved SHAPE in an 

experimentally straightforward bench top approach that ultimately yields ~1 second 

structural images of RNA structure, taken 5-15 seconds apart. SHAPE can be adapted to 

faster timescales, in a more complex experiment, by use of a rapid mixing device and 

quenching the BzCN reagent with dithiothreitol13.

Time-resolved SHAPE with BzCN was initially used to study the time-resolved folding of 

the specificity domain of the RNase P RNA13. We anticipate that further application of this 
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approach will make possible facile kinetic studies of many RNA in ~1 s snapshots. Time-

resolved SHAPE holds broad potential for understanding structural biogenesis and the 

conformational interconversions essential to the function of complex RNA molecules at 

single nucleotide resolution.

 EXPERIMENTAL DESIGN

Time-resolved SHAPE takes advantage of the intrinsic feature of BzCN that it degrades 

completely in water in ~1 sec. Thus, the experiment is as simple as adding a solution of an 

RNA folding reaction to a small aliquot of BzCN, “waiting” for 1 sec, and then analyzing 

the results by primer extension at a later point. Experimental conditions should be adjusted 

so that roughly 1 in 100-300 nts are modified prior to BzCN inactivation. It is not necessary 

that exactly one modification occur per RNA, only that the level of modification is 

sufficiently sparse that sites of 2′-O-adduct formation are uncorrelated. Higher levels of 

modification produce stronger peak signals; whereas, lower reagent concentrations yield 

longer read lengths for analysis by capillary electrophoresis. Because BzCN reacts rapidly 

with trace amounts of water, it is important to take care in setting up the experiment to work 

with dry BzCN and DMSO. The concentration of buffer (for examples Hepes) should be 

higher than the final concentration of BzCN to prevent acidification of the solution upon 

reagent hydrolysis (Figure 1b). The reaction is largely insensitive to presence of other 

solution components that might react with BzCN, including amines, carbohydrates, and 

proteins.

 RNA folding

RNA folding reactions can be initiated in many ways including changes in temperature, 

ionic strength, or addition of a protein or small molecule ligand. This protocol focuses on 

analyzing the formation of RNA tertiary structure initiated by addition of Mg2+ to a solution 

that otherwise contains all components necessary to stabilize the native structure. However, 

this approach is readily applied to most other methods of initiating the RNA folding or 

ribonucleoprotein assembly reaction and then makes it possible to analyze the resulting 

RNA conformational changes on the second time scale.

 Primer Extension

Sites of time-dependent 2′-O-adduct formation can be analyzed using DNA primers 

containing either a 5′-radiolabel or a 5′-fluorescent tag. This protocol focuses on quantifying 

sites of 2′-O-adduct formation in a high-throughput way using fluorescently labeled primers 

in the primer extension step and then rapidly resolving and quantifying cDNA products by 

capillary electrophoresis13,18. To use 5′-[32P]-labeled DNA primers and conventional 

sequencing gel electrophoresis, the procedure below should be followed up to step 17. An 

alternate protocol for analyzing radiolabeled cDNAs by conventional gel electrophoresis has 

been described previously (and replaces steps 18-24 below)17. In general, the quality of the 

quantitative nucleotide reactivity information is far superior using capillary electrophoresis; 

however, use of radiolabeled primers can be more sensitive in cases where RNA is limiting. 

Using either primer extension approach, no reactivity information is obtained at the 

sequence to which the primer binds, nor 20-50 nts 5′ of from the reverse transcriptase start 
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site14,17. Thus, the DNA primer binding site can either be a natural sequence 3′ of the RNA 

sequence of interest or an appended ‘structure cassette’ sequence14 that allows the entire 

structure of the RNA to be evaluated.

 Analysis of time-progress curves

We typically normalize SHAPE data to a scale that spans 0 to ~2. Zero corresponds to an 

unreactive position and 1.0 is defined as the average intensity of highly reactive 

nucleotides13,15,18. On this scale, time-dependent changes in reactivity are generally 

significant and quantifiable if they are 0.2 SHAPE units or greater (Figure 2a). The quality 

and reproducibility of the time-resolved SHAPE profiles are typically quite high and it is 

often possible to distinguish processes characterized by either a single

(1)

or double

(2)

exponential (Figure 2b)13. Or in terms of two irreversible consecutive steps4:

(3)

More complex kinetic schemes can also be handled by other approaches22.

