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Abstract

 Background—Understanding individual patient host-response to viruses is key to designing 

optimal personalized therapy. Unsurprisingly, in vivo human experimentation to understand 

individualized dynamic response of the transcriptome to viruses are rarely studied because of the 

obviously limitations stemming from ethical considerations of the clinical risk.

 Objective—In this rhinovirus study, we first hypothesized that ex vivo human cells response to 

virus can serve as proxy for otherwise controversial in vivo human experimentation. We further 

hypothesized that the N-of-1-pathways framework, previously validated in cancer, can be effective 

in understanding the more subtle individual transcriptomic response to viral infection.

 Method—N-of-1-pathways computes a significance score for a given list of gene sets at the 

patient level, using merely the ‘omics profiles of two paired samples as input. We extracted the 

peripheral blood mononuclear cells (PBMC) of four human subjects, aliquoted in two paired 

samples, one subjected to ex vivo rhinovirus infection. Their dysregulated genes and pathways 

were then compared to those of 9 human subjects prior and after intranasal inoculation in vivo 
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with rhinovirus. Additionally, we developed the Similarity Venn Diagram, a novel visualization 

method that goes beyond conventional overlap to show the similarity between two sets of 

qualitative measures.

 Results—We evaluated the individual N-of-1-pathways results using two established cohort-

based methods: GSEA and enrichment of differentially expressed genes. Similarity Venn 
Diagrams and individual patient ROC curves illustrate and quantify that the in vivo dysregulation 

is recapitulated ex vivo both at the gene and pathway level (p-values≤0.004).

 Conclusion—We established the first evidence that an interpretable dynamic transcriptome 

metric, conducted as an ex vivo assays for a single subject, has the potential to predict 

individualized response to infectious disease without the clinical risks otherwise associated to in 
vivo challenges. These results serve as foundational work for personalized “virograms”.

Keywords

personal transcriptome; rhinovirus; PBMC; genomic response; virogram; Similarity Venn 
Diagrams

 Introduction

Transcriptomic analysis of the response to a virus can be used for various purposes, 

involving the understanding of its relationship to disease progression or severity. In the 

context of respiratory diseases such as Influenza, Human rhinovirus (HRV), or Respiratory 

syncytial virus (RSV), many studies involve finding the viral response of infected hosts. 

However, in many cases, the course of a virus infection may be relatively short. This implies 

high difficulties for obtaining genetic data in a timely manner. Probably for ethical reasons, 

most of those studies rely on animal models [1–3] infected with virus to assess the within-

host evolution of the virus. Other studies overlook the progression of already infected 

patients [4]. Less than five studies go as far as inoculating healthy human patients with those 

viruses to study in vivo the progression of the disease [5] and procuring transcriptomes. 

Although ex vivo experiments are often undertaken before and after virus infection, they are 

usually performed for the analysis of a handful of single-locus gene expression. Few human 

cell transcriptome derived from ex vivo with paired samples before and after virus infection 

were available and deposited [6] in the Gene Expression Omnibus database (GEO).

Interestingly, antibiograms are well-established assays that provide precision antibiotherapy 

to patients. They involve cultivating bacteria infecting a specific organ of a patient, and 

subjecting them to a number of tests to characterize the pathogen and its resistance to a 

number of distinct antibiotics. In contrast, the field of infectious disease has not produced 

similar assays to test the host (human subject) exposed to viruses. Therefore, there is an 

opportunity to improve precision medicine by establishing the personal response to viruses 

that may impact one’s disease treatment (e.g. Chronic Obstructive Lung Disease). We 

conceived the following ex vivo assays and expression analysis methods in order to provide 

tools that would allow systematic non-invasive investigations of the dynamic transcriptome 

response to viruses. As viruses infect cells, the viral transformation of these cells caused by 

the introduction of viral DNA or RNA is associated with substantial regulatory changes 
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leading to favoring virus replication over normal cell functions. We thus use the dynamics 

transcriptomic response as a proxy for the sum of all upstream regulatory disruption caused 

by the viral infection, an assessment of the viral regulome specific to a personal genome – or 

simply said: “virogram”.

In this study, we aimed at analyzing the transcriptomic response of ex vivo virus-exposed 

Peripheral Blood Mononuclear Cells (PBMC) human cells, and compare it to the in vivo 
response in the same conditions. We hypothesized that ex vivo analyses can recapitulate in 
vivo dysregulation in this experimental context. To this end, we used well-established 

enrichment methodologies such as GSEA, to assess the pathways at play in presence of a 

virus. However, those methods of analysis use cohort-based models, which create predictive 

models based on average/commonly found features across patients, thus overlooking 

individualized transcriptomic response to stressors that may reveal the summative effect of 

common as well as private (i) genetic polymorphisms and (ii) epigenetic modifications.

