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Abstract
Obesity is a typical metabolic disorder resulting from the imbalance between energy intake

and expenditure. American Indians suffer disproportionately high rates of obesity and dia-

betes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic

American Indians participating in the Strong Heart Family Study. Using an untargeted liquid

chromatography–mass spectrometry, we detected 1,364 distinctm/z features matched to

known compounds in the current metabolomics databases. We conducted multivariate

analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators.

After adjusting for covariates and multiple testing, five metabolites were associated with

body mass index and seven were associated with waist circumference. Of them, three were

associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty

amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are

amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanola-

mide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine)

have been previously implicated in obesity or its related pathways. Future studies are war-

ranted to replicate these findings in larger populations or other ethnic groups.

Introduction
Overweight and obesity have become global epidemics [1]. Although substantial progress has
been made to identify genetic and environmental factors, the mechanisms underlying obesity
remain incompletely understood [2]. A comprehensive understanding of its metabolic path-
ways is critical for developing effective preventive and therapeutic strategies against obesity
and its related conditions.
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American Indians suffer disproportionately higher rates of obesity and diabetes than other
ethnic groups. For instance, the prevalence of obesity was over 40% in American Indians com-
pared to about 27% in non-Hispanic whites [3]. In addition, American Indians are 2 to 3 times
more likely to have diabetes than non-Hispanic whites [4]. The prevalence of heart disease
among American Indians was also 20% higher than all other U.S. races [4], highlighting the
importance of studying this high risk population.

Obesity is typically a metabolic disorder resulting from the imbalance between energy intake
and expenditure [5]. Experimental research has demonstrated that altered levels of metabolites
in multiple metabolic pathways were associated with obesity, e.g., glucose metabolism [6, 7],
lipid metabolism (cholesterol, betaine, acylcarnitines, and carnitine) [8], amino acids (leucine,
alanine, ariginine, lysine, and methionine) [8], tricarboxylic acid cycle (pyruvate, citrate, acet-
oacetate, and acetone) [7], cholines [9], and creatine metabolism (creatine and creatinine) [10].
Altered metabolic profiles, e.g., branched chain amino acids (BCAAs) [11, 12], glutamine, gly-
cine [13], and acylcarnitines [12, 14] have also been associated with obesity and diabetes[15] in
human populations. However, most existing studies employed targeted approaches by focusing
on a subset of preselected metabolites, but this strategy has limited ability to discover novel dis-
ease-related metabolites [11–13]. In addition, previous studies were primarily conducted in
European populations. To date, no study has examined the metabolic profile of obesity in
American Indians, an ethnically important but traditionally understudied population with
high risk of obesity and diabetes [11, 12].

Metabolomics is an emerging high-throughput ‘omics’ technology that can simultaneously
quantify a large number of small metabolites in a biological sample. These metabolites serve as
substrates or products in metabolic pathways, and are particularly suitable for studying meta-
bolic disorders such as obesity or diabetes. A systematic metabolic profiling using an untar-
geted metabolomics approach provides a powerful tool to identify novel metabolites and
metabolic pathways underlying obesity and related metabolic conditions. In this study, we
used an untargeted high-resolution liquid chromatography-mass spectrometry (LC-MS) to
identify metabolic profiles for obesity in American Indians participating in the Strong Heart
Family Study (SHFS).

Material and Methods

Study participants
All study participants were American Indians participating in the SHFS, a family-based pro-
spective study of genetic, metabolic, and behavioral factors for cardiovascular disease (CVD),
diabetes, and their risk factors. A detailed description of the study design and methods of the
SHFS was published previously [16]. Briefly, a total of 3,665 tribal members (aged 14 years and
older) from 94 multiplex families were examined in 2001–2003. All living participants were re-
examined about every 5 years and are currently being followed through 2018.

The current study included 431 normoglycemic participants who attended the SHFS clinical
examination in 2001–2003. They were randomly selected from a total of 2,117 participants
who were free of diabetes and overt CVD at the SHFS clinical examination in 2001–2003. Par-
ticipants on medications were also excluded from this analysis. Details for the study design and
inclusion/exclusion criteria has been described previously [17]. Except for body mass index
(BMI) and waist circumference, participants included in the current analysis were not appre-
ciably different from those not included (S1 Table). The SHFS protocol was approved by the
Oklahoma Center Indian Health Service institutional review board (IRB), the Dakota Center
Indian Health Service IRB, the Arizona Center Indian Health Service IRB, and the MedStar
Health Research Institute IRB. It was also approved by the American Indian communities.
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Informed consent was obtained from each participant or guardians of participants younger
than 18 years of age.

