
Are Bigger Datasets Better for Machine Learning? Fusing 
Single-Point and Dual-event Dose Response Data For 
Mycobacterium tuberculosis

Sean Ekins1,2,*, Joel S. Freundlich3,4, and Robert C. Reynolds5

1Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, NC 27526, USA

2Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, CA, 94010, USA

3Department of Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University – 
New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA

4Department of Pharmacology & Physiology, Rutgers University – New Jersey Medical School, 
185 South Orange Avenue, Newark, NJ 07103, USA

5University of Alabama at Birmingham, College of Arts and Sciences, Department of Chemistry, 
1530 3rd Avenue South, Birmingham, AL 35294-1240, USA

Abstract

Tuberculosis is a major neglected disease for which the quest to find new treatments continues. 

There is an abundance of data from large phenotypic screens in the public domain against 

Mycobacterium tuberculosis (Mtb). Since machine learning methods can learn from past data, we 

were interested in addressing whether more data builds better models. We now describe using 

Bayesian machine learning to assess whether we can improve our models by combining the large 

quantities of single-point data with the much smaller (higher quality) dual-event datasets, which 

use both dose-response data for both whole-cell antitubercular activity and Vero cell cytotoxicity. 

We have evaluated 12 models ranging from different single-point, dual-event dose response, 

single-point and dual-event dose response as well as combined datasets for three distinct datasets 

from the same laboratory. We used a fourth dataset of active and inactive compounds from the 

same group as well as a smaller set of 177 active compounds from GlaxoSmithKline as test sets. 

Our data suggest combining single-point with dual-event dose response data does not diminish the 

internal or external predictive ability of the models based on the receiver operator curve (ROC) for 

these models (internal ROC range 0.83-0.91, external ROC range 0.62-0.83) compared to the 

orders of magnitude smaller dual event models (internal ROC range 0.6-0.83 and external ROC 
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0.54-0.83). In conclusion, models developed with 1200-5000 compounds appear to be as 

predictive as those generated with 25,000 to 350,000 molecules. Our results have implications for 

justifying further HTS versus focused testing based on model predictions.
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 INTRODUCTION

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB). This 

bacterium has infected approximately one-third of the world’s population, and kills 1.3 

million people annually.1 Additional therapeutic agents are needed that are active against 

Mtb to overcome resistance, shorten treatment and avoid toxicity that may occur in patients 

co-infected with HIV. 2-4 Over the last decade there has been considerable investment in TB 

drug discovery and development, such that at least $500 million was spent in 2013 according 

to one estimate. 5 While the sequencing of the Mtb genome has provided metabolic insights 

and potential targets,6 genomic data have not led directly to any drugs. 7, 89 Target-based 

design of antibacterial agents has been declared a failure,8 and whole-cell phenotypic high-

throughput screens (HTS) of libraries of thousands to hundreds of thousands of molecules is 

now in vogue.3, 10-12 Whole-cell phenotypic HTS against Mtb has gained much support, 

having led to the clinical-stage candidate SQ109 13 and the drug bedaquiline.14 On the other 

hand, the general process is characterized by very low hit rates,15 and the approach does not 

usually provide information on the potential target/s leading to complications in lead 

optimization and final drug approval. These HTS typically employ a single point, or 

concentration, primary screen to identify hits that are then evaluated in a dose-response 

format in concert with parallel testing to assess cytotoxicity in a model mammalian cell line 

(e.g, Vero, HepG2 or other cells). 10-12 This phenotypic screening format produces a wealth 

of data that can be used for computational machine learning. 16

Building on an initial report leveraging HTS data through Bayesian models,17 we have 

focused on the development and utilization of machine-learning models in the discovery of 

novel chemical probes and drug discovery hits and leads. 18-25 We have made extensive use 

of the public datasets coming out of the MLSMR (derived from Molecular Libraries 

Screening Center Network and also called the MLSCN/MLPCN library elsewhere), TAACF-

CB2, and TAACF-kinase screens conducted by Southern Research Institute under contract 

from the National Institute of Allergy and Infectious Diseases (NIAID).10-12 The outcome 

has been single- (antitubercular efficacy) and dual-event (antitubercular efficacy and lack of 

relative Vero cell cytotoxicity) models with both single-point and dose-response data to 

uncover promising antituberculars (with hit rates in excess of 20%) of the 

pyrazolopyrimidine, triazine, benzothiazole, sulfonamide, and aminoquinoline classes 25. 