N-of-1-pathways is a framework dedicated to the personalized medicine field that we 

initially proposed in the context of cancer analyses [7, 8]. It was successfully applied to lung 

adenocarcinoma visualization of single patient survival and proved to unveil biologically 

significant dysregulated pathways by using only one pair of samples taken from the same 

patient in two different conditions [7] (such as before and after treatment or uninvolved vs 

tumoral cells). It was also applied in ovarian and breast cancer cell lines to confirm the 

unsupervised identification of dysregulated pathways after a knockdown of PTBP1 and 

PTBP2 genes that control alternative splicing [8]. In the current study, we aimed at showing 

that the same N-of-1-pathways framework can be used in very different conditions than 

cancer such as the transcriptomic response of virus stress.

One component of N-of-1-pathways design relies on the calculation of the semantic 

similarity of pathways. Therefore, we focused our analyses on the Gene Ontology (GO) 

database, which regroups genes into biologically meaningful gene sets, connected through 

an ontology tree. Several tools were developed for analyzing those “GO Terms”, involving 

measures of similarity based on the topology of the ontology. In this paper, we propose a 

novel Similarity Venn Diagram representation for helping readers to understand not only the 

overlap between two lists of GO Terms, but also their similarity, based on an information-

theory equation measuring the semantic similarity between two GO Terms. Further, we 

demonstrated that this representation could also be used in a more general comparison of 

two lists where a measure of similarity exists for comparing its elements.

Therefore, the major goals of this study are i) to characterize the mechanistic response to 

rhinovirus, ii) to validate our patient-centered framework, N-of-1-pathways, in alternative 

conditions, and iii) to extend the representation of classic Venn diagrams from simple 

overlap to more complex similarity comparisons.
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 Materials and methods

 PBMCs incubated with viruses that generated the “Human ex vivo infected” dataset

The live PBMCs had been isolated from blood samples collected from four human subjects 

under a protocol approved by The University of Arizona Internal Review Board. Whole 

blood was obtained from donors and placed in Becton Dickenson’s CPT tubes that were 

centrifuged according to standard protocols to obtain PBMCs, and then each aliquoted in 

two paired samples. Each sample of the pair was subsequently exposed to and incubated 

with either (i) Human Rhinovirus serotype 16 (ex vivo infected sample) or to (ii) sterile 

medium (control ex vivo non-infected sample) and incubated at 37°C in 5% CO2 for 24 

hours. This protocol resulted in 4 ex vivo infected + 4 ex vivo controls = 8 paired samples. 

RNA was extracted from these samples, amplified, tagged, and hybridized on Affymetrix 

Human Gene 1.0 ST microarrays according to standard operating procedures. Gene 

expression data were submitted to Gene Expression Omnibus (GEO; GSE60153, http://

www.ncbi.nlm.nih.gov/geo/) and thus generated the “Human ex vivo infected” dataset 

(Table 1).

 Dataset and preprocessing

Robust Multiple-array Average (RMA) normalization [9] was applied on each patient data 

independently (2 paired samples at a time to avoid bias in the single-patient experiments) 

using Affymetrix Power Tools (APT) [10]. We also used an external dataset downloaded 

from the GEO repository on 07/14/2014 comprising a cohort of 20 healthy patients who 

were inoculated with the rhinovirus. Blood samples were taken before inoculation and 

during the peak of symptoms on the disease. Among those 20 patients, 10 were defined as 

symptomatic and the other 10 as asymptomatic. We used the 9 microarrays available paired 

data from the symptomatic patients and normalized them using the same RMA 

normalization technique. Table 1 recapitulates the content of each of those two datasets.

 Gene sets

We aggregated genes into pathway-level mechanisms using the org.Hs.eg.db package [11] 

(Homo Sapiens) of Bioconductor [12], available for R statistical software [13]. We used two 

different gene sets databases:

1. Gene Ontology (GO) Biological Processes (GO-BP) [14, 15]. 

Hierarchical GO terms were retrieved using the org.Hs.egGO2ALLEGS 
database (downloaded on 05/15/2013), which contains a list of genes 

annotated to each GO term (gene set) along with all of its child nodes 

according to the hierarchical ontology structure.

2. KEGG pathways [16, 17] were retrieved using the org.Hs.egPATH 
database (download 05/15/2013).

Gene sets included in the study comprised between 15 and 500 genes (among the genes 

measured by the microarray). This led to a total of 3234 GO-BP gene sets and 205 KEGG 

pathway gene sets. This filtering protocol follows the default one used in GSEA and a 

protocol we have previously identified as optimal for these studies [7, 8, 18–21].

Gardeux et al. Page 4

J Biomed Inform. Author manuscript; available in PMC 2016 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/


 Gene Sets Enrichment Analysis (GSEA)

Gene set enrichment analysis was conducted on both datasets. The GSEA v2.0.10 software 

[22] was used with the default parameters except for the permutation parameter selection, 

which was set to “gene set” instead of “phenotype”. Gene set permutation was chosen to 

achieve enough statistical power for permutation resampling due to the small number of 

samples. Only dysregulated GO-BP terms and KEGG pathways reaching the False 

Discovery Rate (FDR)≤5% significance threshold were retained for further analysis. It 

resulted in a list of 399 dysregulated GO-BP terms between the non-exposed and rhinovirus-

exposed samples for the ex vivo dataset, and 194 GO-BP terms and 11 KEGG pathways for 

the in vivo dataset. The complete lists of results from GSEA are available as Supplement 

File 1 – GSEA.

