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Abstract
Friedreich’s ataxia (FRDA), the most commonly inherited ataxia in populations of European

origin, is a neurodegenerative disorder caused by a decrease in frataxin levels. One of the

hallmarks of the disease is the accumulation of iron in several tissues including the brain,

and frataxin has been proposed to play a key role in iron homeostasis. We found that the

levels of zinc, copper, manganese and aluminum were also increased in a Drosophila
model of FRDA, and that copper and zinc chelation improve their impaired motor perfor-

mance. By means of a candidate genetic screen, we identified that genes implicated in iron,

zinc and copper transport and metal detoxification can restore frataxin deficiency-induced

phenotypes. Taken together, these results demonstrate that the metal dysregulation in

FRDA includes other metals besides iron, therefore providing a new set of potential thera-

peutic targets.

Introduction
Friedreich’s ataxia (FRDA) is a neurodegenerative disorder caused by an intronic GAA expan-
sion within FXN, the gene encoding frataxin [1]. Unstable GAA expansions in both alleles of
this gene [2] inhibit transcription, therefore causing a reduction in frataxin protein levels [3,4].
FRDA is the most commonly inherited ataxia among populations of European origin [5] and is
characterized by progressive gait and limb ataxia, tendon areflexia, muscle weakness and
peripheral sensory neuropathy occurring at early adulthood. Non-neurological manifestations
include hypertrophic cardiomyopathy leading to morbidity, diabetes mellitus or carbohydrate
intolerance [6]. Affected individuals are wheelchair-bound during later stages of disease, and
early death may occur at the fourth to fifth decade of life.

Frataxin deficiency results in several biochemical disturbances including impaired iron-sul-
phur cluster biogenesis, dysfunction of respiratory chain complexes and aconitase,
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accumulation of mitochondrial iron coupled to cytosolic iron depletion and increased oxidative
stress sensitivity (reviewed in [7]). Although frataxin function is not fully elucidated, it is
accepted that frataxin is critical for iron homeostasis [8] and marked accumulation of iron has
been reported in several tissues of FRDA patients. Iron appears to accumulate in myocardium
[9–11], and in liver and spleen as well as in the dentate nucleus of the cerebellum [9,12]. Iron
chelation was therefore promptly proposed as therapeutic approach for the disease and data
from pre-clinical studies [13,14] were promising. However, early-phase clinical trials with the
iron chelator deferiprone have not lead to conclusive results and indicate a possible improve-
ment only in some aspects of FRDA pathogenesis [15,16].

In addition to iron, redistribution of copper and zinc was also described in the dentate
nucleus of FRDA patients [17], as well as changes in the cellular localization of the zinc trans-
porter Zip14 in the dorsal root ganglia [18]. These findings presented a novel perspective of
FRDA pathophysiology by suggesting that metal dysregulation extends beyond iron accumula-
tion. Interestingly, there is extensive evidence of metal content imbalance in other neurodegen-
erative disorders such as Alzheimer’s (AD), Parkinson’s and Huntington’s diseases as well as
amyotrophic lateral sclerosis. Copper, zinc, aluminum and manganese appear to play an
important role in these pathologies, and may induce oxidative stress, protein misfolding and
aggregation or neuroinflamation, leading eventually to neurodegeneration (reviewed in [19]).

Based on the potential role of metal imbalance in FRDA pathogenesis, we set out to test
whether genetic modification of key pathways regulating metal content and distribution would
improve FRDA phenotypes by restoring metal homeostasis. To test a broad range of compo-
nents within these pathways in a high-throughput manner, we utilizedDrosophila as a model of
FRDA [20–22] in a genetic screen of potential modifiers. By focusing on a candidate pathway
screening approach, we report several novel genetic modifiers of eye morphology and motor
dysfunction in the FRDA fly model. These data provide further support for the notion that dis-
ruptions in metal homeostasis may be a primary contributor to FRDA disease pathogenesis.