Additional follow--up studies have provided similar hit rates. 19, 24

Parallel efforts in our laboratories have in part focused on the optimization of our use of 

machine-learning model performance. Critical metrics are the model’s ability to predict the 
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data set from which it was trained (measured with leave out groups and receiver operator 

characteristic statistics (ROC)) and to correctly identify both actives and inactives from a 

compound library distinct from its training set (whether using retrospective or prospective 

analysis). Recently we explored the impact of the type of machine-learning algorithm. 22 We 

reported the examination of Support Vector Machine (SVM) and Recursive Partitioning (RP) 

single tree and forest models to compare with dual-event Bayesian models of in vitro 
antitubercular efficacy and acceptable Vero cell cytotoxicity (selectivity index SI = (MIC or 

IC90)/CC50 ≥ 10; where MIC = minimum compound concentration to inhibit growth of 

organism usually by 90 or 99%, IC90 = compound concentration necessary to inhibit 90% of 

the organism’s growth, CC50 = compound concentration that inhibits growth of the cells by 

50%).22 We did not find a dramatic difference between the Bayesian and other models for 

the same individual datasets when performing 5-fold cross validation. The ability of a model 

to predict hits amongst the GlaxoSmithKline (GSK) set of 177 antituberculars 26, in fact, 

appeared to depend more on the identity of the training set than on the method used. 

Therefore, we probed the effect of combining datasets and realized that larger datasets (as 

judged solely by number of compounds) do not necessarily afford more predictive 

models 20. This effort clearly involved not just increasing the size of the data set, but also 

altering the ratio of actives to inactives and perhaps their respective distributions in chemical 

property space. We hypothesized that a better trained model could arise by fusion of single-

point screening inactives with dual-event dose-response actives and inactives. Studies 

evaluating this novel hypothesis in drug discovery machine-learning strategy are described 

herein.

 Experimental

 CDD database and SRI datasets

The Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF), Molecular 

Libraries Small Molecule Repository (MLSMR) screening datasets and TB: ARRA 10-12 

library were collected and uploaded in the CDD TB database (Collaborative Drug Discovery 

Inc. Burlingame, CA)18 from sdf files and mapped to custom protocols.27 All Mtb datasets 

used in model building are available for free public read-only access and mining upon 

registration in the CDD database 23, 27-29 as well as in PubChem.30

 Building and validating dual-event machine learning models with novel bioactivity and 
cytotoxicity data

In our previous publications we described the generation and validation of the Laplacian-

corrected Bayesian classifier models developed with cytotoxicity data to create dual-event 

models 19, 24, 25 using Discovery Studio 3.5 (San Diego, CA).17, 31-34 These individual 

models were developed based on several unique datasets: a. MLSMR dose-response and 

cytotoxicity; b. TAACF-CB2 dose-response and cytotoxicity; and c. TAACF-kinase dose-

response and cytotoxicity, where cytotoxicity was determined for Vero cells for each set. The 

models were all generated using the following molecular descriptors: molecular function 

class fingerprints of maximum diameter 6 (FCFP_6) 35, AlogP, molecular weight, number of 

rotatable bonds, number of rings, number of aromatic rings, number of hydrogen bond 
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acceptors, number of hydrogen bond donors, and molecular fractional polar surface area 

which were all calculated from input sdf files.