 Differentially Expressed Genes (DEG) Calculation

Differentially expressed genes (DEG) between non-exposed and rhinovirus-exposed samples 

were calculated using the SAMR package in R statistical software [23]. Genes reaching the 

FDR≤5% threshold were considered significantly dysregulated between the two conditions. 

Those protocols resulted in a list of 458 differentially expressed genes (DEG) found 

significantly dysregulated in the ex vivo dataset and 709 DEG in the in vivo dataset. The 

complete lists of DEG are available as Supplement File 2 – DEG+Enrichment.

 DEG enriched into GO-BP terms (DEG+Enrichment)

Differentially expressed genes (DEG) were enriched into GO-BP terms using the DAVID 

website [24, 25]. GO-BP terms reaching the FDR≤5% threshold were considered 

significantly enriched. It resulted in a list of 111 dysregulated GO-BP terms between the 

non-exposed and rhinovirus-exposed samples for the ex vivo dataset, and 20 GO-BP terms 

for the in vivo dataset. The complete lists of enriched pathways from DEG are available as 

Supplement File 2 – DEG+Enrichment.

 Information Theoretic Similarity (GO-ITS)

We calculated the similarity between GO-BP terms using Jiang’s information theoretic 

similarity [26] that ranges from 0 (no similarity) to 1 (perfect match). We have previously 

shown that a GO-ITS score ≥ 0.7 robustly corresponds to highly similar GO terms using 

different computational biological validations: protein interaction [27, 28], human genetics 

[29], and Genome-Wide Association Studies [30]. GO-ITS was calculated on each distinct 

pair among the 3234 GO terms of size ≥15 and ≤500, leading to 10,458,756 pairs of which 

59,577 have a GO-ITS ≥ 0.7 (≈5.6 out of 1,000).

 Novel Similarity Venn Diagram

In order to compare the different list of dysregulated GO-BP terms, we computed 

uncommon Venn Diagrams. Since every two GO-BP terms possess a measurable degree of 

similarity (see GO-ITS definition), it is possible to compare the two sets not only by direct 

overlap but also by degree of similarity. For each Similarity Venn Diagram, we calculated 

the number of GO-BP terms similar to each of the two sets using a strong similarity GO-ITS 

threshold ≥ 0.7 (≈0.0056 pairs of all GO terms pairs meet this stringent criteria). This leads, 
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for each Similarity Venn Diagram, to two additional values: the number of pathways (i) 

belonging to the set A and similar to the set B and (ii) vice-versa. If we take only the 

intersection of those two sets, we obtain the traditional Venn Diagram overlap. Of note, this 

technique may be extended to as many sets as needed, and different representations can be 

used. Figure 1 shows three possible representations of those Novel Similarity Venn 
Diagrams, the first one (Panel A) being the one we chose for this paper, because of its 

practicality for two sets studies. The source code and GO-GO similarity matrix used for 

computing the Similarity Venn Diagrams in this manuscript are available at http://

lussierlab.org/publications/SimilarityVenn.

 Similarity Contingency Table

Further, we can calculated the statistical significance of the similarity for the Similarity Venn 
Diagrams between two sets (here called A and B). We proposed a statistic based on the 

following two steps: 1) among all elements in set A and all elements in set B, taken from the 

statistical universe Ω, identify similar pairs among “every possible pair combinations from 

set A and set B” (denoted “A×B”), and 2) compare this value against all the pairs that are 

similar in Ω × Ω. To this end, we propose a Similarity Contingency Table in which 

conventional calculations of Odds Ratio and enrichment can be calculated (such as Fisher’s 

Exact Test). Table 2 shows this Similarity Contingency Table in detail, with a numeric 

example taken from Figure 2.

 GO-Modules

We previously developed GO-Module [31] to synthesize and visualize enriched GO terms as 

a network. GO-Module reduces the complexity of nominal lists of GO results into compact 

modules organized in two distinct ways: by (i) constructing modules from significant GO 

terms based on hierarchical knowledge, and (ii) refining the GO terms in each module to 

distinguish the most significant terms (key terms of the module), subsumed terms to the Key 

term and terms of lesser importance (grey in Figure 3).