 MATERIALS

 REAGENTS

• RNA at a concentration of ~1 μM, ~3 pmol per time point, dissolved in 

0.5× TE (5 mM Tris, 0.5 mM EDTA, pH 8.0).

• Deoxyadenosine, deoxycytidine, and deoxythymidine triphosphates 

(dATP, dCTP, dTTP), 100 mM (Invitrogen cat. No. 55082, 55083, 55085)

• Deoxyinosine triphosphate (dITP), 100 mM (Trilink Biotechnologies, cat. 

No. N2012. Use of dITP reduces band compression at G residues and 

increases resolution of primer extension products by capillary 

electrophoresis.

• Dideoxyadenosine, dideoxycytidine, dideoxythymidine and 

dideoxyguanosine triphosphates (ddATP, ddCTP, ddTTP, ddGTP), (Trilink 

Biotechnologies, cat. No. N-4001, N-4005, N-4004, N-4002); make 10 

mM solutions of ddATP, ddCTP, ddTTP and/or 0.25 mM ddGTP by 

dilution in sterile water.
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CRITICAL: Nucleotide solutions are stable for months at −20 °C but are intolerant of 

freeze-thaw cycles. Maintaining small aliquots at −20 °C is recommended.

• Glycogen, 20 mg/mL (Invitrogen, cat. No. 10814-010)

• EDTA, 0.5 M (Ambion, 9260G)

• Deionized formamide (Applied Biosystems, cat. No. 4311320)

• DMSO, molecular biology grade (Sigma-Aldrich, cat. No. D8418)

CRITICAL: DMSO bottle should be stored in a desiccator at room temperature (~22 °C).

• Benzoyl cyanide (BzCN) (Sigma-Aldrich, cat. No. 115959)

CRITICAL: BzCN bottle should be stored in a desiccator at room temperature.

• Superscript III reverse transcriptase (Invitrogen, 18080-093)

• 5× SSIII FS buffer [250 mM Tris (pH 8.3), 375 mM KCl, 15 mM MgCl2] 

(Invitrogen cat. No. 18080-093)

• 0.1 M DTT (Invitrogen cat. No. 18080-093)

• DNA primer: use a primer ~18-20 nt in length and that forms a 3′ G-C 

base pair with the target RNA

• 0.65 and 1.5 mL RNase-free polypropylene (Eppendorf) reaction tubes

 REAGENT SET UP

The first four reagents can be stored at room temperature and are stable for many months.

Enzyme stop mix (50 mM EDTA, pH 8.0)

TE (10 mM Tris, 1 mM EDTA, pH 8.0)

3.3× no-Mg2+ RNA folding solution (333 mM HEPES, pH 8.0, 333 mM NaCl). These are 

the conditions under which the RNA is equilibrated before initiating the folding reaction. 

Buffer, ions, and ionic strength can be varied. In general, reaction with BzCN is tolerant of 

wide variations in experimental conditions. The primary critical requirement is that the final 

concentration of buffer should be greater than the BzCN concentration during the 

modification reaction.

10× MgCl2 (100 mM MgCl2). Any concentration of MgCl2 sufficient to yield the 

biologically active or target RNA structure can be used.

10× BzCN in DMSO The optimal concentration can vary with RNA length. The useful 

range is 100-800 mM. For longer RNAs, use the lower end of these BzCN concentrations. A 

good starting concentration is 400 mM BzCN (40 mM, final). The BzCN solution should be 

prepared fresh for every experiment and can be stored at room temperature for one day if 

kept in a desiccator.
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Superscript enzyme mix (250 mM KCl, 161 mM Tris-HCl, pH 8.3, 1.61 mM each dNTP, 

11 mM DTT, 10 mM MgCl2). The enzyme mix can be prepared by combining 4 parts SSIII 

FS buffer, one part 0.1 M DTT, and one part 10 mM dNTP mix (10 mM in each 

deoxynucleotide). The enzyme mix must be stored at −20 °C and is sensitive to freeze thaw 

cycles. Maintaining small aliquots is recommended.