We have now expanded the range of models by using the previously described single-point 

screening datasets 18, 23 (Figure 1) and removing any compounds classed as active. The 

corresponding dual-event dataset 24, 25 was then combined with it to provide the actives as 

well as additional inactives. The resulting single- and dual-event datasets were used to 

generate new, larger models that were also validated using leave-one-out cross-validation, 5 

fold validation and by leaving out 50% of the data and rebuilding the model 100 times using 

a custom protocol to generate the receiver operator curve area under the curve (ROC AUC), 

concordance, specificity and selectivity as described previously.19, 24, 25 In the current study, 

as well as using the datasets individually, we also combined the three larger datasets, which 

combined single-point and dual-event data (MLSMR, TAACF-CB2, TAACF-kinase).

 Testing Bayesian models trained with external datasets

The models were further evaluated by predicting a set of 1924 analogs described previously 

in the ARRA dataset. 21 Additionally, a set of 177 antitubercular leads (actives) disclosed by 

GSK 26 was scored with all of the models generated in this study to determine how many 

hits could be predicted. The mean closest distance for each model’s training set to the 

ARRA or GSK datasets was calculated to provide a measure of training set similarity to the 

test set. In Discovery Studio this was set to the default to use the Euclidian distance function 

with mean-center and scale and scale by number of dimensions turned on. The proximity of 

two molecules (and of the training sets) scales inversely with the calculated distance.

 Assessing Mtb HTS chemistry property space

The GSK and ARRA datasets were compared to the 345,011-member dataset, used to train 

the combined dose-response and cytotoxicity plus single-point inactives model used in this 

study, as to their relative placement in chemistry property space. A Principal Component 

Analysis (PCA) using Discovery Studio was generated with the interpretable descriptors 

chosen previously (AlogP, molecular weight, number of rotatable bonds, number of rings, 

number of aromatic rings, number of hydrogen bond acceptors, number of hydrogen bond 

donors, and molecular fractional polar surface area). These libraries were also compared 

through the “compare libraries” protocol in Discovery studio via the use of assemblies 

(Murcko Assemblies) 36.

 Statistical Analysis

The mean descriptor values for in vitro active and inactive antitubercular compounds were 

compared using two tailed t-test with JMP v. 8.0.1 (SAS Institute, Cary, NC).

 RESULTS

 Combining single-point and dose-response data

Novel machine learning datasets were created for the MLSMR, TAACF-CB2, TAACF-

kinase and combined libraries by merging the respective dose-response dual-event and 

single-point antitubercular efficacy (single-event) inactives datasets. The percent of actives 
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in a dataset ranges from 0.07% to 56.42% (Table 1). Bayesian models were constructed for 

each novel dataset and they exhibited Bayesian 5 fold (leave out 20%) ROC AUC values 

(Table 1 and Supplemental data) and leave out 50% x 100 ROC AUC values (Table 1 and 

Supplemental Table 1) greater than 0.8 (range 0.83-0.91). These metrics of a model’s ability 

to predict its training set are improved or equivalent to those for models constructed with 

dose-response dual-event data (ROC AUC range 0.6-0.83) and single-point antitubercular 

efficacy data alone (ROC AUC range 0.84-0.88).

The features important for separate single- or dual-event models have been previously 

described.18, 20, 23-25 For the new Bayesian models developed in this study we now briefly 

describe these molecular features found in actives or inactives. For the MLSMR model, we 

can identify those FCFP_6 substructure descriptors consistent with both activity and lack of 

cytotoxicity including alkyl 2-thioacetate, 1,3,4-oxadiazole 2-thioether, alkyl 2-

alkoxyacetate, 4-oxo-1,4-dihydropyridine-3-carboxylic acid, and pyridine 2-thioacetate 

(Figure S1). Features of inactives include sulfonamide, hydrazine/hydrazone, piperidine, and 

3-aminotetrahydrothiophene 1,1-dioxide (Figure S2). For the TAACF-CB2 model, 

substructure descriptors consistent with both activity and lack of cytotoxicity include alkyl 