 N-of-1-pathways framework

N-of-1-pathways [7, 8] is a methodology unveiling dysregulated pathways from only two 

paired samples. In this study, it was applied independently for each patient, on the paired 

non-exposed and rhinovirus-exposed samples in both in vivo and ex vivo datasets. The N-

of-1-pathways framework and software identifying the dysregulated pathways (the scoring 

method) are modular and several different models can be substituted for the “pathway 

identification module”:

Wilcoxon model. The “Wilcoxon” model was already validated on a 

retrospective lung adenocarcinoma survival prediction study [7] and in vitro 
using both ovarian and breast cancer cell lines to identify an experimentally 

knocked down pathway [8]. This model starts by restricting the gene 

expression data to the genes belonging to the considered gene set. Then it 

applies a Wilcoxon signed-rank test of the two restricted vectors of gene 

expressions to assess the dysregulation of this gene set. Basically, this model 

recognizes gene sets having an over-representation of up-regulated genes 
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compared to down-regulated genes, or vice versa. Two different methods were 

used to adjust p‐values for multiple comparisons: Bonferroni (for a more 

stringent set of results) and Benjamini and Hochberg (False Discovery Rate; 

FDR) [32]. In each paired sample, only dysregulated pathways with adjusted p-

values following FDR≤5% or Bonf.≤5% were retained for further analysis. The 

complete lists of dysregulated pathways unveiled from the Wilcoxon model for 

each patient are available as Supplement File 3 – Wilcoxon.

Single-Sample GSEA or ssGSEAFC model. The ssGSEA software is available 

from the GSEA portal (http://www.broadinstitute.org/gsea/index.jsp) and does 

not have a publication describing how its single sample method differs from 

the described cross-sample GSEA v2.0.10 software [22]. Although without 

published evaluation (simulation or experimental) by the method’s developers, 

ssGSEA was utilized on single samples [33]. We have previously extended the 

use of ssGSEA in the context of paired samples within the N-of-1-pathways 
framework as an alternative to the Wilcoxon model. In our implementation, we 

used the “ssGSEAPreranked” version that is applied on a pre-ranked list of 

genes and computes a permutation-based p-value for each gene set. In the 

context of our paired samples framework we pre-ranked the genes according to 

their Fold Change (FC) between non-exposed and rhinovirus-exposed samples 

calculated separately for every patient. This usage of ssGSEA was never 

formally described, so we called this model ssGSEAFC in order to show its 

specific application to Fold Change (FC) in paired data. The complete lists of 

dysregulated pathways obtained from this ssGSEAFC model for each patient 

are available as Supplement File 4 – ssGSEA.

 Principal Component Analysis (PCA)

The PCA was computed using the “FactoMineR” package in R (with default parameters). 

We first computed the matrix of p-values computed for every pathway assessed for each 

patient. Then, these p-values were transformed into Z-scores using an inverse standard 

Normal distribution (Z-score = abs(qnorm(p-value/2)) in R. The PCA was finally applied on 

this matrix of Z-scores.

 Results

 Comparison of cohort-based results within the ex vivo and in vivo studies

We compared the concordance of the results unveiled from cohort-based methods 

(conventional) across four patients. We applied two well-established, cohort-level methods: 

GSEA (Methods: GSEA) and DEG+Enrichment (Methods: DEG+Enrichment) in the two 

datasets by comparing the virus-exposed to the non-exposed samples. In order to visualize 

their concordance, we plotted Similarity Venn Diagrams (Methods: Similarity Venn 
Diagram) between the results unveiled by GSEA and DEG+Enrichment (at FDR≤5%), 

separately within the ex vivo and the in vivo datasets. Figure 2 shows the overlap as well as 

the similarity between the two techniques. Supplement Tables S1&S2 recapitulate the 

pathways found dysregulated by both techniques.
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 Comparison of the individual results to cohort-based results across the ex vivo and in 
vivo studies

After having established the concordance of results of the two cohort-level methods within 

each study, we aimed at comparing the two studies together. Figure 3, Panel A shows a 

standard Venn Diagram comparing the differentially expressed genes unveiled in each study 

(Methods: DEG calculation). It reveals a very strong overlap between the in vivo and ex vivo 
studies. The full list of overlapping DEG can be found in Supplement Table S3. Figure 3, 

Panel B contains two Similarity Venn Diagrams, the green one representing the overlap and 

similarity between the GO-BP terms unveiled by GSEA across the two studies, and the 

purple one representing the same information, but when applying the DEG+Enrichment 

method. The intersections of the two lists of dysregulated pathways -whether differentially 

expressed genes or dysregulated pathways- are very significant (Panel A: Odds 

Ratio≈5.226, p=3.41 × 10−25; Panel B-Green Diagram: Similarity Odds Ratio≈1.95, 

p=3.69 × 10−68; Panel B-Purple Diagram: Similarity Odds Ratio≈3.04, p=5.85 × 10−9).

In order to understand the biological relevancy of the GO-BP terms unveiled across the two 

studies (in vivo and ex vivo), we displayed the 56 GO-BP Terms found dysregulated by the 

GSEA method as a network (Figure 4). The connections between the GO-BP Terms are 

inferred from the ontology topology, which helps to see the groups of terms interconnected. 

Table 3 also recapitulates the seven GO-BP terms concordantly found dysregulated by the 

DEG+Enrichment method.