5′-fluorescently labeled primers These can be ordered from several companies including 

Applied Biosystems, IDT, and Trilink Biotechnologies. At least three, preferentially four, 

DNA primers, each labeled with a different fluorophore, are needed. Compatible dye sets 

depend on the sequencing instrument used. Fluorescent labeled primers must be stored at 

−20 °C away from light and are sensitive to freeze thaw cycles. Maintaining small aliquots is 

recommended.

 EQUIPMENT

• −80 °C and −20 °C freezers

• microfuge for 1.5 ml reaction tubes at 4 ° C

• automated capillary electrophoresis instrument. We use instruments 

typically sold for DNA sequencing applications and have obtained 

excellent results with instruments from both Beckman15,18 and Applied 

Biosystems (ABI)13,23. It is easier to obtain fluorescently labeled DNA 

primers for ABI instruments.

• Programmable incubator or heat block. We recommend an incubator with 

a heated top of the type typically used for performing PCR.

• ShapeFinder software system (freely available to academic researchers at 

http://bioinfo.unc.edu/Downloads).

 PROCEDURE

 RNA folding

1. Add 78 pmol RNA [3 pmol per each (+) and (−) reagent time point] in 144 

μL sterile H2O to a 0.65 mL reaction tube. This procedure yields 13 total 

data points, including a no-Mg2+ reference.

2. Heat the RNA to 95 °C for 2 min; then place the RNA on ice for 1 min.

3. Add 72 μL 3.3× no-Mg2+ folding buffer and mix thoroughly.

4. Incubate the tube at the desired reaction temperature (25 or 37 °C) for 

5-10 min.

5. Preincubate a 0.65 mL reaction tube containing 22 μL 10× MgCl2 solution 

at the same temperature as the RNA solution.

 RNA modification

6. Aliquot 1 μL 10× BzCN in DMSO and 1 μL neat DMSO into each of 13 0.65 

mL reaction tubes; these are the (+) and (−) BzCN tubes, respectively.
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7. Take a no-Mg2+ initial reference time point by transferring two 9 μL aliquots 

of the RNA solution to reaction tubes containing 1 μL BzCN in DMSO or 1 μL 

DMSO. This point can also be taken as a time = 0 reference.

8. Initiate RNA folding by adding the remaining 198 μL solution of re-folded 

RNA to the tube containing 10× MgCl2 (~220 μL total final volume). Mix 

thoroughly and start timing.

9. At desired time points (up to 12 total) remove 9 μL and add to a 0.65 mL 

reaction tube containing 1 μL pre-aliquoted 10× BzCN in DMSO. Mix 

thoroughly by rapid pipetting 2-3 times. Repeat by adding 9 μL to a tube 

containing 1 μL neat DMSO and mix thoroughly (each time point requires 18 

μL total of the folded RNA solution). Reaction with BzCN is complete in 3 and 

1 sec at 25 and 37 °C, respectively; no explicit quench step is required. 

Obtaining time points at 15 sec intervals is straightforward. With practice, time 

points at 5-7 second intervals are possible.

10. At the end of the time course, when all time points have been obtained, recover 

the modified RNA by ethanol precipitation. To each tube (26 total) add 90 μL 

sterile H2O, 5 μL 4 M NaCl, 1 μL 20 mg/mL glycogen, 400 μL 100% ethanol; 

mix; and incubate at −80 °C for 30 min. Sediment the RNA by spinning at ≥ 

10K rpm (≥ 9000 × g) speed in a microfuge at 4 °C for 30 min.

11. Remove supernatant and redissolve RNA in 10 μL 0.5× TE.

PAUSE POINT. Modified RNA can be stored at −20 °C overnight.

 Primer extension and RNA sequencing

12. Add 3 μL 0.3 μM fluorescently or radiolabeled primers to the (+) and (−) 

BzCN reactions.

13. For each required sequencing reaction, add 3 μL 0.3 μM fluorescently or 

radiolabeled primer to 3 pmol of RNA in 8 μL 0.5× TE. Each time point 

requires its own sequencing reaction, so multiply by the number of time points 

(one reference, plus 12 time points, as described here)

CRITICAL: For resolution by capillary electrophoresis instrument, each 

reaction will be monitored using a DNA primer labeled with a different color-

coded fluorophore. Several compatible fluorescent dye sets are possible. For 

resolution on an ABI instrument, we typically use dye sets consisting of FAM, 

VIC, NED and PET (ABI G5 dye set); FAM, TET, HEX, and NED; or FAM, 

JOE, TAMRA, and ROX.