2-thioacetate, N-alkylimidazole, 5-substituted-2-nitrofuran, 8-acetoxyquinoline, 4-

aminoketone, and 2-ketosubstituted thiophene (Figure S3). Inactives features are 1,2,4-

triazole 3-thioether, sulfonate ester, 4-substituted morpholine, 2-substituted tetrahydrofuran, 

sulfonamide, N-cyclopropylacetamide, and 1-(pyrrolidin-1-yl)ethanone (Figure S4). For the 

TAACF-kinase model, substructure descriptors consistent with both activity and lack of 

cytotoxicity include N-(1,3,4-oxadiazol-2-yl)thiophene-2-carboxamide, N-(thiazol-2-

yl)furan-2-carboxamide, 3-(1H-pyrrol-1-yl)propan-1-amine, and 2-amino-5-aryl-1,3,4-

oxadiazole (Figure S5). Features of inactives contained pyridone, N-alkyl-2-thioacetamide, 

2,3-disubstituted benzothiophene, pyrrolidin-2-one, and 3-amino-2-substituted benzofuran 

(Figure S6). For the combined model, substructure descriptors consistent with both activity 

and lack of cytotoxicity include alkyl 2-alkoxyacetate, 5-nitrofuran 2-carboxamide, 8-

acetoxyquinoline, N-butylimidazole, N-propylaminoimidazole, 2-amino-5-phenyl-1,3,4-

oxadiazole, thiazole 2-amide (Figure S7). Inactives features are 1,2,4-triazole 3-

thioacetamide, trisubstituted isoxazole, N-cyclopropylacetamide, thiazole 2-imine, 

pyrimidin-2-one, sulfonate ester, 1-(piperidin-1-yl)ethanone, 2-hydroxypyridine, 

sulfonamide, 3,4-dihydropyrrolo[2,3-d]pyrimidin-2-one, pyrimidin-2,4-dione, and 1,3,4-

triazole 2-sulfide (Figure S8). For comparison, the combined single-point model 

substructure descriptors consistent with both activity and lack of cytotoxicity are 2-

aryloxazole, thiazole 2-amide, 3-aminopropylpyrrole, 5-nitrofuran 2-amide, 5-nitrofuran 2-

imine, 2-amino-5-thienyl 1,3,4-oxadiazole, 6-fluoro-8-alkoxyquinolin-4-one, and pyridine 4-

carboxamide (Figure S9). Inactive features are sulfonamide, 1,2,4-triazole 2-sulfide, 

benzothiadiazole, 2-aminobenzamide, 3-hydroxy-1-pyrrol-2-one, benzoic acid, piperidine 1-

amide, N-alkyl-2-(alkylamino)acetamide, 1,2,4-triazin-5-one, 1,2,4-triazole, and piperidine 

4-carboxamide (Figure S10).

 Testing Models with the ARRA dataset

With the demonstrated slightly enhanced or at least equivalent statistical robustness of the 

novel MLSMR, TAACF-CB2, TAACF-Kinase and combined models due to addition of the 
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single-point inactives, we turned to assessing their predictive value with antitubercular 

datasets. The ARRA dataset consists of a set of 1924 whole-cell actives chosen as 

commercially available analogs of hits from the cumulative screening of >300,000 

compounds 24. The ability of each new dual-event model to predict the activity (or lack of 

activity) of the ARRA compounds was quantified through an ROC AUC value. These were 

calculated to range from 0.62-0.83. These values are indicative of general improvements 

over the dose-response dual-event models (ROC AUC range 0.54-0.83) and the single-point 

single-event models (ROC AUC range 0.55-0.75) (Table 1). It is noteworthy that some 

compounds (up to 21%) were present in the model training set and the ARRA set and that 

this varied between models tested. These molecules were retained as otherwise the number 

in this set would vary from model to model.

 Testing models with the GSK dataset

In 2013, GSK disclosed a set of 177 small molecule antitubercular lead compounds 26. Very 

few of these (≤ 10) compounds were present in any of the model training sets. Each model 

was then used to predict hits in the known GSK set: single-point models capture 38.4–

58.7%, the dual-event models capture 18.6-48%, and the models incorporating dual-event 

dose-response and single-point data return 20.3-61% (Table 2). The GSK test set represents 

a useful test of the models, but since it only contains actives, an ROC AUC cannot be 

calculated. The best performing model was the TAACF-CB2 dual-event dose-response with 

single-point data. This model was not close to the test set as measured by the mean closest 

distance of training set to the GSK dataset. The second best model (combined single-point 

model) was ranked first based on this parameter, which is a measure of similarity for the test 

and training sets.