Materials and Methods

Drosophila melanogaster strains
Two lines that knockdown fh, the homolog of FXN in Drosophila, were used in this study: (i)
UDIR2 [21], from Dr. Phillips from University of Guelph, Canada, and (ii) UAS-fhIR [22] pre-
viously generated in our laboratory. Both lines have been renamed in the text and figures as
fhRNAi-1 and fhRNAi-2 respectively, as in [23]. When expressed ubiquitously, fhRNAi-1
induced a strong interference with a 90% reduction of frataxin expression that resulted in adult
lethality, whereas fhRNAi-2 produced a 70% reduction compatible with a normal development.
w1118 strain was used as control in all the experiments. The driver lines GMR-GAL4 and actin-
GAL4, which promote expression in the eye and in a ubiquitous pattern respectively were
obtained from the Bloomington Stock Center (BSC, Indiana University, http://flystocks.bio.
indiana.edu). For the genetic screen, we used shRNA lines from the Vienna Drosophila
Resource Center (VDRC, http://stocks.vdrc.at) and loss-of-function and overexpression lines
from BSC, except for tub-MTF-1 [24] that was kindly provided by Dr. Burke from University
of Monash, Australia. A total of 130 lines from the VDRC and BSC selected from genes in
metal homeostasis pathways were used to identify genetic modifiers of the phenotypes caused
by frataxin knockdown in Drosophila.

Culture conditions, metal chelation and climbing assay
Drosophila stocks were maintained at 25°C on standard cornmeal agar medium. The stan-
dard medium was supplemented with the copper chelators Tetrathiomolybdate (TTM) at
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10 μM dissolved in 0.1% dimethylsulfoxide (DMSO) and Bathocuproine disulphonate (BCS)
at 300 μM in H2O, and with the zinc chelator N,N,N',N'-tetrakis (2-pyridinylmethyl)- 1,2-
ethanediamine (TPEN) at 100 μM in EtOH/PBS. All chemicals were purchased from
Sigma-Aldrich. Crosses were conducted at 25°C in the supplemented medium or the vehicle
medium containing the dissolving agent but not the chelator. The F1 adults of appropriate
genotype were transferred to fresh vials with the supplemented or vehicle medium every
two days. We evaluated the effect of the metal chelators on the climbing ability as described
in [25].

Genetic screen
A total of 130 candidate lines from the VDRC and BSC selected for genes in metal homeosta-
sis pathways were used to identify genetic modifiers of the external eye structure and the
motor performance phenotypes induced by frataxin knockdown in Drosophila. For the eye
screen, UAS-fhRNAi-1; GMR-GAL4 flies were crossed at 27°C with the candidate lines, and
the external eye structure of the F1 flies with appropriate genotype was observed with a
Nikon light microscope. For the motor performance assays, we used the UAS-fhRNAi-2;
actin-GAL4 line and both the crosses and the experimental individuals were maintained at
28°C. These assays were performed as previously described in [26]. We recorded the number
of flies that climbed to a height of 11.5 cm after 16 s and the mean percentage of 10 observa-
tions was plotted for each day. Two replicates of 15 individuals were tested in parallel for
each genotype.

Measurement of metals and MDA + HAE levels
Inductively Coupled Plasma—Atomic Emission Spectroscopy (ICP-AES) was used to measure
the levels of iron, zinc, copper, manganese and aluminum calibrated against standard solutions
in an OPTIME 2100DV from Perkin Elmer. Previously, whole flies were lyophilized, weighed
and digested with nitric acid (1 h at 90°C) and hydrogen peroxide (1h at 90°C). These assays
were conducted in triplicate with 600 adult males per replicate. The concentration of malon-
dialdehyde (MDA) + 4-hydroxyalkenals (HAE) was determined as described in [25]. MDA
+HAE levels were normalized to the protein amount determined by the Bradford assay.