14. Anneal the primer to the RNA by heating at 65 °C for 5 min and placing on ice 

for 1 min.

15. Add 6 μL of superscript enzyme mix to the (+) and (−) BzCN reactions and to 

the sequencing reactions. To each sequencing reaction, also add 1 μL ddNTP 

solution.

16. Add 1 μL of Superscript III to each tube. Mix well and place at 45 °C.
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17. Incubate at 45 °C for 1 min, 52 °C for 25 min, 65 °C for 5 min, and then place 

on ice.

CRITICAL: Omitting the 45 °C step can lead to poor primer extension, 

especially for longer RNAs.

For radiolabeled primers, omit steps 18-24 below and replace with steps 17-23 

from ref. 17.

18. Add 4 μL 50 mM EDTA (pH 8.0) to each tube to quench the extension reaction 

and place on ice.

19. For each time point, combine the (+) and (−) BzCN reactions and a sequencing 

reaction (22 μL each, 66-88 μL total ) into a 1.5 mL reaction tube and recover 

the cDNAs by ethanol precipitation: add 240 μL 100 % ethanol to each tube 

(12 total) and incubate at −80 °C for 15 min. Sediment the cDNA by spinning 

at ≥10K rpm (≥9000 × g) in a microfuge at 4 °C for 15 min.

20. Remove supernatant and add 800 μL 70% ethanol. Invert the tube to dislodge 

pellet and spin at maximum speed in a microfuge at 4 °C for 2 min.

21. Repeat step 19.

CRITICAL: Omitting this step leaves residual salt in the primer extension 

reaction solutions and can lead to poor resolution during capillary 

electrophoresis.

22. Dry the pellet by vacuum for 10 min and resuspend in 10 μL deionized 

formamide (this volume will vary depending on the capillary electrophoresis 

instrument used).

PAUSE POINT. The resuspended pellets can be stored at −20 °C away from 

light for an extended period of time. For best results, run samples immediately.

 cDNA analysis by capillary electrophoresis

23. Load each 10 μL sample into separate wells on a capillary electrophoresis 

DNA sequencing instrument and run.

24. Export the resulting raw traces into ShapeFinder24 (Figure 3a), process the data 

by applying a: (i) baseline adjustment, (ii) mobility shift appropriate for the 

dye set used24, and (iii) a multiplicative scaling factor, if necessary, to the (+) 

and (−) BzCN traces (Figures 3b & 4a; see Troubleshooting table and reference 

24 for details). Quantify the intensity of all peaks in the (+) and (−) BzCN 

reactions by whole-trace Gaussian integration using the Align and Integrate 

tool in ShapeFinder (Figure 3c). ShapeFinder outputs a text file containing the 

integrated areas for each peak in the electropherogram, the net reactivity after 

subtraction of the (−) reagent background, and the normalized SHAPE 

reactivities using a scale in which 1.0 is defined as the average intensity of 

highly reactive positions (Figure 4b). These steps can be fine tuned in a 

spreadsheet application.
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 Data analysis

25. Plot the normalized SHAPE reactivities as a function of time for each 

nucleotide in the RNA. Inspect the individual curves for their kinetic behavior. 

Typically, one-half of the nucleotides in an RNA will show no change. This is 

the expected result because the local environment at some positions does not 

change with folding. At other nucleotides, the SHAPE reactivities will 

decrease (largest number of positions) or increase (a few positions). In both 

cases, a significant change in the local nucleotide flexibility during folding is 

one with ΔSHAPE ≥ 0.2 (Figure 2a).

26. We generally interpret time-progress curves in term of net, normalized 

intensity plots at each nucleotide position: (i) perform an initial exponential fit 

to determine the plateau value (b) at long times; (ii) subtract this value from all 

data points, and (iii) renormalize intensities to a scale spanning 0 to 1.0 by 

dividing by the intensity of the first time point (I) (Figure 2a).