 Assessing Mtb HTS Chemistry Property Space

The analysis of the test set compounds in this study using PCA mirrored our previous 

analysis of the much smaller dual-event datasets.21 In this case, the ARRA dataset of 1924 

molecules is enclosed in the main cluster of the plot with the 345,011 compounds (Figure 

2A). 74% of the variance was explained by first 3 principal components. The 177 GSK 

compounds were also predominantly enclosed within the main cluster, although a couple of 

molecules are outside of this cluster (Figure 2B); previously this dataset was shown to be 

well distributed amongst the combined dual-event dataset. 22 The ARRA data set was 

compared with the other 345,011 compounds using Murcko Assemblies (a published 

approach that can be used for library comparison 36), resulting in a Tanimoto similarity score 

of 0.47 (Table S2) suggesting that the datasets are dissimilar (a value close to 1 would be 

identical, and for our purposes a value less than 0.6 represents dissimilar). The GSK 

compounds were also compared with the 345,011-member dataset using Murcko 

Assemblies; the Tanimoto similarity score was again low at 0.13 (Table S3), indicating a 

greater dissimilarity to the training set than the ARRA dataset.

 Comparing actives and inactives using simple molecular descriptors

The mean value for each molecular descriptor used in the Bayesian model for the combined 

dose-response and cytotoxicity and single-point inactives dataset, was used to compare 

actives and inactives (Table 3). The molecular descriptors appeared to be normally 

Ekins et al. Page 6

J Chem Inf Model. Author manuscript; available in PMC 2016 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distributed (Figure S11). AlogP, the number of rings, and the number of aromatic rings were 

all statistically higher (using the two tailed t-test) in the active compounds, while the number 

of hydrogen bond donors, the number of hydrogen bond acceptors and the fractional polar 

surface area were all statistically significantly lower in the actives.

 DISCUSSION

When generating computational machine learning models18, 20-25, 37, 38 or quantitative 

structure-activity relationship (QSAR) models,39 the assumption is that higher quality and 

well balanced datasets will usually yield the best models. Therefore, if given the choice, one 

would opt for using multipoint dose-response data over single-point screening data. In 

addition, one would generally expect that computational models containing the greatest 

number of molecules would likely be the most predictive for an external library of 

compounds, because they likely cover more chemical property space and they are likely 

more diverse. There are other factors to consider that involve assay details ranging from the 

culture medium used 40 to the mode of compound dispensing 41.41 In the domain of 

phenotypic screening,42 for each organism we face sizeable challenges when considering 

“ideal” in vitro assay conditions as well as the optimal computational model.

Traditionally, with QSAR and machine learning applied to tuberculosis, scientists have 

focused on relatively small datasets (<100 to several thousand compounds).16, 43 As more 

data has become available in the public domain,26, 44 we are faced with many questions 

around how we handle and use the accumulating comparably and relatively ‘massive’ (by 

comparison) datasets. While these datasets are really not ‘big data’ by today’s definition,45 

they are far bigger than usually used for drug discovery computational modeling 

efforts.16, 43 Their size presents challenges for some of the algorithms used in terms of 

speed, processing requirements, and assessing data quality46-50. When is the training set for 

a model big enough? Is the model good enough? Is the model universal and predictive for all 

prospective compounds, or do limitations exist as to the relevant chemical or molecular 

property space covered? In essence, when are the models robust enough that further HTS 

will not add value considering the low hit rates and excessive cost? Trade-offs between data 

quantity, model predictivity and possibly cost are likely. Outside of this discussion is the 

separate opinion that in tuberculosis research we may possess sufficient random HTS 

identified hits to occupy many person-years for hit-to-lead optimization 10-12, 26. This 

concern is particularly important considering the downstream effort and expense to identify 

targets, carry out medicinal chemistry optimization 51 and bring novel and interesting leads 

through the full drug discovery pipeline 4.

