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Gamma and Beta Oscillations Define a Sequence of
Neurocognitive Modes Present in Odor Processing
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Olfactory system beta (15–35 Hz) and gamma (40 –110 Hz) oscillations of the local field potential in mammals have both been linked
to odor learning and discrimination. Gamma oscillations represent the activity of a local network within the olfactory bulb, and beta
oscillations represent engagement of a systemwide network. Here, we test whether beta and gamma oscillations represent different
cognitive modes using the different demands of go/no-go and two-alternative choice tasks that previously were suggested to favor beta or
gamma oscillations, respectively. We reconcile previous studies and show that both beta and gamma oscillations occur in both tasks, with
gamma dominating the early odor sampling period (2– 4 sniffs) and beta dominating later. The relative power and coherence of both
oscillations depend separately on multiple factors within both tasks without categorical differences across tasks. While the early/gamma-
associated period occurs in all trials, rats can perform above chance without the later/beta-associated period. Longer sampling, which
includes beta oscillations, is associated with better performance. Gamma followed by beta oscillations therefore represents a sequence of
cognitive and neural states during odor discrimination, which can be separately modified depending on the demands of a task and odor
discrimination. Additionally, fast (85 Hz) and slow (70 Hz) olfactory bulb gamma oscillation sub-bands have been hypothesized to
represent tufted and mitral cell networks, respectively (Manabe and Mori, 2013). We find that fast gamma favors the early and slow
gamma the later (beta-dominated) odor-sampling period and that the relative contributions of these oscillations are consistent across
tasks.
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Introduction
Behavioral research has shown that almost any aspect of a task can
affect subjects’ strategies. What individuals and their brains do very

well is respond flexibly to changing demands, and we assume that
this flexibility is evident in the signals we use to describe brain func-
tion. Context-dependent neural activity changes have been de-
scribed in many mammalian systems, particularly in the olfactory
system, but we lack analysis of what contextual factors account for
these changes and what might comprise an underlying stable net-
work engaged in perceptual activity.

Olfactory system physiology is characterized by temporal and
spatial neural dynamics (Freeman, 1975; Laurent et al., 1996;
Schaefer and Margrie, 2007; Kay, 2011). Past research has shown
meaning-dependent changes in the spatial evolution of EEG sig-
nals (Freeman and Schneider, 1982), mitral/tufted cell firing rates
(Kay and Laurent, 1999; Doucette and Restrepo, 2008), and mod-
ulation of local field potential (LFP) gamma (�40 Hz) (Beshel et
al., 2007) and beta oscillations (15–35 Hz) (Martin et al., 2004b,
2007).
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Significance Statement

Olfactory system gamma (40 –110 Hz) and beta (15–35 Hz) oscillations of the local field potential indicate different neural firing
statistics and functional circuits. We show that gamma and beta oscillations occur in stereotyped sequence during odor sampling
in associative tasks, with local gamma dominating the first 250 ms of odor sniffing, followed by systemwide beta as behavioral
responses are prepared. Oscillations and coupling strength between brain regions are modulated by task, odor, and learning,
showing that task features can dramatically adjust the dynamics of a cortical sensory system, which changes state every �250 ms.
Understanding cortical circuits, even at the biophysical level, depends on careful use of multiple behavioral contexts and stimuli.
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Olfactory bulb (OB) gamma and the analogous insect anten-
nal lobe oscillation are functionally implicated in local discrimi-
nation of highly overlapping stimuli (Stopfer et al., 1997; Nusser
et al., 2001; Beshel et al., 2007). However, mammalian beta oscil-
lations may be better associated with odor learning than gamma
(Martin et al., 2004b; Martin and Ravel, 2014) and represent the
only consistently coherent band in this extended network, sup-
porting the idea that beta oscillations are involved in joint dy-
namical states (Martin et al., 2007; Gourévitch et al., 2010; Kay
and Beshel, 2010).

Olfactory decisions have a lower bound of a single sniff of 150
ms (Uchida and Mainen, 2003). The upper bound on processing
has been argued to be as few as one or two sniffs (Zariwala et al.,
2013) but could be longer depending upon the task, with indica-
tions in some studies that go/no-go (GNG) tasks may encourage
longer sampling (Abraham et al., 2004). Even so, the initial 1–2
sniffs are modified depending on the odors to be detected (Rojas-
Líbano and Kay, 2012) and may carry most of the objective sen-
sory information (Wesson et al., 2008; Cury and Uchida, 2010).