Obesity measurements
Anthropometric measurements including body weight, body height, and waist circumference
were conducted with participants wearing light clothing and without shoes using standard
methods by trained study staff. BMI was calculated using body weight in kilograms divided by
height in meters squared. Waist circumference was measured at the level of the umbilicus
while the participant was supine. Participants were classified into three groups according to the
WHO definition: normal weight (BMI< 25 kg/m2), overweight (25 kg/m2 � BMI< 30 kg/m2)
and obesity (BMI� 30 kg/m2). Abdominal obesity was defined as a waist circumference
greater than 102 cm in men or greater than 88 cm in women [18].

Assessment of obesity risk factors
Information on demographics, socioeconomics, and medical history was collected using stan-
dard questionnaires. Lifestyle factors including smoking, alcohol intake, physical activity, and
habitual diet were examined by personal interview. Smokers were classified as current smokers,
former smokers, and nonsmokers. Participants were categorized as current drinkers, former
drinkers, and never drinkers by self-reported history of alcohol intake, the type of alcoholic
beverages consumed, frequency of alcohol consumption, and average quantity consumed per
day and per week. Physical activity was assessed by the mean number of steps per day calcu-
lated by wearing a pedometer for 7 consecutive days. Dietary intake was assessed using the
block food frequency questionnaire [19]. Fasting plasma glucose, insulin, and lipids were mea-
sured by standard methods which were published previously [20]. Insulin resistance was
assessed according to the formula: HOMA-IR = fasting glucose (mg/dL) × insulin (μU/mL)/
405 [21].

Metabolic profiling by LC-MS
Data acquisition. Relative abundance of fasting plasma metabolites was determined using

an untargeted high-resolution LC-MS. Details for laboratory protocols have been previously
validated and described elsewhere [22–26]. Briefly, 65 μL plasma sample aliquots were treated
with 130 μL acetonitrile (2:1 v/v) containing 3.5 μL of an internal isotopic standard mix [26],
placed on ice for 30 min, and centrifuged for 10 min (16,100 x g at 4°C) to remove protein. The
supernatant was then removed and placed into autosampler vials. Mass spectral data were
acquired using 10 μL of supernatant with a 10 min formic acid/acetonitrile gradient at a flow
rate of 0.35 mL/min for the initial 6 min and 0.5 mL/min for the remaining 4 min on a Thermo
LTQ-Velos Orbitrap mass spectrometer (Thermo Fisher, San Diego, CA). The first 2-min
period consisted of 5% solution A [2% (v/v) formic acid in water], 60% water, and 35% acetoni-
trile. The final 4-min period was maintained at 5% solution A in acetonitrile. Based on previous
research [25], this protocol allows for the measurement of metabolites differing by more than
seven orders of magnitude in abundance, and thus we should be able to detect metabolites with
a wide range of abundances. The mass spectrometer was set to collect metabolic profile from
mass/charge ratio (m/z) 85 to 2000 in a positive ionization mode. Three technical replicates
were run for each sample using C18 chromatography.

In this study, we used a positive electrospray ionization because previous studies have
shown that this mode provides accurate mass matches to metabolites in most pathways
included in the Kyoto Encyclopedia of Genes and Genomes (KEGG) human metabolites
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database [27]. All samples included 14 stable isotopes: [13C6]-D-glucose, [
15N]indole,

[2-15N]-L-lysine dihydrochloride, [13C5]-L-glutamic acid, [13C7]-benzoic acid, [3,4-
13C2]cho-

lesterol, [15N]-L-tyrosine, [trimethyl-13C3]caffeine, [
15N2]uracil, [3,3-

13C2]cystine, [1,2-
13C2]

palmitic acid, [15N, 13C5]-l-methionine, [15N]choline chloride, and 2’-deoxyguanosi-
ne-15N2,

13C10-5’-monophosphate. Quality control was performed based on these internal stan-
dards to evaluate mass accuracy in ppm, reproducibility of detection of internal standards and
total ion intensity across all samples. To improve data quality, additional filtering steps, as
described below, were also applied based on missing values and coefficient of variation (CV).