We have already noted the lack of correlation between the ROC for a computational Mtb 
model, the mean closest similarity of test set molecules to the training set and its predictive 

capability.21, 22 We have confirmed this finding with novel bigger models trained with 

datasets combining dual-event (antitubercular efficacy and Vero cell cytotoxicity) dose-

response actives and inactives with single-point screening inactives, all arising from the 

same screening workflow and the same laboratory. The predictive value of our novel models 

with respect to actives and inactives in the ARRA dataset 21 (as judged by ROC) and the 

GSK actives26 (as determined by the number of active hits correctly predicted) failed to 
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correlate with measures of the similarity of the model training set with the test set. There 

does not appear to be any clear relationship between internal or external ROC with the 

number of molecules (Figure S12) or percent of actives (Figure S13) in the training set. 

Although we observe three Bayesian models that show a decrease in internal testing ROC 

values with increasing percent actives.

We have demonstrated both here and previously 22 via PCA that these external test sets 

overlap with the combined 345,011-member or the much smaller combined dual-event dose 

response training sets. This would suggest coverage of similar chemical property space. At 

the same time we may be able to extend beyond the property space of the much smaller 

individual model training sets based on the activity predictions for the GSK set and the 

relatively low mean closest distance metrics (and using Murcko assemblies). Thus, the 

machine learning models are able to correctly identify novel active antituberculars outside 

the chemical property space of our current HTS data. The limit of this ability to extend 

beyond the training set is currently being probed. However, there is still a need for a more 

in-depth understanding of the training set and model parameters that influence their 

predictive value with external datasets.

We have now explored the fusion of single-point screening data and dual-event dose-

response data to assess whether addition of orders of magnitude more negative data can 

impact the predictive value of the Bayesian models. The dual-event dose-response model 

already significantly refines the concept of an active: a molecule with sufficient 

antitubercular efficacy as judged via an MIC or IC90 value in addition to its comparison to 

Vero cell cytotoxicity such that the SI is greater than or equal to 10. However, it may be 

asserted that a dual-event model based on solely dose-response data has a limited knowledge 

of inactives. For example, the SRI dose response datasets represent limited subsets 

(~1,200-5,000 compounds) derived from the actives in an initial single-point screen 

(~23,000-340,000 compounds) for antitubercular efficacy. Thus, addition of the single-point 

inactives to the dose response inactives should significantly enhance a model’s knowledge of 

antitubercular “inactivity.” The largest combined model we can create from these datasets 

has 345,011 molecules. These new models are enhanced with regard to their number of 

inactives (Table 1) and their coverage of chemical property space as assessed using PCA 

plots generated with all training data and the ARRA compounds or GSK actives (Figure 2), 

compared with a similar plot generated earlier with all dose-response compounds 22.

Our analyses in this study suggest that the models combining single-point and dual-event 

data are at least as good as the dual-event dose-response models based on internal testing 

(higher ROC range) and predicting outcomes with the ARRA dataset (narrower ROC range). 

We could not see a clear relationship between the internal or external ROC and the number 

of molecules or percent of actives in the model training set. Again, we suggest dataset 

dependencies. For example, the 177 GSK compounds have minimal overlap with the data 

used for modeling and the TAACF-CB2 models appear to perform consistently better than 

models trained with other datasets. The latter also has the highest percentage of actives in 

the dual-event training set.
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We are not aware of any antitubercular screening models larger than our 345,011 compound-

trained models that have been evaluated for tuberculosis or other neglected diseases in 

general. However, we can estimate that to date over 5 million compounds have been 

screened between the NIH funded efforts, GSK, Novartis, and other Bill and Melinda Gates 