27. Individually fit time-dependent changes in SHAPE reactivity for each 

nucleotide to an appropriate kinetic equation. For most nucleotides, a single or 

double exponential or an equation describing two consecutive steps is 

generally sufficient (Figure 2b and see Eqns. 1-3). For each time-progress 

curve, the equation that best corresponds to the time-resolved SHAPE data can 

be distinguished either by eye or using Pearson’s r-value. Group nucleotides 

according to rate constants that are less than 2-fold apart (Figure 4c).

28. Superimpose kinetic data on a structural model of the RNA. Develop a model 

for the RNA folding or RNP assembly mechanism based on the clustering of 

nucleotides that fold with similar rates. Use the number of observed rate 

constants to estimate the number of kinetically significant structural 

intermediates (Figure 5).

Timing:

RNA folding (Steps 1-5): 20 min

RNA modification (Steps 6-11): Length of time course plus 1 h 30 min

Primer extension and RNA sequencing (Steps 12-22): 2 h

cDNA analysis by capillary electrophoresis (Step 23): 45 min

Data analysis (Steps 24-28): 1 or more days depending on the nature and depth of analysis.

 TROUBLE SHOOTING

Step Problem Reason Solution

1-21 Intense peaks present
in the (−) BzCN
capillary
electrophoresis trace.

RNase contamination;
this is, by far, the most
common problem
encountered for new
practitioners of

Identify contaminated
solution by running
mock SHAPE
experiments with 5′
fluorescently or [32P]-
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Step Problem Reason Solution

SHAPE technology. labeled RNA.

12-17 Structure-induced
pausing by the
reverse transcriptase
enzyme.

Heat RNA in 0.5× TE
to 95 °C for 3 min,
cool on ice for 3 min
before adding primer.
Increase the time of
extension at both 52
°C and 65 °C.

9 Very low signal in the
(+) BzCN channel but
an intense full length
product is observed.

Insufficient
modification of RNA.

Perform modification
using a 2-fold higher
concentration of
BzCN.

9 No signal in the (+)
BzCN trace.

No modification of
RNA.

BzCN is very sensitive
to trace amounts of
water. Make sure
BzCN/DMSO stock is
kept dry and use
fresh solutions for
each experiment.

9 No full length product
in the (+) BzCN trace or
intense bands that
disappear rapidly with
read length.

Excessive
modification of RNA.

Perform modification
using a 2-fold lower
concentration of
BzCN.

12-17 No full length product
in any channel in the
capillary
electrophoresis
electropherogram.

Poor or incomplete
primer extension.

The reverse
transcriptase enzyme
is very sensitive to
MgCl2 concentration.
Make sure final
solution conditions
are 3 mM in MgCl2.
Enzyme is also
sensitive to freezing.
Retry the experiment
with fresh enzyme.

23 Poor resolution or
broad peaks in the
electropherogram

Too much residual
salt present in sample
when loaded onto the
capillary
electrophoresis
instrument.

Perform additional
70% ethanol wash
before drying and
resuspending pellet in
formamide.

15 No sequencing bands
in ddNTP sequencing
trace (s).

ddNTPs were
incorporated in the
wrong proportion.

Adjust the ddNTP
concentrations
upwards or
downwards by 2-fold.

1,12 Low fluorescence
signal in
electropherogram.

Not enough primer or
RNA in primer
extension reactions.

Increase amount of
primer and/or RNA
(to 5-8 pmol).

23,24 The faintest bands in
the (+) BzCN channel
have significantly
different intensity as
compared to the
corresponding peaks in
the (−) BzCN channel.

Random error
involved with volume
measurement;
difference in quantum
yield of different
fluorophores.

Renormalize traces
using the Scale Factor
tool in ShapeFinder.
Run primers labeled
with each fluorophore
to determine the
multiplicative factor
that yields equal
intensities across
fluorophores.

23,24 Sharp or negative
peaks are present in
the unprocessed or
processed
electropherogram.

Improper automatic
matrixing of dyes.

Make sure dye overall
dye intensity is
roughly the same in
all lanes. Use primer
concentrations that
yield similar
intensities for each
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Step Problem Reason Solution

fluorescent signal.

25-27 Time-progress curves
do not clearly fit a
simple exponential
equation.

Multiple RNA folding
populations or
transitions.

Ensure that the RNA
is in a single defined
conformation upon
initiation of the
folding reaction.
Perform equilibrium
SHAPE experiments
on the RNA under
initial folding
conditions and
evaluate whether
data are consistent
with a single
conformation.