 Concordant dysregulated pathways unveiled between infected and uninfected samples

We applied the Wilcoxon model of the N-of-1-pathways framework for each patient’s paired 

data between the control sample and the one subject to rhinovirus (Methods: N-of-1-
pathways). The aim of this particular comparison was to identify the pathways dysregulated 

ex vivo in presence of a virus for each patient independently. Then, we aggregated the 

dysregulated pathways obtained for each patient to identify the pathways commonly 

dysregulated. Table 4 shows the whole list of GO-BP Terms and KEGG pathways 

(Methods: Gene sets) found significantly dysregulated across the four patients (Bonf.≤5%). 

The results are structured according to the ontology structure for better clarity. We can see 

pathways such as “response to virus” or “Cytosolic DNA-sensing pathway”, which are 

obviously biologically relevant regarding the studied phenotype. Taken together, those 

results show that: 1) the experimental protocol used is viable, and 2) the N-of-1-pathways 
methodology is able to uncover relevant pathways in this context. Moreover, we can see a 

certain “concordance” in the direction of dysregulation unveiled in all those pathways. For 

example, the “response to virus” pathway is found up-regulated in the rhinovirus (RV) 

sample, i.e., the majority of the genes included in the pathway are up-regulated in the RV 

sample. In comparison, the KEGG pathways, “Oxidative phosphorylation” and 

“Huntington’s disease,” are found down-regulated, and “Olfactory transduction” is the only 

pathway showing different “directions” between the four patients.

 A proxy Gold Standard based on the in vivo data for comparison at the patient-level

Verifying experimentally all predicted pathways is rate-limiting and extremely expansive. 

Therefore, identifying a gold standard for studies generating dozens of GO terms and KEGG 
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pathways is unrealistic. On the other hand, similarity to previously obtained results in 

comparable context allows for generating proxy Gold Standards. Since we aimed at finding 

if the N-of-1-pathways single-patient framework was able to uncover pathways significant in 

individual patients, we created a “proxy Gold Standard” using the list of dysregulated 

pathways unveiled by GSEA in the in vivo dataset in order to obtain a global picture of the 

pathways we should find dysregulated. We used FDR ≤ 5% as a cutoff to fix the list of 

dysregulated gene sets, which lead to 194 GO-BP terms and 11 KEGG pathways found 

significantly dysregulated in the in vivo dataset. Then, we ran the N-of-1-pathways 
framework on each patient of the ex vivo dataset and compared the results with this proxy 

Gold Standard. This comparison allow us to see the individual transcriptomic response 

similarity between the ex vivo and in vivo protocols. As a matter of comparison, we used 

both the Wilcoxon and the ssGSEAFC models (Methods: N-of-1-pathways). Figure 5 shows 

the ROC curves corresponding to this comparison.

 N-of-1-pathways scores naturally split the in vivo patients by phenotype

In order to demonstrate the scalability of the method to other viruses and to show the 

individualized pathway scores could predict the clinical outcome (symptomatic vs 

asymptomatic infections), we performed an additional study. We used more samples from 

the in vivo dataset [5] than the 9 symptomatic patients. Indeed, the dataset also contains 10 

patients that were exposed to the rhinovirus but remained asymptomatic. We ran the N-of-1-

pathways Wilcoxon model on those extra 10 patients and looked for differences in the 

individual representation of the dysregulated pathways between the two groups. Of note, for 

those asymptomatic patients, the “exposed sample” was extracted after 72 hours of 

exposure, which corresponds to the median time for peak symptoms from symptomatic 

patient post inoculation. Figure 6 shows a Principal Component Analysis that clearly 

clusters the two groups of patients without any supervision or pre-treatment of the N-of-1-

pathways scores. This protocol was applied for the Rhinovirus as well as Influenza, which 

were both studied in the in vivo dataset [5]. Of note, the ssGSEAFC model also clusters the 

data but the clusters are less visible (data not shown).

 Discussion

Overall, this study shows that the biology is concordant between ex vivo and in vivo assays, 

showing a significantly high similarity of biologically relevant functions to viral infection. 

Indeed, Figures 2&3 show that conventional cohort-level methods (GSEA and enrichment of 

DEG) obtain very concordant results both within each study and across ex vivo and in vivo 
studies. Concerning the biological meaning of the results, Figure 4 probably synthetizes best 

their range. Cytokines are broad categories of small proteins that are important in cell 

signaling. Among them, interferons are released by host cells in response of pathogens. 

Here, the ex vivo and in vivo studies corroborate in viral response specificity. Specifically, 

Figure 4 shows that the cytokine regulation leads to only interferons Type I and Gamma (γ) 

to be dysregulated. Type I interferons are well-studied molecules that play an essential role 

in viral functions, such as inducing direct anti-viral effects, as well as regulating innate and 

adaptive autoimmune systems [34]. Interferon γ is crucial for immunity against viral 

infections and is produced rapidly by natural killer cells in viral infection and at a later stage 
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by differentiation of T cells [35]. Additionally, to the rightmost part of Figure 4, the network 

shows a strong cellular innate immune response of leukocyte migration in response to 

chemotaxis signal, leucocyte mediated cytotoxicity. Among leukocytes, multiple GO terms 

specify T cell lymphocytes mediated immunity. Since rhinovirus infections are the most 

frequent cause of the common cold, it is not surprising that the in-vivo study shows a 

response of T cells (e.g. memory T cells) as a result of acquired immune response from 

previous rhinovirus infections.