Foundation supported projects. Unfortunately to date, only a small fraction of the data is 

publically available. We are not aware of any analysis of the total chemistry property space 

of compounds tested against Mtb to date. Our analysis of the largest model (Table 3) 

suggests that several simple molecular descriptors show statistically significant differences 

between actives and inactives, such as AlogP 52, 53. We have however shown previously that 

reliance on individual descriptors may not be adequate to predict antitubercular 

activity. 18, 23

Our data suggest the biggest models created are statistically comparable (based on ROC 

values) to the orders of magnitude smaller dual-event dose-response models. Possibly this 

result suggests that existing Bayesian models have maximally learned about molecular 

features that are inconsistent with sufficient whole-cell activity (and also relative Vero cell 

cytotoxicity) from the smaller datasets. This point should however be considered limited to 

the Bayesian approach and fingerprints used in this study, as we have not compared this 

approach with other machine learning algorithms or descriptors. It is likely that our results 

may not be extrapolated to other diseases or targets. Therefore, it may be useful to repeat 

this type of evaluation with data from malaria (Plasmodium spp.)44, 54-58 or other diseases 

for which there is now also plentiful phenotypic screening data. In addition, further 

assessment of the chemistry property space using more recent methods such as graph 

indices 59 may be of value for comparison to the simple PCA visualization. Of course these 

approaches could be repeated with different machine learning algorithms although we have 

shown little effect across models for this data previously. 22

In conclusion, the utilization of dose-response dual-event Bayesian models to select 

compounds from available libraries for prospective testing 19, 24, 25 is not diminished by 

increasing the model size to include available single-point screening data for inactive 

compounds. We propose this strategy for model development facilitates a greater 

understanding of the chemical features and physiochemical properties of inactives via 

single-point and dose-response data, while more tightly defining those for active compounds 

through solely dual-event data. While further training set optimization of its size and/or 

diversity may be of questionable value, the existing models can be used to reliably identify 

additional actives in unscreened libraries with success rates at least an order of magnitude 

better than current empirical methods. Future efforts will continue to explore the application 

of machine learning models to identifying novel antitubercular chemical probes, drug 

discovery hits and leads and use them to prioritize the thousands of hits already identified for 

in vivo testing 60. In addition we will endeavor to make these models accessible to the 

scientific community. 61 Our results may have further implications for not justifying further 

random HTS for Mtb as we have shown that we probably already have enough data that can 

be used to find new active molecules from other libraries using a focused testing strategy 

based on model predictions 24, 25, 62.
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 Abbreviations Used:

AUC area under the curve

FCFP_6 molecular function class fingerprints of maximum diameter 6

GSK GlaxoSmithKline

HTS high-throughput screens

MLSMR Molecular Libraries Small Molecule Repository

Mtb Mycobacterium tuberculosis

NIAID National Institute of Allergy and Infectious Diseases

PCA Principal components analysis
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QSAR Quantitative Structure Activity Relationship

RP Recursive partitioning

SI selectivity index

SVM Support Vector Machine

TB Tuberculosis

ROC receiver operator curve
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Figure 1. 
Schema to show models built and evaluated (bold outlined = dose-response data)

Ekins et al. Page 15

J Chem Inf Model. Author manuscript; available in PMC 2016 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
PCA. A. ARRA (red) and combined dose-response and cytotoxicity and single-point 

inactives (black), 74% of variance explained by first 3 PCs, B. 177 GSK (red) and combined 

dose-response and cytotoxicity and negatives (black), 74% of variance explained by the first 

3 PCs.
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Table 1

Individual Bayesian models, leave out testing and external prediction with the ARRA dataset (N = 1924 

molecules). Mean-closest distance scales inversely with the similarity to training set (highlighting number of 

compounds that overlap between the training set and test set).