Portions of this table are adapted from ref. 17.

 ANTICIPATED RESULTS

Time-resolved SHAPE provides 1 s snapshots of RNA structure for RNAs of nearly 

arbitrary complexity over time periods spanning a few seconds to many minutes. The 

fluorescently encoded data for each individual time point are resolved in three or four 

channels in a single capillary from a capillary electrophoresis instrument (Figure 3a). Time-

progress curves can also be monitored using 32P-labeled DNA primers and resolved on 

sequencing gels17, but data are generally of much higher quality using capillary 

electrophoresis.

The representative experiment outlined here was performed using an in vitro transcript 

corresponding to the Bacillus subtilis RNase P specificity domain25 embedded within a 

structure cassette that facilitates analysis of the very 5′ and 3′ ends of the RNA14. Tertiary 

folding of the RNase P RNA was initiated by addition of Mg2+ (to 10 mM) to a pre-

equilibrated solution containing RNA, buffer, and 100 mM NaCl. Each capillary 

electrophoresis electropherogram (Figure 4a) contains reactivity data for the entire RNase P 

RNA (~150 nts). Peaks in the processed capillary electrophoresis traces are quantified by 

subtracting background intensities in the no-reaction control from the (+) BzCN reaction. 

After normalization, absolute SHAPE reactivities were obtained at almost every position 

within the RNA over a dense sampling of time points (Figure 4b). Nucleotides that show 

significant changes in SHAPE reactivity typically fall naturally into a smaller set of 

kinetically distinct behaviors. In the RNase P RNA, nucleotides partition into two distinct 

categories, both in terms of the observed rate constant and in terms of whether each curve 

was best fit by a single or double exponential. Approximately half the nucleotides in the 

RNase P RNA folded slowly (k1 = 0.004 s−1) in a transition characterized by a single 

exponential (in blue, Figure 4c).

The remaining nucleotides exhibiting significant time-dependent change in SHAPE 

reactivity were well described by fitting to a double exponential (in red, Figure 4c). The 

slower rate constant, 0.004 s−1, was identical to that observed for the positions characterized 

by a single exponential, while the faster rate constant, at 0.06 s−1, represents an additional 

kinetically significant step.
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Time-resolved SHAPE data then make possible modeling of kinetic intermediates in the 

folding pathway for an RNA at nucleotide resolution. For the RNase P specificity domain 

RNA, time-resolved SHAPE clearly identifies two kinetically significant steps. A good first 

step is typically to superimpose the observed kinetic behavior on a secondary structure 

model for the RNA. Consistent with the two categories of reactivity changes, these changes 

cluster within two secondary (and tertiary) structure regions of the RNA. The fast folding 

step involves nucleotides in the tertiary structure module involving the J11/12 and J12/11 

loops (residues 185-196 and 217-225) and also in the interaction of A229 with C134 and 

C232 (in red, Figure 5). Nucleotides characterized by the slower folding step involve the 

formation of three distinct sets of long-range interactions: docking of the T-loop (U175-

A179) at P7-P10, stacking of A230 on A130 in P9, and the docking of the GAAA tetraloop 

(P12) into its receptor in P10.1 (in blue, Figure 5).

A comprehensive folding mechanism for the RNase P specificity domain was also developed 

prior to our work using equilibrium and kinetic approaches26,27. In general, nucleotide 

resolution information was obtained for folding intermediates under equilibrium conditions 

using chemical mapping experiments26 and time-resolved information was obtained for the 

overall folding of the whole RNA domain, including for relatively fast processes that are not 

accessible by bench top time-resolved SHAPE27. These approaches yielded a model that 

shares major features with that determined by time-resolved SHAPE, including that short-

range tertiary interactions form prior to longer-range tertiary interactions and that the 

tetraloop-receptor and T-loop interactions form simultaneously in the rate determining step 

(Figure 5). A useful feature of time-resolved SHAPE was that sufficient information 

required to create a nucleotide-resolution model for the predominant RNA folding pathway 

could be obtained in a single, concise, set of experiments. Time-resolved SHAPE also 

revealed the distinct rates for each folding transition and the specific nucleotides involved in 

each step.