Data pre-processing and quality control. Peak extraction, data alignment, and feature
quantification were performed using the adaptive processing software apLCMS, a computer
package designed for high-resolution metabolomics data analysis [28]. Data filtering, normal-
ization, and transformation were performed using the computer package MSPrep [29]. Miss-
ing data were imputed using the half of the minimum observed value within each metabolite
across all samples. Metabolites with extremely high analytical variance, e.g., CV of technical
replicates >10%, in our samples were excluded from further analyses. Batch-effect was cor-
rected using the empirical Bayes method ComBat implemented in MSPrep [30]. Potential
metabolite identities were determined by performing an online search (10 ppm accuracy)
against the Metlin database, the Human Metabolomics Database [31], and the LIPID MAPS
structure database [32]. Metabolite annotations were classified into different confidence
levels based on the recommended confidence levels assignment for metabolite identification
[33].

Statistical analysis
Prior to statistical analyses, abundance levels of all detected metabolites were log-transformed
and standardized to unit variance and zero mean (z-scores). Other continuous covariables
were also standardized to z-scores.

To examine the association of metabolites with continuous obesity indices (e.g., BMI or
waist circumference), we constructed generalized estimating equation (GEE) models, adjusting
for age, sex, study sites, lifestyle factors (smoking, alcohol drinking, and physical activity), and
socioeconomic status (education level). The associations of each metabolite with obesity (yes/
no) or abdominal obesity (yes/no) were also tested by GEE. The relatedness between family
members was accounted for in GEE models. In addition, we further controlled for dietary
intake of total daily calories, protein and fat in the GEE models. We also adjusted for insulin
resistance in these models because of the strong correlation between obesity and diabetes.
Because of the potential high correlations among metabolites, we used the false discovery rate
to account for multiple testing, and a q-value< 0.05 was considered statistically significant
[34].

To test the combined effects of the metabolites showing significant associations with obesity,
we constructed a multi-metabolites score using the sum of abundance levels of these metabo-
lites weighted by their regression coefficients obtained from the GEE models. The association
between this multi-metabolite score and each obesity measure was tested using GEE, adjusting
for covariates listed above. To identify metabolic profiles associated with obesity, we conducted
sparse partial least-squares discriminant analysis (sPLS-DA) using the computer package
‘mixOmics’ implemented in R. The sPLS-DA is a supervised, multivariate technique to deter-
mine metabolic groups associated with a disease. Compared to sparse discriminant analysis or
other wrapper approaches, sPLS-DA is computationally efficient and facilitates interpretability
of the results via graphical outputs. The sPLS-DA analysis also allows for adjustments of
covariates.
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Results
Table 1 shows the clinical characteristics of study participants attending the SHFS clinical
exam in 2001–2003. Compared to participants with normal body weight, those who were over-
weight or obese had higher levels of triglyceride, total cholesterol, low-density lipoprotein cho-
lesterol, fasting glucose, fasting insulin, and insulin resistance, but lower levels of high-density
lipoprotein cholesterol and physical activity. There were no significant differences between the
three groups in smoking, drinking, or dietary intake of total daily calories, protein or fat.

A total of 1,364 distinctm/z features (CV� 10%) were detected and matched to known
compounds in the current metabolomics databases. Five metabolites were significantly associ-
ated with BMI and seven were significantly associated with waist circumference. Among these
significant metabolites, three were associated with both BMI and waist circumference [oleoy-
lethanolamide (OEA), kynurenine, and mannosyl-diinositol-phosphorylceramide].

Table 2 shows the multivariate associations between significant metabolites and BMI. Of
the five metabolites associated with BMI, four metabolites were positively, whereas one was
negatively, associated with BMI. In terms of chemical species, one metabolite is amino acids
and the other four metabolites are lipids, e.g., fatty amides, sphingolipids, prenol lipids, or ste-
roid derivatives. S2 Table shows the multivariate-adjusted odds ratios (ORs) for obesity status
(yes/no) associated with one standard deviation (SD) change in metabolites. The combined
effects of these positively associated metabolites on obesity were also statistically significant.
Additional adjustments for insulin resistance and dietary intake of fat, protein, and total calo-
ries did not appreciably attenuate the observed associations (Table 2 and S2 Table).

Table 3 presents the multivariate-adjusted association of metabolites with waist circumfer-
ence. Of the seven identified metabolites associated with waist circumference, six were

Table 1. Clinical characteristics of the study participants according to obesity (N = 431).