We hypothesized two processing modes in olfaction: the first
(fast) mode relying on gamma oscillations and a feedforward
system resulting in fast discriminations; the second (slower)
mode relying on beta oscillations, extended sampling, and larger
involvement of higher-order brain regions. These modes are sug-
gested by several studies. When centrifugal input is blocked,
gamma oscillations become larger and more defined and beta
oscillations are lost (Gray and Skinner, 1988; Neville and Hab-
erly, 2003; Martin et al., 2006). Because experiments that showed
differences in oscillation type also used different tasks, we further
hypothesized that the processing mode depends on the task
(Beshel et al., 2007; Martin et al., 2007; Kay et al., 2009) and other
factors, such as odors and learning (Beshel et al., 2007; Lowry and
Kay, 2007). Based on these earlier data, we predicted that two-
alternative choice (TAC) tasks, with balanced action rewards and
where speed may be preferred, engage a feed-forward gamma
network (Friedrich, 2006; Kay et al., 2006). This would mean
shorter sampling and larger modulation of gamma oscillations.
For GNG tasks, with asymmetric reward and where deliberation
may be preferred, we predicted a beta network that would recruit
more of the olfactory system during longer sampling times.

To test these hypotheses, in Experiment 1 we trained two sets of
rats to perform either a GNG or TAC task. To determine whether
any differences present across groups were also present within indi-
viduals performing both tasks, in Experiment 2 we retrained three
rats from Experiment 1 to perform both tasks. We found a stereo-
typed sequence of two states signified by gamma and beta oscilla-
tions. Both network modes are present in both tasks, and differences
in degree depend on the task, phase of training, odors, and whether
the rats know one or both tasks. Results suggest a sequence of dy-
namical states signified by different neural oscillations, early local
gamma networks followed after 1–3 sniffs by systemwide beta oscil-
lations, that may form the foundation for temporal integration and
odor processing more generally.

Materials and Methods
Eight adult male Sprague Dawley rats were used (Harlan HSD; �400 –
450 g throughout the experiments). All rats were used for the first exper-
iment. Three of the rats were also used in the second experiment. Rats
were housed individually on a 14/10 h light/dark cycle (lights on at 0800
CST). All experiments were conducted during the light period. Before
experiments, rats were dieted to 85% of their ad libitum weight and
maintained at this level for the remainder of the experiments. All proce-
dures were done under veterinary supervision and oversight of the Uni-

versity of Chicago Institutional Animal Care and Use Committee in
accordance with Association for Assessment and Accreditation of Labo-
ratory Animal Care standards.

Surgery
Rats were initially sedated with a ketamine-xylazine mixture (subcu-
taneous injection; 35 mg/kg ketamine, 5 mg/kg xylazine, 0.75 mg/kg
acepromazine). Rats were then given an initial dose of sodium pentobar-
bital (intraperitoneal; Nembutal 25 mg/kg). Additional doses were given
as needed. Rats were administered analgesic (subcutaneous; buprenor-
phine 0.05– 0.1 mg/kg) immediately after surgery, 12 h after surgery, and
24 h after surgery.

Rats were implanted with bipolar recording electrodes (100 �m stain-
less steel Formvar insulated, �1 mm tip separation, 100 –350 k� imped-
ance at 1 kHz) following our previously reported methods (Beshel et al.,
2007; Martin et al., 2007; Rojas-Líbano and Kay, 2012) in the anterior/
dorsal OB (8.7 mm anterior to bregma, 1.5 mm lateral, 1.5 mm deep),
posterior/ventral OB (8.3 mm anterior to bregma, 1.5 mm lateral and 4.3
mm deep), anterior pyriform cortex (aPC; 0.5 mm anterior to bregma, 3
mm lateral, 7.2 mm deep at a 15 degree angle from vertical), and poste-
rior PC (pPC; 2.3 mm posterior to bregma, 3 mm lateral 8 mm deep at a
15 degree angle from vertical). Ground and reference electrodes were
secured to head screws caudal to lambda. Electrodes were visualized to
pierce the cortex, and signals were recorded as the electrode was lowered.
A final location was selected if the signals on each electrode reversed
themselves. If there was no reversal, the location with the largest ampli-
tude was selected.