Superoxide dismutase 1 (SOD1) activity assay
Cu,Zn-SOD1 activity was measured following the procedures described by the SOD Assay Kit
(Sigma-Aldrich). Three replicates of 15 males for each condition (control or fhRNAi-2 flies in
vehicle or chelator) were homogenized in PBS 50 mM pH 7.4, EDTA 1 mM buffer and the
supernatant was collected after a 1500 g, 5 min centrifugation at 4°C. A second centrifugation
at 10000 g for 10 min was performed and the supernatant collected to obtain the cytosolic frac-
tion, which was used to determine the SOD activity.

Quantitative real-time PCR (RT-qPCR)
Total RNA was isolated from 50 males using RNeasy Minikit (Qiagen). RNA (2.5 μg), primed
by oligo(dT)20-primers, was reverse transcribed with Expand Reverse Transcriptase (Roche
Diagnostics). Quantitative PCR was carried out using Step One Plus Real-Time PCR System
(Applied Biosystems) and Power SYBR Green (Applied Biosystems). Primer performance was
assayed with a dilution series of cDNA. The primers used for transcript amplification of the
frataxin homolog gene (fh) were: forward 50- ACA CCC TGG ACG CAC TGT-30, reverse 50-
CCA GGT TCA CGG TTA GCA C-30. The house-keeping Ribosomal protein 49 gene (Rp49) was
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used to normalize data (forward-primer 50-CCG CTT CAA GGG ACA GTA TCT G-30, reverse-
primer 50-CAC GTT GTG CAC CAG GAA CTT-30). The relative quantification of each cDNA
was calculated in quadruplicate experiments using the comparative Ct method.

Statistical analysis
All statistical analyses were carried out with the GraphPad Prism 6 software. For comparison
of means, we performed unpaired nonparametric Student's t test or one-way ANOVA followed
by Dunnett or Sidak tests for multiple comparisons. In all cases, values of P<0.05 were consid-
ered statistically significant and errors bars represent the standard error of the mean (SEM)
between independent experiments.

Results and Discussion

Frataxin deficiency in Drosophila leads to metal accumulation
Iron accumulation occurs in several tissues of FRDA patients [9–12] and in models of disease
[14,27–29]. Recently, copper and zinc dysregulation has also been suggested in FRDA [17,18].
Therefore, we hypothesized that ubiquitous reduction of frataxin driven by the fhRNAi-2 allele
might cause a global alteration in metal content. Interestingly, atomic emission spectroscopic
analysis revealed not only an increase in iron levels but that zinc, copper, manganese and alu-
minum were also increased in the FRDA flies relative to control animals (Fig 1A). Among
these elements, Al is the only one that does not appear to have a known role in animal biology.
This element is abundant in the environment and its uptake takes place via air, food and water.
However, it has been suggested that Al can generate reactive oxygen species (ROS) [30] and its
presence has been implicated in neurological disorders such as Alzheimer’s disease [19]. In
addition, Wu et al. [31] found that our model of FRDA in Drosophila displays increased sensi-
tivity to Al toxicity mediated by ROS production and Fe accumulation.

To investigate whether the increase in metal levels is implicated in the pathophysiology of
FRDA, we asked whether metal chelation improves the climbing phenotype of the frataxin
deficient flies reported by our laboratory [22]. Previously, we showed that the iron chelator
deferiprone rescued several phenotypes of the FRDA fly model, including the motor
impairment [14]. In this case, the zinc chelator TPEN was effective in inducing a significant
recovery of the climbing ability of the FRDA animals (Fig 1B). The copper chelators TTM and
BCS also ameliorated the climbing ability up to control levels (Fig 1B). Next, we measured the
Fe content in the model flies when the availability of Zn or Cu was reduced by chelation. We
found that the Fe levels were not affected by TPEN, TTM or BCS in our experimental condi-
tions (S1 Fig). These results show that the beneficial effect of the chelators on the motor perfor-
mance of the FRDA flies is not dependent on Fe levels and support that Zn and Cu also
contributing to the frataxin deficient phenotype.