Normal Overweight Obese P for trenda

N 77 97 257 -

Age, years 28.58±13.59 36.99±12.24 34.53±13.25 0.13

Female, % 61.84 59.79 67.32 0.86

Education (high school or higher), % 44.80 68.00 65.70 <0.0001

Body mass index, kg/m2 22.17±2.14 27.56±1.36 38.01±6.67 <0.0001

Waist circumference, cm 80.59±7.84 92.96±6.88 115.43±15.28 <0.0001

Current smoker, % 35.53 40.21 34.24 0.44

Current drinker, % 64.47 68.04 67.32 0.69

Physical activity, steps/d 7683±4934 6951±4024 5252±3269 0.01

Dietary protein intake, g/d 96.78±91.35 98.54±86.54 94.36±77.65 0.59

Dietary fat intake, g/d 120.71±100.54 133.09±111.38 122.41±92.79 0.32

Caloric intake, Kcal/d 2843.99±2301.01 2935.79±2342.15 2797.07±1953.04 0.52

Total triglyceride, mg/dL 99.60±37.06 147.72±77.91 154.20±84.25 <0.0001

Total cholesterol, mg/dL 163.86±32.88 187.48±35.80 176.20±31.99 0.009

HDL-cholesterol, mg/dL 58.61±19.22 53.30±15.21 47.64±12.57 <0.0001

LDL-cholesterol, mg/dL 85.41±27.42 105.05±29.71 98.36±27.95 0.05

Fasting glucose, mg/dL 87.58±6.36 90.71±6.94 92.20±7.19 <0.0001

Fasting insulin, uU/mL 8.82±7.51 10.89±5.98 20.28±13.47 <0.0001

HOMA-IR 1.91±1.65 2.46±1.40 4.63±3.11 <0.0001

Abbreviations: HOMA-IR, homeostatic model assessment of insulin resistance.
a Family relatedness was adjusted using GEE models.

doi:10.1371/journal.pone.0159548.t001
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positively whereas one was negatively associated with waist circumference. S3 Table shows the
ORs for abdominal obesity (yes/no) associated with a 1-SD change in metabolites. Most of the
metabolites associated with waist circumference belong to lipids, e.g., fatty amides, prenol lip-
ids, and sphingolipids. Others are amino acids or peptides.

To identify obesity-related metabolic patterns and to examine the discriminant ability of the
identified metabolites in differentiating obese vs. nonobese individuals, we conducted multivar-
iate analysis by sPLS-DA. Fig 1 demonstrates that participants who were obese, overweight, or
normal body weight could be classified into three separate groups using the five metabolites
significantly associated with BMI. Fig 2 demonstrates that the seven metabolites associated
with waist circumference could also separate participants into two groups: abdominal obesity
vs. non-obese. These results revealed the different metabolic profiles of obese vs. nonobese
individuals, and suggest that the identified metabolites could be used to differentiate obese vs.
nonobese participants.

Discussion
Using an untargeted high-resolution LC-MS, we demonstrated that obese vs. nonobese Ameri-
can Indian participants have clearly different metabolic profiles. Specifically, we identified nine
plasma metabolites significantly associated with BMI or waist circumference or both. Of these,

Fig 1. Separation of individuals with normal bodyweight, overweight or obesity using a multi-
metabolites score comprising of all metabolites significantly associated with BMI using sparse partial
least-squares discriminant analysis.

doi:10.1371/journal.pone.0159548.g001
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six metabolites belong to the super class of lipids, including fatty acid amides, prenol lipids,
sphingolipids, and steroid derives, and the remaining three are amino acids or peptides. Some
of the metabolites, such as OEA, pristanic acid, mannosyl-diinositol-phosphorylceramide, and
glutamate, have been previously implicated in obesity-related metabolic pathways [35–39].
Other identified metabolites could be involved in as yet unknown metabolic pathways related
to obesity. Of note, the identified associations between metabolites and obesity were indepen-
dent of known obesity indicators including age, lifestyle, dietary energy intake and insulin
resistance. To the best of our knowledge, this is the first study to investigate the metabolic pro-
files of obesity in American Indians.