Each electrode was attached to a nine-pin connector (Ginder Sci-
entific). Signals were acquired with a Neuralynx Cheetah32 system
and a unity-gain headstage cable from NB Labs. Signals were ampli-
fied 4000�, sampled at 2020.2 Hz, and analog filters set at 1–325 Hz.
Because there was a substantial amount of movement artifact within
the signals, all trials were checked by eye. Any trial that had artifact
during the odor-sampling period or within 400 ms before nose-poke
on was discarded. Recordings from the pPC are omitted from analysis
due to poor signal quality from many of the subjects. Because we did
not have good signals from both the aOB and pOB in all rats, we
pooled the good trials from the aOB and pOB electrodes within each
rat and labeled them as OB. The good trials from the aPC electrodes
were pooled together within each rat and were labeled as aPC. Before
analysis 60 Hz line noise was removed from the signals using the
Chronux toolset (Bokil et al., 2010).

Behavior
Experiment 1: between subjects. Rats were initially trained in one of two
behaviors (GNG or TAC) using our standard methods (Frederick et al.,
2011). Training involves a progression through three phases. In Phase 1, rats
learn to nose-poke in the central odor port. In Phase 2, rats learn to nose-
poke in a response port (located to the left of the central odor port) after first
nose-poking in the odor port. In Phase 3, rats learn to either refrain from
responding to a second odor (GNG behavior) or to respond into a right
response port for a second odor (TAC behavior). Rats were reinforced with
a sucrose pellet reward for correct go responses. A reward was one 45 mg
sucrose pellet (Bio-Serve Dustless Precision Pellets, #F06233), delivered au-
tomatically after a correct response for a rewarded trial.

After training, the rats were implanted with electrodes (see Surgery).
Two weeks after surgery, rats were retrained using the training odor set in the
task that they had learned before surgery. After rats reached �80% perfor-
mance on the training odors, they were tested on the test odor sets. Rats were
initially tested on odor sets S2-S4 (Table 1) with presentation order random-
ized. Then they were tested on the extreme odor set. This order was chosen
because in a previous behavior study we found that, while rats could perform
above chance on the extreme odor set, their performance was very low, and
we wanted to test first in the normal condition due to the smaller numbers of
animals for behavioral electrophysiology. Following completion of these
odor sets, two new odor sets were devised and rats were tested on them
(S5-S6) in order. Because of a technical error, two rats were run for more
than the maximum of 10 days on an odor set. Results did not change whether
or not these data were included. Therefore, we selected to retain these extra
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days. Each session consisted of 150 trials. Rats were given one or more rest
days between odor sets.

Experiment 2: within subject. After we had completed some of the
planned data analysis at the end of Experiment 1, we began a second
follow-up experiment on the remaining subset of Experiment 1 rats (n �
3) to determine whether the results would hold when rats were chal-
lenged to do both tasks in the same day. The rats were trained on the
behavior that they had not previously learned; two TAC rats were re-
trained to perform the GNG task, and one GNG rat was retrained to
perform the TAC task. Once the rats had a solid command of both tasks,
they were tested on the same day on both tasks. The order of the tasks was
randomized within each day for each subject, and the rats were tested on
three previously used odor sets (S2-S4) plus one new odor set (S8). Two
rats had odor sets (S2-S4) interleaved such that they performed a differ-
ent odor set each day for a total of 4 d per odor set. The particular
sequence of odor sets across days was randomized. The third rat was
tested in our usual block design on S2-S4 (as in Experiment 1) and then
S8. Because of technical errors, this rat was tested on S2 for 6 d and S8 for
2 d. As in Experiment 1, each session consisted of 150 trials, resulting in
a total of 300 trials per day.

Odor sets
Odor sets were composed of two components (labeled A and B; Table 1).
Components were either monomolecular (training odor set, extreme
odor set, and odor sets 2– 4 and 8) or mixtures (odor sets 5– 6). For most
of the monomolecular odor sets, the components were matched as
closely as possible to avoid volatility differences that might drive differ-
ences in behavior or physiology (Lowry and Kay, 2007). For GNG, odor
A was the go signal (i.e., rats were trained to respond to this stimulus with
a nose-poke in the single response port on the left side) and odor B was
the no-go signal (i.e., rats were trained to refrain from responding to this
stimulus). For TAC, odor A was the go-left signal (i.e., rats were trained
to make a response in a left response port to this stimulus) and odor B was
the go-right signal (i.e., rats were trained to make a response in a right
response port to this stimulus).

The extreme odor set was made using (�)-limonene and different trace
airborne contaminants that were absorbed into the pure odorant. Test tubes
that held the same odorant were contaminated by placing them in different
experimental rooms, without a stopper, for at least 4 h. The extreme odor set
was inspired by a report that rats could discriminate between mineral oil
made by different companies (Gamble and Smith, 2009).