Because of the importance of metal cofactors for the key enzyme in antioxidant defence
Cu,Zn-SOD1, we tested its activity after the treatment with the chelators. No significant
changes in the enzyme activity were detected for the Zn chelator TPEN (S2 Fig) and the Cu
chelator TTM (S2 Fig) at the doses tested. A significant reduction of the Cu,Zn-SOD1 activity
was found with the Cu chelator BCS of in both the control flies and the FRDA flies (S2 Fig).
Despite this reduction in the Cu,Zn-SOD1 activity, model flies showed a great improvement
of their motor skills when they were treated with BCS (Fig 1B), suggesting that the beneficial
effect of the Cu chelation is greater that the possible detrimental effect of the reduction in Cu,
Zn-SOD1.
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Fig 1. Metal accumulation in FRDA flies. A. Total iron, zinc, copper, manganese and aluminum levels
measured by atomic emission spectroscopy and expressed in percentage relative to the controls are
increased in fhRNAi flies (actin-GAL4>UAS-fhRNAi-2) vs controls (w1118; actin-GAL4). Statistical
significance was evaluated by unpaired nonparametric Student's t test. B. Zinc chelator TPEN and copper
chelators BCS and TTM improve the climbing ability of fhRNAi flies (actin-GAL4>UAS-fhRNAi-2) compared
to vehicle medium (EtOH/PBS, H2O and DMSO 0.1%, respectively). The results are expressed in
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Taken together, these data indicate that the FRDA fly model recapitulates an imbalance in
metal content, reminiscent of the human condition, and suggest that zinc and specially copper
chelators might be of potential therapeutic interest for the treatment of the disease.

Modifying key regulators of iron homeostasis suppresses FRDA fly
phenotypes
To determine whether targeted alterations of pathways involved in metal homeostasis are suffi-
cient to improve FRDA fly phenotypes, we systematically evaluated the effect of decreasing or
increasing the expression of metal-associated genes using two different and independent assays
in the FRDA Drosophilamodel. We reasoned that utilizing a tiered strategy of first evaluating
modifiers of eye morphology followed by evaluating modifiers of motor performance would
provide high confidence genetic modifiers of these disease phenotypes. For our primary screen
of external eye morphology, we evaluated modifiers of a mild rough eye phenotype induced by
specific expression of the fhRNAi-1 allele in the developing eye. We then used a milder frataxin
knockdown system (actin-GAL4>UAS-fhRNAi-2, enables systemic frataxin reduction com-
patible with adult survival) to determine whether these modifiers were also able to improve the
impairment in motor performance reported in FRDA flies [22].

Given the central role of iron in FRDA pathogenesis, we first investigated whether genes
implicated in iron homeostasis modify FRDA fly model phenotypes. Among the tested genes
implicated in iron homeostasis, we found a total of 5 suppressors of both the eye and the motor
performance phenotypes (Fig 2A and 2B). Genotypes of the Drosophila strains corresponding
to these genetic interactors are shown in S1 Table.

Of the five suppressor genes, three genes function as iron carriers. Knockdown of Malvolio
(Mvl), the Drosophila homolog of the mammalian Divalent metal transporter-1 (DMT1) [32],
improved both the eye and motor performance phenotypes caused by frataxin deficiency (Fig
2A and 2B). Similarly, genetic reduction of Tsf1 and Tsf3, the Drosophila homologs of the iron
transport carrier Transferrin [33], improved the phenotypes of the FRDA Drosophilamodel
(Fig 2A and 2B). Tsf1 is abundant in the fly hemolymph and there is evidence that it plays a
role in immune response [34,35]. However whether it serves as an iron carrier between cells
similarly to mammalian transferrin still remains unclear (reviewed in [36]). Even less is known
about Tsf3, also homolog of transferrin, which has not been characterized yet. Interestingly, the
identification of both Tsf1 and Tsf3 as suppressors for FRDA provides indirect evidence sup-
porting their role in iron metabolism in Drosophila.