In the context of precision medicine, Table 4 recapitulates the main biological processes 

dysregulated between the virus-exposed and control samples. Unsurprisingly, every patient 

harbors dysregulated pathways such as “response to virus” or “innate immune response”. 

The motivating part is that N-of-1-pathways is able to uncover this dysregulation at the 

single subject level. Moreover, Figure 5 shows that the patient-level results obtained by the 

N-of-1-pathways framework are concordant with conventional cohort-level methods. On the 

methodological aspect, we have shown again that the Wilcoxon model of the N-of-1-

pathways framework was more accurate than the ssGSEAFC model when the individual 

results are compared to a proxy gold standard. Further, Zaas et al. established the separation 

of the asymptomatic from symptomatic phenotype of a rhinovirus infection through 

supervised studies [5], suggesting that the feasibility is not trivial. Here, we show that 

integrating both the uninfected and virus-exposed PBMC transcriptome states into a single 

dynamic transcriptome interpretation probably increases the sensitivity since an 

unsupervised PCA can identify this phenotype on its two first components (Figure 6). Future 

studies are required to develop and test improved models even though the lack of similarity 

of pathways dysregulated on an individual level with a “consensus” proxy gold standard can 

be explained by individual variation. Since we pioneered single subjects transcriptome 

analyses, very few studies report individual pathway variations. In our previous study in 

cancer, individual similarity to a gold standard varied considerably and a higher dissimilarity 

was significantly associated with poor patient survival [7]. We had initially hypothesized this 

outcome as clonal cancer cell selection in response to therapy would likely favor cancer cell 

having more therapeutic escape mechanisms (in other words more dysregulated). Additional 

studies comprising infected hosts symptoms would provide evidence to the reliability of the 

N-of-1-pathways framework to unveil individual subject mechanisms of resistance or 

sensitivity to infections.

This new application of the N-of-1-pathways framework differs in many ways with our 

previous applications in cancer. The obvious first difference is the biology: cancer 

transcriptome is a consequence of inherited and acquired human gene mutations as well as 

epigenetic changes between the normal and cancer tissues, while a viral infection consists of 

the introduction of a foreign regulatory apparatus comprising non-human nucleotides (RNA 

or DNA) and proteins without mutations to human genes (at least initially). Previously, we 

showed that the dynamic transcriptome analysis of uninvolved vs solid tumoral tissue could 

be predictive of survival at the single patient level. Here, we show that the same framework 

could be used to unveil relevant individual pathway dysregulation in white bloods cells of 

the PBMC samples. Since the concept can be extended to different tissues and conditions, it 

shifts the clinical implications of the results. In follow-up studies, we are translating this 

process to clinical practice: a single blood sample followed by a transcriptomic analysis of 
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the ex vivo assay is enough to predict future outcome (predictive virogram). Moreover, in 

our previous studies, the N-of-1-pathways framework was validated using straightforward 

discovery techniques such as hierarchical clustering and principal component analysis as 

well as survival curves. In this study, we extended the analysis of the results thanks to a 

more elaborated Similarity Venn Diagram framework (which could also be used 

independently). The similarity metrics and visualization tools provide a more comprehensive 

set of results as well as a straightforward visualization in order to rapidly grasp the results 

and their meaning. Finally, the present study could be considered as a preliminary step 

towards the future development of ex vivo assays for precision medicine. And here this term 

is unequivocal since we can unveil dysregulated pathways at the single patient level.

We are aware that the current Wilcoxon model of the N-of-1-pathways framework may not 

be accurate in certain conditions. For example, if a batch effect is present between the two-

paired samples, we hypothesized that the Wilcoxon test may produce False Positives results 

(FPs), due to the shift of the mean. While conventional batch effect correction models could 

adjust FPs across several samples, the analytical innovation required is challenging when 

dealing with only two samples. Further studies involving designing the of new models for 

producing statistical significance of dysregulated pathways with a mere two samples may 

circumvent this issue.

We also presented in this study an extended representation of classic Venn Diagrams. We 

showed that those Similarity Venn Diagrams could display the simple overlap between two 

lists of terms, as well as their similarity. We believe that this kind of representation is 

scalable to any field comprising sets of terms from which a similarity metric can be 

obtained, such as BIG DATA results, Google™ queries, etc. Of particular interest are the 

suites of analytical packages applicable to the associated Similarity Contingency Tables we 

propose (e.g. Odds Ratio, enrichment studies, etc).