Mtb models (training set N) [number actives 
(percent)]

Bayesian (5 
fold ROC)

Bayesian 
(leave out 
50% × 100 
ROC)

predicting ‘ARRA 
dose response and 
cytotoxicity’ data 
set (N = 1924) 
ROC

Mean closest distance of 
training set to test set

MLSMR single-point data (220463) [4096 actives 
(1.86)]

0.87 0.86 0.58 0.36 (2 in set)

TAACF-CB2 single-point data (102633) [1783 
actives (1.74)]

0.85 0.84 0.75 0.32 (281 in set)

TAACF-kinase single-point (23797) [1308 actives 
(5.50)]

0.88 0.88 0.55 0.43 (123 in set)

Combined single-point (346893) [7187 actives 
(2.07)]

0.87 0.85 0.61 0.23 (401 in set)

MLSMR dose-response and cytotoxicity (2273)
a,b 

[165 actives (7.26)]

0.83 0.82 0.82 0.51(1 in training set)

TAACF-CB2 dose-response and cytotoxicity 

(1783) 
a, b

 [1006 actives (56.42)]

0.60 0.64 0.54 0.50 (66 in training set)

TAACF-kinase dose-response and cytotoxicity 

(1248) 
a, b

 [182 actives (14.58)]

0.76 0.74 0.74 0.56 (52 in training set)

Combined dose-response and cytotoxicity 

(5304) 
a, b

 [1352 actives (25.49)]

0.75 0.74 0.83 0.40 (81 in training set)

MLSMR dose-response and cytotoxicity and 
single-point (218640) [165 actives (0.07)]

0.86 0.84 0.83 0.37 (2 in set)

TAACF-CB2 dose-response and cytotoxicity and 
single-point (102634) [1006 actives (0.98)]

0.85 0.83 0.74 0.32 (281 in set)

TAACF-kinase dose-response and cytotoxicity and 
single-point (23737) [182 actives (0.77)]

0.91 0.90 0.62 0.43 (118 in set)

Combined dose-response and cytotoxicity and 
single-point (345011) [1353 actives (0.39)]

0.88 0.87 0.79 0.23 (396 in set)

a
Where: IC90 < 10 μg/ml (TAACF-CB2 only) or 10 μM (other datasets) and a selectivity index (SI) greater than ten where the SI is calculated from 

SI = CC50/IC90.

b
Previously published 22
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Table 2

The number of molecules predicted as active out of 177 GSK 26 lead compounds (%) and mean closest 

distance (smaller is more similar) to training set. Out of the 177 GSK compounds, only a small number were 

in the models and were included in the table for ease of comparison.

Mtb model (training set N) Number of molecules predicted 
as active (Percent)

Mean closest 
distance of 
training set to 
test set

Rank by 
number 
predicted 
correctly

Rank by mean 
closest distance 
of training set 
to test set

MLSMR single point data (220463) 100 (56.5) 0.38 4 3

TAACF-CB2 single point data (100100) 102 (57.6) 2 in set 0.46 3 5

TAACF-kinase single point (23797) 68 (38.4) 3 in set 0.51 7 7

Combined single point (344360) 104 (58.7) 5 in set 0.36 2 1

MLSMR dose response and cytotoxicity 

(2273) a
66 (37.3)* 5 in set 0.50 8 6

TAACF-CB2 dose response and cytotoxicity 

(1783) a
85 (48)* 2 in set 0.58 6 8

TAACF-kinase dose response and 

cytotoxicity (1248) a
33 (18.6)* 3 in set 0.62 11 9

Combined dose response and cytotoxicity 

(5304) a
65 (36.7)* 10 in set 0.46 9 5

MLSMR dose response and cytotoxicity and 
negatives (218640)

65 (36.7) 5 in set 0.39 9 4

TAACF-CB2 dose response and cytotoxicity 
and negatives (102634)

108 (61.0) 2 in set 0.46 1 5

TAACF-kinase dose response and 
cytotoxicity and negatives (23737)

36 (20.3) 3 in set 0.51 10 7

Combined dose response and cytotoxicity 
and negatives (345011)

95 (53.7) 10 in test set 0.37 5 2

a
Where: IC90 < 10 μg/ml (TAACF-CB2) or 10 μM and a selectivity index (SI) greater than ten were the SI is calculated from SI = CC50/IC90.
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