We envision that time-resolved SHAPE with BzCN will make possible facile analysis of the 

pathways for formation of individual sets of tertiary interactions in complex RNAs and RNP 

complexes on timescales as short as a few seconds using very simple bench top kinetics.
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Figure 1. 
Mechanism of RNA SHAPE chemistry with BzCN. (a) BzCN reacts with 2′-hydroxyl 

groups at conformationally flexible positions to form a 2′-O-adduct. (b) Parallel BzCN 

inactivation by hydrolysis.
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Figure 2. 
Analysis of time-progress curves. Nucleotide G217 of the RNase P specificity domain is 

shown. (a) Representative change in SHAPE reactivity as a function of time. Y-axis data are 

shown using absolute SHAPE reactivities that have been normalized to a scale that spans 0 

to ~1.5, where 1.0 is defined as the average intensity of highly reactive positions. The 

absolute change in SHAPE reactivity at this nucleotide is 0.95, which means the time-

progress curve can be quantified at a high level of accuracy and significance. (b) 

Quantitative analysis of time-resolved changes in local nucleotide flexibility. Data from 

panel A have been renormalized on the y-axis such that reactivity at time = 0 is defined as 

1.0 and is obtained by dividing by the initial maximum intensity (I = 1.35), after first 

subtracting the plateau SHAPE reactivity (b = 0.40). Most nucleotides tend to follow simple 

kinetic behavior and are well fit using straightforward kinetic equations. A double 

exponential (solid line, Eqn. 2) is the best choice for these data.
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Figure 3. 
Electropherogram analysis using ShapeFinder24. (a) Unprocessed capillary electrophoresis 

electropherogram exported from an ABI sequencer (no matrixing step required). (b) 

Resulting trace after application of the Fitted Baseline Adjust and Mobility Shift:Cubic 

tools. (c) Application of the Align and Integrate tool to quantify all peaks in the (+) and (−) 

reagent channels by whole-trace Gaussian integration. Channels are split for clarity and ease 

of analysis; the aligned RNA sequence is at the bottom of the window.
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Figure 4. 
Representative time-resolved SHAPE analysis of the RNase P specificity domain RNA. (a) 

Processed capillary electrophoresis traces obtained for the reaction of BzCN with the RNase 

P specificity domain for folding times spanning 5 s to 20 min. RNA folding was initiated by 

addition of Mg2+ to RNA pre-equilibrated in buffer and NaCl. (+) and (−) reagent channels 

are shown in green and black; sequencing channels (at bottom) were used to assign peak 

position in ShapeFinder24. The difference in peak intensity between the (+) and (−) BzCN 

channels reports the extent of 2′-O-adduct formation at each point. Nucleotides involved in 
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tertiary interactions show a decrease in reactivity over time. For example, nucleotide 178 

becomes protected from reaction with BzCN on a slow time scale, while nucleotide 190 

undergoes this transition more rapidly (blue and red lines, respectively). (b) Absolute 

SHAPE reactivities as a function of nucleotide position and time. (c) Representative time-

progress curves monitored by time-resolved SHAPE. For the RNase P RNA, all nucleotides 

show a decrease in SHAPE reactivity as a function of time, indicating a significant increase 

in structural constraints as the RNA forms tertiary interactions. Each time-dependent profile 

was fit individually to either a single or double exponential (Equations 1 or 2 in the main 

text). All curves found to fit a single exponential (in blue) were characterized by the same 

rate constant, at 0.004 sec−1. Nucleotides best fit by a double exponential (in red) were 

characterized by a fast phase at 0.06 sec−1 and a slow phase at 0.004 sec−1. Adapted in part 

from the J. Am. Chem. Soc. 130:16178 (Copyright 2008 American Chemical Society).
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Figure 5. 
Mechanism for folding of the RNase P specificity domain determined by time-resolved 

SHAPE. Secondary structure is drawn to approximate arrangement of RNA helices and 

tertiary interactions as they occur in three dimensions2. Fast-forming interactions are 

emphasized in red. These are interpreted as reflecting formation of a distinct folding 

intermediate. Interactions that form in the slow, rate-determining, step are blue. Structure 

cassette sequences are shown schematically in gray. Reprinted with permission from the J. 
Am. Chem. Soc. 130:16178 (Copyright 2008 American Chemical Society).
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