Statistical methods
Statistical analysis was done using generalized least-square (GLS) meth-
ods to control for correlated data. Analysis was done in R using the gls
and anova functions from the nlme package (Pinheiro and Bates, 2000;
Pinheiro et al., 2016).

Behavior analysis
Session performance was calculated as the mean of the individual com-
ponent performance: that is, (Performance(A) � Performance(B))/2).
Session sampling duration was calculated as the median. GLS models
were fit to determine whether task or odor set was a significant predictor
of performance or sampling duration. We found significant effects and,
therefore, have included performance and sampling duration as possible

covariates in statistical models of the LFP. A full analysis of the behavior
data is reported in a forthcoming paper.

LFP analysis
We did two different analyses with the LFP data. The first analysis looked
at the mean spectral power level during two periods: the preodor period
(�400 ms before nose-poke-on to nose-poke-on) and the odor-
sampling period (nose-poke-on to nose-poke-off plus 50 ms). Spectral
power was computed using MATLAB’s native wavelet method (The
MathWorks), cwt, with Morlet wavelets. Coherence was also computed
using wavelet methods with Morlet wavelets in MATLAB using the wco-
her method with time smoothing set to 50 points (�25 ms) and scale
smoothing set to 3 scales. We used the Fisher Z-transform (Z-coher-
ence � arctanh(coherence)) to transform coherence, as we have in pre-
vious studies (Brillinger, 1981; Kay and Freeman, 1998; Kay and Beshel,
2010; Kay and Lazzara, 2010). This method spreads the usual 0 –1 coher-
ence range to 0 to infinity, making the distribution statistically more
tractable. Because the time windows are short, coherence values are gen-
erally overestimated. We therefore estimated the chance coherence levels
and 95% CIs using resampling of the data. For each session, we selected
2000 random pairings of an OB and aPC trial (with replacement) and
computed the coherence for the pairing of usually mismatched record-
ings. We then computed the mean and 95% CIs for each experiment
using these values.

We first computed average values for each electrode as follows. For
each trial within a session, we computed a time-frequency matrix ( X)
and then divided the data into preodor (XPre) and odor-sampling (XOdor)
periods. The odor-sampling period length varied based upon sampling
duration. For each frequency band of interest ( fa, fb), we computed the
preodor mean as follows:

x� Pre �
1

808 �
t�1

808 1

fb � fa
�
f�fa

fb

X	t, f 


and the odor-sampling period as follows:

x� Samp �
1

T � 808 �
t�809

T 1

fb � fa
�
f�fa

fb

X	t, f 


where t is time in data points (1 point � 1/2020.2 s; 808 points � 400 ms)
and T is the total length of a trial (length of the odor-sampling period plus
preodor period) in points. We then computed the odor session average
values. To do this, we averaged the preodor and odor-sampling periods
for each odor (A, B). This resulted in four average values for each elec-
trode for each frequency band of interest 	x�Pre, A, x�Pre,B, x�Oder, A, x�Oder,B
.
We then averaged all the OB electrode values and all the aPC values to
obtain a single set of averages for each brain region, which resulted in
eight averaged values for each session for each frequency band of interest.
These values were then used as the dependent variable (DV) values in
statistical modeling. The general form of the model was as follows:

DV � task � region � odorSet � component � logVP

� performance � samplingDuration � dayNumber � CoV.

Table 1. Odor setsa

Odor set A VP (kPa) VP (mmHg) B VP (kPa) VP (mmHg)