In addition to altering genes encoding iron carriers, we found that altering key regulators
of iron homeostasis can also improve the eye morphology and motor performance pheno-
types of FRDA model flies. Iron absorption and metabolism are regulated by the IRP/IRE sys-
tem. When the cells are iron depleted, Iron Regulatory Proteins (IRPs) bind to Iron
Responsive Elements (IREs) on the 5’UTR and 3’UTR mRNAs of their target proteins. Spe-
cifically, binding of IRPs inhibit the translation of the L and H chains of ferritin, the iron
exporter FPN1 and the mitochondrial aconitase, among others, whereas it increases the
transferrin receptor TfR1 and DMT1 (reviewed in [37]). Knocking down the homologs of the
IRPs in Drosophila, Irp-1A and Irp-1B [38], in the FRDA model fly rescued the eye structure
and the motor performance impairment (Fig 2A and 2B). An increase in IRP binding activity
has been described in FRDA patient lymphoblasts and a cardiac mouse model [39,40], which

percentage, taking as 100% the mean climbing speed of control flies in the vehicle medium. Statistical
significance was evaluated by ANOVA followed by Sidak test for multiple comparisons. n.s.: non-significant,
*P<0.05, **P<0.01, ***P<0.001. Error bars represent SEM.

doi:10.1371/journal.pone.0159209.g001
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Fig 2. Improvement of the eyemorphology and the motor performance phenotypes of FRDA flies by
decreased expression of genes implicated in iron homeostasis. A. Light microscope images of the
external eye of control (w1118;GMR-GAL4), fhRNAi (GMR-GAL4>UAS-fhRNAi-1) and fhRNAi/modifier flies
(GMR-GAL4>UAS-fhRNAi-1 additionally carrying the corresponding allele of the modifier) B. Motor
performance expressed as the percentage of flies that climbed passed a height of 11.5 cm. after 16 s. was
evaluated at different adult ages, from 12 to 20 days old. Control: w1118; actin-GAL4. fhRNAi: actin-
GAL4>UAS-fhRNAi-2. fhRNAi/modifier: actin-GAL4>UAS-fhRNAi-2; modifier allele. The statistical
significance between fhRNAi and fhRNAi/modifier for each day was evaluated by ANOVA followed by
Dunnet test for multiple comparisons. *P<0.05, **P<0.01, ***P<0.001. Error bars represent SEM. shRNA:
knockdown allele. LOF: loss of function allele. d: day.

doi:10.1371/journal.pone.0159209.g002
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is an indicator of a cytosolic iron depletion that contrasts with the mitochondrial iron over-
load observed in FRDA. fhRNAi-2 animals show a reduced expression of Irp-1A in iron over-
load conditions that has been suggested to represent a cellular response against the
prolonged IRP binding [41]. Similarly, the reduction in gene expression of the Drosophila
homologs of the IRP and their targets transferrin and DMT1 that we induced in the FRDA fly
model might confer a protective effect by reducing the increase in cytosolic iron induced by
IRP activation that contributes to the mitochondrial iron overload. Taken together, these
data demonstrate that modulating the expression of critical genes within key pathways in
iron homeostasis is sufficient to suppress FRDA phenotypes in Drosophila.

Knockdown of zinc transporters and copper chaperones ameliorate
FRDA fly phenotypes
As we were able to identify suppressors of FRDA phenotypes from our candidate genetic modi-
fier analysis of iron-associated genes, we then evaluated whether pathways also implicated in
disease pathogenesis, such as zinc and copper homeostasis [17], may also modify eye and
motor performance in the FRDA Drosophilamodel.

Zinc is essential as a structural or catalytic co-factor in hundreds of proteins such as the
zinc finger transcription factors. Zinc transport across membranes is mainly mediated by two
conserved gene families of zinc transporters: (1) the Zip family (Zrt-/Irt-like, solute carrier
family 39, SLC39A) function in zinc influx from the extracellular medium or vesicular organ-
elles into the cytoplasm, and (2) the ZnT family (Cation diffusion facilitator, CDF, SLC30A)
that mediate zinc efflux or compartmentalization. Members of both zinc transporter families
have been implicated in neurodegenerative diseases such as AD [42]. Among the orthologous
Zip and ZnT transporters in Drosophila [43], we found that shRNA against Zip42C.1,
Zip42C.2 and Zip88E and ZnT35C, ZnT41F and ZnT63C improved both phenotypes of
FRDA model flies (Fig 3A and 3B).