In line with previous studies, we found that an elevated level of plasma OEA was positively
associated with obesity (both BMI and waist circumference). First, OEA is a biologically active
lipid amide synthesized by small intestinal enterocytes during absorption of dietary fat [37].
The release of OEA reduces food intake and induces satiety through activating peroxisome pro-
liferator-activated receptor-α (PPAR-α), which is a transcription factor that belongs to the
superfamily of nuclear hormone receptors [40]. PPAR-α is highly expressed in brown adipose
tissue and the liver. It functions as a lipid sensor in the liver and recognizes and responses to
the influx of fatty acids by stimulating the transcription of numerous genes related to lipid
metabolism in the liver, including genes involved in mitochondrial β-oxidation, fatty acid

Fig 2. Separation of individuals with normal body weight versus those with abdominal obesity by a
multi-metabolites score comprising of all metabolites significantly associated with waist
circumference using sparse partial least-squares discriminant analysis.

doi:10.1371/journal.pone.0159548.g002
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uptake and binding, and lipoprotein assembly and transport [41]. The activation of PPAR-α
increases hepatic fatty acid oxidation and decreases the levels of circulating triglycerides that
are responsible for adipose cell hypertrophy and hyperplasia, and thus reduces body weight
[42]. Second, the identified association between OEA and obesity in our study is in agreement
with evidence from experimental studies. For example, in one study, administration of OEA
inhibited weight gain in rats [36, 43]. Another study showed that PPARα-deficient mice devel-
oped abdominal obesity [44]. Moreover, OEA levels in multiple tissues (e.g., liver, pancreas,
adipose tissue) were found to be higher in obese rats compared to normal ones [45]. Third, a
recent study in human has also shown that plasma OEA was positively correlated with BMI in
obese individuals (BMI� 30 kg/m2), although no significant correlation was identified in non-
obese individuals [37]. While our finding for the association of OEA with obesity corroborates
previous evidence and further highlights the potential importance of OEA in body weight regu-
lation or obesity, the precise mechanism underlying the relationship between OEA and obesity
remains to be determined.

In this study, we also found a positive association of pristanic acid with abdominal obesity
in American Indians. Pristanic acid is a branched chain fatty acid that an individual can obtain
through the consumption of dairy products, ruminant animal fats, and certain fish [46]. Prista-
nic acid is one of the natural ligands of PPARα [39], and represents the final product of alpha-
oxidation of phytanic acid that accumulates in a variety of metabolic disorders [47, 48]. In our
study, an elevated level of plasma pristanic acid was significantly associated with abdominal
obesity. As pristanic acid could serve as an efficient agonist of PPARα, it is possible that an
increased level of pristanic acid could result in decreased activity of PPARα [38], which in turn
causes dysregulation of lipid metabolism and body weight [42, 49], thereby contributing to
obesity pathogenesis. Further research is warranted to confirm or refute this hypothesis.

Besides OEA and pristanic acid as discussed above, we also found an association of sphingo-
lipids (mannosyl-diinositol-phosphorylceramide) with obesity. Sphingolipids are constituents
of cellular membranes that have been involved in cellular signaling processes, vesicle traffick-
ing, and membrane integrity [50, 51]. Previous metabolomic studies have reported that a high
level of serum sphingomyelin was associated with obesity in human [52]. Moreover, several
plasma sphingolipid chemicals were found to be predictive of cardiovascular and total mortal-
ity [53], suggesting a potential role of these lipids in obesity and related conditions.

Amino acids have been previously implicated in obesity [11, 12] and diabetes [12, 15]. In
this study, we also detected associations of several amino acids with obesity indices. For
instance, an elevated level of plasma glutamate was positively associated with waist circumfer-
ence in our study population. This finding is in agreement with a previous study showing that
glutamate can distinguish lean from obese individuals [12]. Glutamate is an excitatory neuro-
transmitter in the mammalian central nervous system, and plays an important role in both
physiological and pathological processes [35]. Animal studies have shown that monosodium
glutamate intake increases the risk of obesity [54], probably through increasing the palatability
of food by disrupting the hypothalamic signaling cascade of leptin action [15, 55].