Training anisole 0.524 3.93 amyl acetate 0.545 4.088
Extreme (�)-limonene� trace 0.206 1.545 (�)-limonene � trace 0.206 1.545
S2 propyl proprionate 1.859 13.943 ethyl butyrate 1.643 12.323
S3 hexanal 1.333 9.998 ethyl benzene 1.392 10.44
S4 heptanone 0.23 1.725 octanone 0.372 2.79
S5 (�)-carvone/propyl proprionate 0.816 6.12 (�)-limonene/propyl proprionate 0.767 5.753
S6 MIX � citral 0.032 0.24 MIX � citronellal 0.031 0.233
S8 cineole 0.185 1.388 hexyl acetate 0.219 1.643
aWithin each odor set, the odors are listed in order (odor A, B). MIX: Octanol, decanol, hexanoic acid,�carvone, methyl furoate. Values retrieved from manufacturer websites or http://pubchem.ncbi.nlm.nih.gov/. Odors were purchased from
Sigma-Aldrich (propyl proprionate, hexanal, hexyl acetate, decanol, hexanoic acid, methyl 2-fuorate), Fluka (anisole, citral), Fisher Scientific (ethylbenzene), and ACROS Organics (n-amyl acetate, 2-heptanone, 2-octanone, ethyl butyrate,
d-limonene, cineole, octanol, carvone). Theoretical vapor pressure (VP) is given for each odor/mixture in kPa (kilo-Pascals) and mmHg.
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Task (GNG, TAC), region (OB, aPC), odor set (training, extreme, S2-S6,
S8), and odor (A, B) were nominal variables. LogVP was the log theoret-
ical vapor pressure of an odor, or mean if a mixture (for most odor sets,
the logVP was matched for the two odors; Table 1). Performance was the
performance for the odor (A, B) for the session. Sampling duration was
the mean value for the odor (A, B) for the session. Day number was the
testing day number within each odor set. CoV was an exponential cova-
riance matrix meant to correct for correlated data terms. Figures and CIs
produced from the lsmeans function, which produce least-square means
(alternatively often called estimated marginal means), are estimated
means from the fitted model. These means may not necessarily be the
same as the arithmetic means of the underlying data. We present the
least-square means and use them for interpretation because our argu-
ment stems from the model building. For the tables, we present the
coefficients and SEs of the fixed effects for the fitted model. We place
asterisks next to coefficient values that were significant based upon t
values from the GLS fit as seen in the summary command. We also place
superscripts next to the factor name indicating which (if any) models
were significant based upon the Wald F test done using the anova func-
tion for each factor. We place a hashtag (#) next to continuous factors
(e.g., performance) that were significant based upon the Wald F test but
that were not significant as seen in the summary function based upon t
values. When the results differed between the coefficient t value and
Wald F test, we built a new GLS model leaving out the covariate of
interest. We then tested the two models against each other using the
likelihood ratio tests with the anova function.

The second analysis, which we refer to as power or coherence trace
models, focused on the temporal dynamics of the LFP power in each
oscillation band. We performed this second analysis for two reasons.
First, given that rats were able to select their own sampling durations, the
first analysis could be confounded by temporal patterns of power across
differing sampling durations. For example, beta oscillations could occur
in a well-defined period of time (e.g., 400 – 800 ms). If this were true, then
rats that sampled significantly longer may have lower levels of beta power
than rats that sampled just within the optimal period. Second, two mean
level values could be arrived at by very different underlying dynamics.
For example, a given level could be due to high levels of the underlying
oscillation during one particular time period or to lower levels of the
underlying oscillation across the entire period.

For the second analysis, instead of using mean values for the preodor
and odor periods, we examined each time point between �400 ms before
nose-poke-on to 1000 ms after nose-poke-on (data used from each trial
ended at the end of the sampling period 50 ms). To do this, for each
electrode we did the following. For each trial, we computed the time-
frequency matrix ( X). Then, for each time point (�400 ms to 1000 ms)
we found the average value for the frequency band of interest. We then
divided the results into two sets based upon odor (A, B). Then, for each
time point, we found the average within the two sets. Given that different
trials had different sampling durations, we excluded trials for a given
time point if that trial did not have data at that time point. For example,
if there were 150 trials for odor A within a session, but only 130 of those
trials had data at time point t, then only those 130 trials would be
values used for averaging. This method produced two average values for
each electrode within each session. We then averaged all the OB elec-
trodes together and all the aPC electrodes together. Ultimately, this pro-
duced four averaged values within each session at each time point
	x�OB, A,t, x�OB,B,t, x�aPC, A,t, x�aPC,B,t
 for a given frequency band. These values
were then used as the DV value for the GLS models for each time point as
follows:

DV(t) � task � region � odorSet � component � logVP

� performance � samplingDuration � dayNumber � CoV.

For each time point, we also computed 95% CIs based upon the GLS
models using lsmeans in R, which are shown in Figures 4 –7. We also
computed the p values for task, brain region, odor set, and component
for each time slice. Significant results ( p � 0.05) are shown in Figures
3– 6 as black dots above the horizontal axis.

All figures were produced in MATLAB (R2015b). Figure adjustments
(e.g., adding titles) were done in Adobe Photoshop CC (Adobe Systems,
2015).