In contrast to zinc, copper is part of a considerably lower number of proteins. However, the
mechanisms for regulation of copper uptake, distribution, detoxification and efflux [44], are
tightly regulated and evolutionarily conserved due to the redox properties of copper that, when
disrupted, may lead to the generation of free radicals. Regarding copper associated-genes, we
found that reducing the levels of Atox1, a chaperone that delivers copper to ATP7 transporters
located in the trans-Golgi network [45], suppressed FRDA phenotypes in Drosophila (Fig 3A
and 3B). In addition, dCutC, a member of the Cut protein family associated with uptake, stor-
age, delivery and efflux of copper [46] was also able to suppress eye degeneration and poor
motor performance (Fig 3A and 3B). Taken together, these findings related to both zinc and
copper pathways suggest that altering the expression of genes that regulate the balance of met-
als other than iron may also be beneficial in FRDA.

MTF-1 overexpression suppress FRDA Drosophilamodel phenotypes
Cells have developed conserved mechanisms to protect themselves from the toxic effects of
metals. Under stress conditions, notably metal overload and oxidative stress, the zinc-finger
protein Metal-responsive Transcription Factor-1 (MTF-1) translocates to the nucleus and
binds to metal response elements (MREs) located in the regulatory regions of its targets
genes, such as the metal-sequestering metallothioneins (MT) [47]. MTs are small cysteine
rich proteins that bind transition metals with high affinity, thus maintaining low levels of
intracellular free metal [48].

In this study we found that MTF-1 is a modifier of FRDA fly model phenotypes, as an
enhancer of the motor impairment by loss-of-function and a suppressor when overexpressed
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Fig 3. Improvement of the eyemorphology and the motor performance phenotypes of FRDA flies by decreased
expression of genes implicated in zinc and copper homeostasis. A. Light microscope images of the external eye of
control (w1118;GMR-GAL4), fhRNAi (GMR-GAL4>UAS-fhRNAi-1) and fhRNAi/modifier flies (GMR-GAL4>UAS-fhRNAi-1
additionally carrying the corresponding allele of the modifier) B. Motor performance expressed as the percentage of flies that
climbed passed a height of 11.5 cm. after 16 s. was evaluated at different adult ages, from 12 to 20 days old. Control: w1118;
actin-GAL4. fhRNAi: actin-GAL4>UAS-fhRNAi-2. fhRNAi/modifier: actin-GAL4>UAS-fhRNAi-2; modifier allele. The statistical
significance between fhRNAi and fhRNAi/modifier for each day was evaluated by ANOVA followed by Dunnet test for multiple
comparisons. *P<0.05, **P<0.01, ***P<0.001. Error bars represent SEM. shRNA: knockdown allele. d: day.

doi:10.1371/journal.pone.0159209.g003

Metal Homeostasis Regulators Suppress FRDA Phenotypes in a DrosophilaModel of the Disease

PLOS ONE | DOI:10.1371/journal.pone.0159209 July 19, 2016 9 / 16



(Fig 4B). Similarly,MTF-1 overexpression in Drosophila has been shown to rescue the toxic-
ity induced by oxidative stress [24], the expression of human Aβ42 peptide and a parkin null
mutation [49,50]. Contrary to what we expected, knocking down the DrosophilaMTs,MtnA,
MtnB andMtnC (Fig 4A) suppress the eye phenotype of the frataxin deficient animals, as
well as the motor performance forMtnA (Fig 4B).MtnB andMtnC knockdown alleles could
not be tested for motor performance as their ubiquitous expression driven by actin-GAL4
resulted in adult lethality.