In line with previous research, we also found that kynurenine was significantly associated
with both BMI and waist circumference in our study population [56, 57]. Kynurenine is a deg-
radation product of the amino acid tryptophan. The kynurenine pathway is the main route of
tryptophan degradation.[58] The enzyme indoleamine 2,3-dioxygenase (IDO) is the major
enzyme in the kynurenine pathway that degrades tryptophan to kynurenine. IDO is expressed
in many tissues including the adipose tissue and could be induced by pro-inflammatory cyto-
kines, such as TNF-α, IL-1, and IFN-γ.[58] It is known that various pro-inflammatory cyto-
kines could be synthesized and released in human adipose tissue.[59] IDO gene expression is
increased in the adipose tissue of individuals with obesity.[60] Serum kynurenine/tryptophan
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ratio reflects the activity of IDO and this ratio is increased in obesity.[60] Increased IDO activ-
ity, essentially caused by chronic immune-mediated inflammation, has been suggested as a key
component in the initiation and propagation of obesity. One of the possible mechanisms is
that reduced tryptophan mediated by IDOmay reduce serotonin production and cause mood
disturbances, depression, and impaired satiety ultimately leading to increased caloric uptake
and obesity [61].

Previous human studies have reported associations of branched chain amino acids (BCAAs,
leucine/isoleucine and valine) with obesity [62], insulin resistance [12, 63], and diabetes [15].
Our study, however, did not detect a significant association of BCAAs with obesity indices.
This discrepancy could be attributed to the differences in genetic background and/or lifestyle
factors between American Indians and other ethnic groups included in previous studies,
because these factors could potentially lead to population-specific metabolic signatures. The
lack of replication could also result from the inappropriate exclusion of a large number of
metabolites (false negatives) due to multiple testing corrections. Future large-scale metabolo-
mics studies should address this discrepancy.

In addition to the above discussed metabolites, we also found associations of certain prenol
lipids (e.g., auxin A and spirolide E), steroid derivatives (e.g., 12-ketoporrigenin), and peptides
(e.g., Gly-Val-Arg-Gly) with obesity measures. Biological functions of these metabolites are
still unknown. Although these associations need further replication, our findings may unravel
novel metabolic pathways implicated in obesity pathogenesis.

BMI is a measure of general obesity, whereas waist circumference reflects abdominal obe-
sity. Waist circumference reflects intra-abdominal fat accumulation, a predictor of adverse
metabolic or cardiovascular outcomes independent of BMI [64]. In this study, we identified
that several metabolites associated with both types of obesity, but differential metabolomic pro-
files of general obesity vs. abdominal obesity were also identified. These findings may suggest
distinct but overlapping pathophysiological mechanisms between general obesity and abdomi-
nal obesity. Our results corroborate the differential effects of general vs. abdominal obesity on
health outcomes [65].

Our study has several limitations. First, metabolites identified in our study are matched to
molecular entities within the current metabolomics databases. The precise structures of these
newly detected metabolites need to be determined in future studies. Second, although highly
correlated, relative abundances instead of absolute concentrations were used as a surrogate for
plasma metabolite levels. Third, although we controlled many known risk factors including
dietary factors, residual confounding cannot be entirely excluded. Fourth, given the strong cor-
relation between obesity and diabetes, it is highly likely that the identified obesity-associated
metabolites might be also related to insulin resistance, a common mechanism underlying both
obesity and diabetes. In this study, we additionally adjusted for insulin resistance in the model.
It shows the association of the identified metabolites with obesity slightly attenuated but
remained statistically significant. Further studies are necessary to clarify the roles of these
metabolites in the pathogenesis of obesity and even other diseases. Finally, our results are very
preliminary and should not be overinterpreted. In addition, the directions of causality between
metabolites and obesity could not be determined in the cross-sectional analysis of the current
study. Therefore, replication in larger populations and/or other ethnic groups and even longi-
tudinal studies are warranted. The identified metabolites need to be confirmed by more
advanced downstream analyses. Nonetheless, this is the first study to report metabolic profiles
of obesity in American Indians. The untargeted high-resolution metabolomics approach
enabled a comprehensive analysis of metabolic markers for obesity. The identification of chem-
icals with known functions involved in body weight regulation, such as OEA, enhances the
confidence that some of our findings may represent true metabolites associated with obesity.
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Moreover, because some obesity-related metabolites identified in our study were also reported
to be associated with obesity in other ethnic groups, it seems plausible to hypothesize that our
findings could be generalized, at least partially, to other ethnicities.

In summary, this is the first study to identify novel metabolites and metabolic profiles of
obesity in American Indians. Our findings highlight the importance of disturbed metabolic
pathways, especially dysregulation of lipids, in body weight regulation or obesity pathogenesis.
Replication in other populations and functional studies are required to confirm these findings.
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