Results
We hypothesized that rats engaged in GNG and TAC odor dis-
crimination tasks would use beta and gamma networks differ-
ently, that the two frequency bands would represent different
modes of processing driven by cognitive differences in task struc-
ture (e.g., behavioral responses, rewards). Experiment 1 was a
between-subjects comparison, and Experiment 2 was a follow-up
within-subjects experiment using a subset of the rats from Exper-
iment 1. In both experiments, we tested the effects of brain area
and odor sets in addition to task. The general behavior protocol
was the same for both experiments in which rats were trained to
nose-poke into an odor-port, sniff an odor, and make a learned
response based upon the odor. Rats were able to sniff the odor for
as long as they wanted; we placed no minimum or maximum on
how long the rats could sniff. To our knowledge, this paradigm is
unique to our laboratory and allows us to explore behavior that
may not be observed when sampling duration is capped at 1 or 2 s
(Frederick et al., 2011; Rojas-Líbano and Kay, 2012).

In the first experiment, rats were trained and tested in either a
GNG or TAC task (n � 4/group) on many odor sets (Table 1). In
the second experiment, three rats that had completed the first
experiment were trained on the task that they had not previously
learned and discriminated a subset of previously learned odor
sets plus one new set. One GNG rat learned TAC, and two TAC
rats learned GNG. In both experiments, LFP signals were re-
corded simultaneously from the OB and PC, and we used these
signals to identify what we call dynamical states, the oscillation
mode used by a brain region or the entire system at a given time
(gamma or beta oscillations). Statistical analyses of power and
coherence were done by fitting GLS models. We present the re-
sults focusing on Experiment 1 and provide comparisons with
Experiment 2 where the results differ.

Behavioral comparisons
Behavioral differences between tasks are the focus of a separate
series of experiments in a forthcoming report. Here, we focus
solely on those behavioral results necessary to interpret the
electrophysiological results due to their inclusion in statistical
models.

Behavior differed between the two experiments and between
tasks based on the nature of the experiment. In Experiment 1, rats
tested in GNG outperformed rats tested in TAC by �18%, on
average, based upon a weighted mean calculation (GNG �
[79.17, 88.24%], TAC � [61.34, 68.86%], F(1,314) � 18.4168, p �
0.0001). In Experiment 2, where rats were trained and tested on
both behaviors, performance did not differ significantly between
tasks (GNG � [76.47, 86.78%], TAC � [81.22, 91.20%],
F(1,102) � 0.1273, n.s.).

Sampling duration differences between tasks also depended
on the experiment. In Experiment 1, the sampling time difference
between tasks was not significant (GNG � [439, 525 ms], TAC �
[466, 536 ms], F(1,323) � 2.0194, p � 0.1563). In Experiment 2,
rats sniffed �130 ms longer in the GNG than the TAC condition
(GNG � [628, 680 ms], TAC � [496, 547 ms], F(1,102) � 52.307,
p � 0.0001). For �8 Hz sniff frequencies, which are widely re-
ported for freely moving rats and mice during odor discrimina-
tion, this difference amounts to one additional sniff (Youngentob
et al., 1987; Uchida and Mainen, 2003; Rajan et al., 2006; Kepecs
et al., 2007; Rojas-Líbano and Kay, 2012).
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Figure 1. Data and frequency analysis. a, Sample voltage traces showing gamma (red horizontal bars) and beta (blue horizontal bar) oscillations during a single trial. The vertical line
at 0 indicates nose-poke-on, with the estimated arrival of the odor stimulus at �60 ms (Frederick et al., 2011). OB is the top trace and aPC the bottom trace for the raw data. b, Gamma
(top) and beta (bottom) band wavelet plots showing frequency over time from the data in a. Color represents power: red represents high. Note the sweep in frequency from higher to
lower for the first two gamma bursts and the abrupt transition from gamma to beta just after 250 ms. c, Sample wavelet time-frequency plots showing three session averages (columns
represent three different odor sets). ci, OB power: note strong gamma during early odor sampling for the extreme odor set, lower-power gamma and strong beta for odor set 2, and both
gamma and beta power for odor set 3. cii, aPC power: note the similarity in beta power between OB and aPC. Gamma power in the aPC is much smaller than in the OB. ci, cii, The same
color scale, which is in dimensionless units after normalization and log transform. ciii, Coherence between OB and aPC shows a decrease in strength during odor sampling in the lower
frequency bands for the extreme odor set, and coherence overall is primarily limited to the beta band as reported previously (Kay and Beshel, 2010). Coherence is represented as
Z-coherence (arctanh of coherence; see Materials and Methods). Vertical line at time 0 indicates nose-poke-on. White bar at top of each plot represents the distribution of end sampling
times for each session.
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Given these results, performance and sampling duration were
added as covariates in the statistical models used below to control
for the possibility that any differences in the LFP could be due to
differences in performance and/or sampling durations and not to
task or olfactory brain region.