To ensure that a dilution of the GAL4 protein was not producing false positive results in
the screen, we performed a control experiment testing the expression of the fh gene in flies
carrying none, one and two UAS constructs. The strains used for this purpose were respec-
tively: (i) the control strain w1118; actin-GAL4; (ii) the FRDA model actin-GAL4>UAS-
fhRNAi-2 and (iii) the actin-GAL4>UAS-fhRNAi-2; UAS-GFP flies carrying a second UAS
construct. The expression of fh analyzed by RT-qPCR was reduced in the FRDA flies com-
pared to the controls as we had shown in previous works [14,22,25]. In addition, we observed
there was no significant difference in fh expression levels between the actin-GAL4>UAS-
fhRNAi-2 and the actin-GAL4>UAS-fhRNAi-2; UAS-GFP lines (S3 Fig). These results

Fig 4. Modification of the eyemorphology and the motor performance phenotypes of FRDA flies by altered
expression of genes implicated in metal detoxification. A. Light microscope images of the external eye of control (w1118;
GMR-GAL4), fhRNAi (GMR-GAL4>UAS-fhRNAi-1) and fhRNAi/modifier flies (GMR-GAL4>UAS-fhRNAi-1 additionally
carrying the corresponding allele of the modifier). B. Motor performance expressed as the percentage of flies that climbed
passed a height of 11.5 cm. after 16 s. was evaluated at different adult ages, from 12 to 20 days old. Control: w1118; actin-
GAL4. fhRNAi: actin-GAL4>UAS-fhRNAi-2. fhRNAi/modifier: actin-GAL4>UAS-fhRNAi-2; modifier allele. The statistical
significance between fhRNAi and fhRNAi/modifier for each day was evaluated by ANOVA followed by Dunnet test for multiple
comparisons. *P<0.05, **P<0.01, ***P<0.001. Error bars represent SEM. shRNA: knockdown allele. LOF: loss of function
allele. OE: overexpression allele. d: day.

doi:10.1371/journal.pone.0159209.g004
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demonstrate that the reduction in fh expression driven by the UAS-GAL4 system is not
affected by the presence of a second UAS construct.

Suppression of FRDA Drosophilamodel phenotypes is mediated by
reducing iron content and oxidative stress
We found that altering the expression of genes involved in iron transport, absorption and
metabolism ameliorated eye degeneration and motor performance in the FRDA fly model (Fig
2). To determine whether phenotype amelioration was correlated with changes in iron content,
we measured the levels of iron in the FRDA model flies expressing the modifier alleles for iron-
related genes. We found that three alleles corresponding to suppressors implicated in iron
metabolism normalized the levels of this metal as measured by atomic emission spectroscopy,
indicating that rescue of FRDA phenotypes can indeed be improved by reducing iron abun-
dance and restoring iron homeostasis (Fig 5A).

In addition, several members of the Zip family have been shown to transport not only zinc
but also iron [51–53]. Therefore, we tested whether the improvement in the eye and motor
phenotypes in these lines was mediated by a reduction in the iron accumulation displayed by
the FRDA flies, independently of their role in zinc transport (Fig 5B). We found that reducing
the levels of the Zip transporter fear-of intimacy (foi) and of ZnT41F reduced the iron content
in FRDA flies. The loss-of-function of foi ameliorated the motor impairment of the FRDA flies
(data not shown). According to these results, a reduced expression of at least some of the zinc
transporters is sufficient to normalize iron content. We also found that overexpression of
MTF-1 improves the iron accumulation phenotype as well. In contrast, knocking downMtnA
had no effect on the iron content (Fig 5B).