 Conclusions

In conventional comparative study analyses, many samples of different human subjects are 

required for achieving sufficient statistical power to draw conclusions at the level of the 

studied population. The N-of-1-pathways framework does not require a cohort for reaching 

sufficient statistical power. The transcriptomic dysregulation induced by a virus is more 

subtle than the one induced by cancer. Thereforem these results underline the scalability of 

N-of-1-pathways to many clinical conditions such as “before vs after treatment”, “paired 

single cell studies”, etc. It also provides a way of analyzing studies previously considered 

underpowered due to the scarcity of patients as well as a strong framework for patient-

centered precision medicine.

This paper is the first of its kind to report a personal ex vivo dynamic transcriptome assay 

that recapitulates an in vivo infection –a foundational work for developing virograms for 

clinical practice. This is a step forward for precision medicine since such ex vivo assays can 

be extended to interpret individualized response to infections or putative therapies in high 

throughput. In other words, these analyses are required to multiplex systematically alternate 

dynamic transcriptome responses of the host conditions in a way analogous as those 
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conventionally conducted on pathogens in microbiology (e.g. antibiogram). The unveiled 

pathways are biologically meaningful and can be recapitulated by several well-established, 

cohort-level methods. Moreover, this concordance can be found at a lower level, since we 

also found a strong overlap of differentially dysregulated genes between the two conditions. 

Therefore, this raises the question of considering ex vivo studies when in vivo studies are 

either unethical and/or clinically unadvisable.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Similarity Venn Diagrams
This Figure shows three possible representations of Similarity Venn Diagrams. Panels A and 

B are an extension of the traditional Venn Diagram representation. They contain the same 

overlapping number of entities in the middle and also two extra numbers describing the 

similarity of each set to the other. This similarity depends on a threshold chose for assessing 

two entities to be significantly similar (in the following paper, we chose GO-ITS ≥ 0.7). 

While Panel A is the most ergonomic representation with 2 sets, Panels B and C are easier 

to represent and apprehend in higher dimensions (see Supp. Figure S1 for a few possible 

extensions with 3 sets). Panel C is the simplest representation overall, but merges the 

overlap with the similarity, which displays less information.
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Figure 2. Robustness of pathways enriched separately in the two datasets is confirmed by 
consistency of GSEA and DEG+Enrichment
Those specifically-designed Similarity Venn Diagrams were obtained by two different 

enrichment techniques tested subsequently in two distinct datasets: human in vivo infection 

and human ex vivo infection. Their particularity is to show both overlap and similarity 

across two lists of enriched GO-BP terms (Methods: Similarity Venn Diagrams). Hence, 

by taking each list as reference reciprocally, this leads to two different numbers of 

similarities (one from the perspective of each list, visible in the additional dotted-delimited 

space). For example, in Panel A, 61 GO-BP terms are found overlapping between the two 

methods, and an additional 211 (among the 399 dysregulated GO-BP terms unveiled by 

GSEA) are similar to the list of pathways unveiled by the DEG+Enrichment method in the 

ex vivo dataset (GO-ITS cutoff ≥ 0.7). The complete lists of overlapping and similar 

pathways from the two diagrams are available as Supplement File 5 – Figure 2. Of note, 

only ~5.6 out of 1000 pairs of GO terms are found with GO-ITS≥0.7 among all possible 

pairs of GO-BP terms (Methods: GO-ITS), thus the “observed” similarity of the above 

Venn Diagrams far surpasses the “expected” one and is very significant (Panel A: Similarity 

Odds Ratio≈7.28, p<10−100; Panel B: Similarity Odds Ratio≈2.33, p=9.73 × 10−8).
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Figure 3. Concordance of ex vivo and in vivo human studies
These Venn Diagrams show the overlap and similarity of results unveiled across the two 

studies. Panel A shows the overlap between the two lists of dysregulated genes found using 

SAMR method (Methods: DEG calculation). Since the two studies used two different 

microarray chips, we showed in parenthesis the number of dysregulated genes that can be 

found in the common background of both chips (common background = 12819 genes). The 

overlap is very significant (Fisher’s Exact Test p=3.41E-25; Odds Ratio=5.226). Panel B 
shows the GO-BP terms that are overlapping or similar across both datasets by two different 

techniques: GSEA and DEG+Enrichment. The complete lists of overlapping and similar 

pathways/DEG from the three diagrams are available as Supplement File 6 – Figure 3.
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Figure 4. Overlapping GO-BP Terms between ex vivo and in vivo studies by GSEA method
This network represents the GO-BP terms found commonly dysregulated between the ex 
vivo and in vivo studies by GSEA (Figure 2, left of Panel B). For better readability, we first 

reduced the size of the network using the GO-Module (Methods: GO-Module) method. 