LFP comparisons
During data collection and exploratory data analysis, we noted
that LFP activity across tasks and odor sets was more similar than
expected and followed a clear temporal pattern. Before nose-
poke-on (which is the point at which odor would begin to be
delivered; Fig. 1a, time � 0) we observed occasional beta oscilla-
tions. At and following the initial nose poke, there were large
gamma oscillations for 1– 4 sniffs (example in Fig. 1a,b; we iden-
tify sniffs using the theta band of the OB LFP) (Rojas-Líbano et
al., 2014). After those initial sniffs, the system transitioned to beta
oscillations, the amplitude of which appeared to be odor set con-
tingent. The three example sessions in Figure 1c show the com-
plex range of qualitative patterns that emerge during an odor
session. Our highest overlap odor set, Extreme (�limonene/�
limonene with different trace contaminants in each odor sample;
see Materials and Methods), shows large OB gamma in the early
odor sampling period and little beta power in either brain region
in the later part of odor sampling. Other odor discrimination
pairs result in both gamma and beta oscillations (Fig. 1c; odor sets
2 and 3), and odor sets that are composed of odors with very low
volatility (S6, data not shown, but see Figs. 4 –7d, bottom) have
low-power gamma and beta oscillations. These qualitative results
suggest that there are multiple factors that determine the strength
of gamma and beta oscillations.

To understand the frequency space in which the oscillation
bursts, or wave packets (Freeman, 2003), occurred, we used an
algorithm to extract time and band-limited oscillation bursts
pooled across all sessions, experiments, and OB and aPC. Results
showed that the mean frequency for gamma packets followed a
bimodal distribution with peaks at 73 and 85 Hz (Fig. 2, left). Beta
packets followed a unimodal distribution with a narrow peak at
23 Hz (Fig. 2, right). Given the bimodal distribution observed for
gamma packets and recent hypotheses concerning the possibility
of distinguishing mitral and tufted cell populations in LFP
gamma oscillations (Manabe and Mori, 2013), we added an ad-
ditional analysis to our planned analyses that focused on slow
(62– 80 Hz; presumed mitral cell) and fast (80 –110 Hz; presumed
tufted cell) gamma sub-bands. It should be noted that these
gamma sub-bands do not correspond to gamma1 (�60 Hz) and
gamma2 (50 –55 Hz) in our earlier report (Kay, 2003) but are
likely sub-bands of gamma1. While our division of gamma1 here
is slightly different from that in Manabe and Mori (2013), it is

common for frequencies within the gamma band to vary some-
what dependent on species, state of arousal, and other unknown
factors (Bressler and Freeman, 1980; Kay et al., 2009).

First, we tested the session-averaged statistics within and be-
tween tasks on the preodor and odor periods. The odor period
duration varied from trial to trial because it was defined as the
period of time when the animal was in the odor-port plus 50 ms
after the end of odor sampling. We defined the 400 ms period just
before nose-poke-on as the preodor period. For the odor and
preodor periods, the session statistics were computed as the av-
erage (power or coherence) over all the trials in a session, for each
component. Statistical analysis was done by fitting GLS models to
these period averaged values (see Materials and Methods).

While the above analysis gave us a mean picture of the differ-
ences between tasks, odors, and brain regions, it left out finer
grained temporal dynamics. In other words, given any significant
findings for the session-averaged statistics, were the differences
driven by particular temporal patterns of the onset of beta and
gamma oscillations? To analyze the data on a millisecond time-
scale, we computed GLS models at each time point (see Materials
and Methods). We consider significant only those time points
that cluster together, given the obvious issues with multiple com-
parisons. We refer to these analyses as “trace models,” which
represent analysis of sets of frequencies from the time-frequency
wavelet based matrices.

Results are presented together grouped by frequency band,
except for coherence, which is presented at the end of the results.
Given the large number of statistical tests that were done, we have
attempted clarity with brevity. Before analysis, we set a threshold
of � � 0.05 as our decision boundary for significance. We report
the GLS coefficients and SEs for analysis of power in tables
(Tables 2–5. In the text, we report the Wald F test statistics when
a factor was significant with the exception of the intercept, which
we only report when pertinent to interpretation. Any factor in the
analysis not mentioned in the text was not statistically significant.
We present the results in each section in the order task, brain
region, component odor A,B, and odor set, followed by addi-
tional significant effects within each frequency band, such as
sampling duration and performance.