MTs have been broadly proposed to play a role in antioxidant response [54,55]. However
there is evidence indicating that in some cases such as in presence of H2O2 they can generate
hydroxyl radicals [56–58]. To determine the effect of altering the metal detoxification pathway
on the levels of oxidative stress of the FRDA flies, we measured the levels of malondialdehyde
(MDA) + 4- hydroxyalkenals (HAE). Similar to previous findings [25], we confirmed that the
amount of MDA + HAE is indeed higher in fhRNAi flies in comparison with controls (Fig 5C).
Interestingly, we found that overexpressingMTF-1 was sufficient to normalize oxidative stress
levels (Fig 5C). Reducing the expression of MTs in FRDA flies also improved the oxidative
stress phenotype, indirectly supporting their possible role as prooxidants, at least in a frataxin
deficient scenario. Taking together the results on the iron and oxidative stress levels, the benefi-
cial effect of overexpressingMTF-1may not be mediated by the MTs but most probably
through reducing the iron accumulation.

In conclusion, these findings together with the rescue data related to iron-associated
suppressors (Fig 2) demonstrate that reducing the iron accumulation through a genetic
strategy in FRDA model flies has potential therapeutic benefit. Although direct reduction in
iron levels by the use of iron chelators has been only relatively successful in patients [15,16],
our results support the notion that improvements in FRDA phenotypes can be mediated
directly through pathways regulating iron homeostasis. We also show for the first time that
alteration of genes implicated in copper and zinc homeostasis and metal detoxification, as
well as copper and zinc chelation also constitute potential therapeutic targets for the disease.
Overall, these findings provide the framework for future studies focused on improving
metal not only iron homeostasis, either genetically or pharmacologically, in FRDA animal
models.
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Fig 5. Genetic modifiers of the FRDA phenotypes reduce iron content and oxidative stress. A and B.
Increased iron levels are rescued by modification of genes implicated in iron (A) and zinc homeostasis and
metal detoxification (B). Total iron content was measured by atomic emission spectroscopy and expressed in
percentage relative to the controls. C. Reduction of the increased levels of MDA+HAE by metal detoxification
genes. The results are expressed in nmol of MDA+HAE per μg of protein. Error bars represent SEM. Control:
w1118; actin-GAL4. fhRNAi: actin-GAL4>UAS-fhRNAi-2. fhRNAi/modifier: actin-GAL4>UAS-fhRNAi-2;

Metal Homeostasis Regulators Suppress FRDA Phenotypes in a DrosophilaModel of the Disease

PLOS ONE | DOI:10.1371/journal.pone.0159209 July 19, 2016 12 / 16



Supporting Information
S1 Fig. Fe levels in the FRDAmodel flies treated with with the Zn chelator TPEN and the
Cu chelators BCS and TTM are not altered. Total iron content was measured using the iron
assay kit (BioVision) as we previously reported in [14]. The results are expressed in percentage,
taking as 100% the Fe content of flies in the vehicle medium. Error bars represent SEM. The
statistical significance between the samples was evaluated by ANOVA followed by Sidak test
for multiple comparisons.
(TIF)

S2 Fig. Cu,Zn-SOD1 activity after treatment with the Zn chelator TPEN (A) and Cu chela-
tors BCS and TTM (B,C).We found a significant enzyme activity reduction for control and
fhRNAi-2 flies for BCS and no change for TPEN and TTM. The results are expressed in per-
centage, taking as 100% the Cu,Zn-SOD1 activity of control flies in the vehicle medium in each
assay. Error bars represent SEM. The statistical significance between the samples was evaluated
by ANOVA followed by Sidak test for multiple comparisons. �P<0.05, ��P<0.01.
(TIF)

S3 Fig. fhmRNA levels are not altered by the presence of a second UAS construct. Three fly
strains carrying different number of UAS constructs were used: w1118; actin-GAL4 (control);
actin-GAL4>UAS-fhRNAi-2 (fhRNAi) and actin-GAL4>UAS-fhRNAi-2;UAS-GFP (fhRNAi;
UAS_GFP) carrying a second UAS construct. The results are expressed as the fold change of
gene expression relative to control levels. Error bars represent SEM. The statistical significance
between the samples was evaluated by ANOVA followed by Dunnet test for multiple compari-
sons. n.s.: non-significant, �P<0.05.
(TIF)

S1 Table. Genotypes of the Drosophila strains corresponding to genetic interactors impli-
cated in metal homeostasis.
(PDF)
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