The majority of the network shows a competent host innate immune response, with the 

subset of interferons I and Gamma among cytokines (center) and the cellular response of T-

cells lymphocytes among leucocytes (right). The host-response to virus is shown in the 

hierarchies of the leftmost part of the network, and a few dissociated terms are left in the 

bottom right part.
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Figure 5. ROC curves showing robustness of the N-of-1-pathways predictions in each ex vivo 
infected PBMC confirmed by in vivo human infection study
ROC curves are calculated with different nominal p-value cutoffs for each patient. As 

measured by the Area Under the Curves (AUC), N-of-1-pathways’ Wilcoxon model 

outperforms the ssGSEAFC model in every instance (one-tailed Wilcoxon matched paired 

signed rank test p=0.0039). As the theoretical random AUC is 0.5, we tested the significance 

of each models of N-of-1-pathways by pooling GO-BP and KEGG results: Wilcoxon Model 

p=0.004; ssGSEAFC Model p=ns (using the one-tailed Wilcoxon signed rank test).
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Figure 6. Principal Component Analysis of N-of-1-Pathways Scores discriminates asymptotic 
patients from symptomatic infected patients in vivo (PBMC expression)
The PCA analysis was conducted on the Z-scores matrix (Patients × GO-BP) produced by 

the Wilcoxon model within the N-of-1-pathways framework (Methods: PCA) in the context 

of two different virus exposures (Rhino=rhinovirus; Flu=Influenza). Each data point is a 

distinct patient for which all GO-BP Z-scores were presented to the PCA. In both PCA plots, 

we can see that the two first components cluster the symptomatic patients together. Of note, 

the PCA method is totally unsupervised, which suggests that N-of-1-pathways produces 

relevant p-values for each GO-BP term.
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Table 1

Gene expression dataset description.

Dataset Human ex vivo infected dataset Human in vivo infected dataset

References Authors Gardeux V, Bosco A, et al. (present paper) Zaas A. K. et al. Cell Press 2009 [5]

Source (GEO) GSE60153 (new dataset) GSE17156

Platform Affymetrix GeneChip® Human Gene 1.0ST Affymetrix Human Gene U133A 2.0

Probes measured 33297 22277

Genes mapped to probes 19915 14288

Human Subjects (paired 
samples)

Total 4 9

Control 4P PBMCs incubated with control medium 9P PBMCs collected 24hrs prior to 
infection

Case 4P PBMCs incubated ex vivo with virus 9P PBMCs collected at peak 
symptoms post intranasal virus 
inoculation (6hrs – 3days).

Viral infection experiment Live human PBMC cells infected ex vivo & 
incubated with Human Rhinovirus serotype 16 
(ATCC® VR-283)

Human subjects inoculated in vivo 
intra-nasally with Human 
Rhinovirus serotype 39 (Charles 
River Lab; Malvern, PA)

P
Indicates paired samples derived from the same individual rhinovirus-exposed with matched non-exposed PBMCs samples.
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Table 2
Similarity Contingency Table for computing significance of the similarity in a Similarity 
Venn Diagram

This table shows a numeric example from Figure 2, where we have two sets of GO-Terms A (|A| = 399) and B 
(|B| = 111). There are 399×111 possible pairs between sets A and B (|A×B| = 44,289) among which we found 

1,730 pairs that have an ITS≥0.7. Moreover, the statistical universe Ω contains 3,234 GO-Terms which leads to 

a total number of possible pairs of |Ω × Ω| = 10,458,756, among which we found 58,577 pairs that have a GO-

ITS≥0.7. A Fisher’s Exact Test gives an Odds Ratio of 7.28 and a very significant p-value < 1.0E-100, which 

implies that the similarity between the two sets is high.

Pair with similar elements Pair with NOT similar elements

Pair in Venn (∈ A×B) 1,730 42,559

Pair NOT in Venn (∉ A×B) 57,847 10,356,620

LEGEND: ∈ “is an element of”; ∉ “is not an element of”; Background = total number of possible pairs (|Ω × Ω|)
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Table 3
Overlapping GO-BP Terms between ex vivo and in vivo studies when DEG+Enrichment is 
applied

These terms correspond to the overlap in the rightmost (Purple, right of Panel B) Similarity Venn Diagram of 

Figure 3.

GO Term Description

GO:0009615 response to virus

GO:0006955 immune response

GO:0007267 cell-cell signaling

GO:0008285 negative regulation of cell proliferation

GO:0009719 response to endogenous stimulus

GO:0009725 response to hormone stimulus

GO:0010033 response to organic substance
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Table 4
GO-BP terms and KEGG pathways found dysregulated in all four patients’ PBMC cells 
infected ex vivo, using N-of-1-pathways analysis of the dynamic transcriptome (Wilcoxon 
model; Bonf.≤5%; RMA Normalization)

The “Size” column corresponds to the number of genes in the gene set/pathway.

Identifier Description Size Dysregulation

GO:0009615 response to virus 247 ↑

GO:0019221 cytokine-mediated signaling pathway 341 ↑

GO:0045087 innate immune response 527 ↑

GO:0034340 response to type I interferon 73 ↑

├ GO:0071357 cellular response to type I interferon 72 ↑

└ GO:0060337 type I interferon-mediated signaling pathway 72 ↑

hsa04623 Cytosolic DNA-sensing pathway 56 ↑

hsa00190 Oxidative phosphorylation 132 ↓

hsa04740 Olfactory transduction 388 2↓ 2↑

hsa05016 Huntington’s disease 183 ↓
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