Beta (15–35 Hz)
We first analyzed session averages during the preodor and odor
periods using the full periods. Across both experiments and both
periods of analysis, we found several significant factors (for
model fits, see Table 2; for 95% CI for task and brain region, see
Figure 3a,b).

Task differences in beta power occurred in the preodor
period but not in the odor period. In the preodor period in
Experiment 1, rats performing the TAC task produced larger
beta oscillations than rats performing the GNG task (Table 2;
Fig. 3a; F(1,1243) � 16.78, p � 0.0001). The task difference was
in the same direction in Experiment 2, but it was not signifi-
cant ( p � 0.05). This is in contrast to the odor periods in both
Experiment 1 and Experiment 2 where there was no difference
between tasks ( p values �0.05).

Regional differences in beta power were small and not consis-
tent across experiments. Beta power may be larger in the aPC
than the OB during the odor period in Experiment 1 (Table 2; Fig.
3b). Although the covariate was significant (p � 0.0484) within
the GLS model, it was not significant when tested using Wald’s F
test (F(1,1243) � 3.70, p � 0.0547). As a further test to determine
whether brain region was significant, we built a new model leav-
ing it out. We then tested this new model against the original

Figure 2. Wave-packet frequency distributions. Gamma (left) and beta (right) wavepacket
mean frequency histograms. Distributions represent bursts collected from OB and aPC. Gamma
occupies a broad band with twin peaks at �73 Hz and �85 Hz in both the OB and aPC. Beta
occupies a narrow band centered at �23 Hz.
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model (see Materials and Methods) and found that the model
with brain region as a covariate was significantly better than the
one without (p � 0.044). Therefore, it may be that there is a
significant, but small, effect of brain region in Experiment 1 dur-
ing the odor period. In Experiment 2, aPC power was larger only
in the preodor period (F(1,294) � 10.67, p � 0.0012).

Components of odor sets were assigned to odors A and B (go
and no-go in GNG, left and right response in TAC, respectively).
Beta power did not vary significantly by odor (A, B) in Experi-
ment 1 but varied significantly in Experiment 2 only during the
odor period (F(1,294) � 3.90, p � 0.0493) with odor B producing
less beta power than odor A (Table 2). Interaction terms were not

Table 2. GLS model results for betaa

Odor period Preodor period

E1 E2 E1 E2

Intercepta,b,c,d 5.97 (0.85)*** 5.13 (2.38)* 2.26 (0.50)*** 3.27 (0.67)***
Taskc

GNG Reference
TAC �0.14 (0.26) �0.29 (0.54) 0.48 (0.17)** 0.07 (0.16)

Region
OB Reference
aPC 0.45 (0.23)* �0.68 (0.53) 0.30 (0.16) 0.47 (0.16)**

Odor seta,b

T Reference
EX 0.21 (0.85) — 0.49 (0.57) —
S2 1.60 (0.92) 3.7 (1.94) 0.69 (0.63) �0.85 (0.59)
S3 0.10 (0.84) �0.52 (1.89) 0.68 (0.57) �1.11 (0.57)
S4 0.39 (0.60) �1.23 (1.55) �0.02 (0.4) �0.85 (0.45)
S5 0.26 (0.61) — 0.54 (0.4) —
S6 1.99 (2.08) — 0.79 (1.43) —
S8 — �2.38 (1.91) — �0.59 (0.57)

Odorb

A Reference
B 0.09 (0.25) �1.18 (0.57)* 0.07 (0.17) �0.02 (0.17)

logVP (power/kPa) 0.96 (0.70) �0.45 (1.24) 0.02 (0.48) �0.11 (0.39)
Performance (power/%) 0.003 (0.004) 0.004 (0.01) 0.001 (0.002) 0.01 (0.003)
Sampling durationb,c,d,e (power/ms) �0.004 (0.001)*** 0.003 (0.001)* �0.001 (0.0003)*** 0.001 (0.0004)**
Daye (power/d) �0.02 (0.04) �0.18 (0.16) 0.04 (0.02) �0.13 (0.05)**
aOdor sets are identified in the coefficient column by name or S � number (for odors, see Table 1). logVP, Log of the average theoretical vapor pressure for the odor set; T-S8, odor sets (see Table 1).
bOdor Experiment 1 (Wald F test).
cOdor Experiment 2 (Wald F test).
dPreodor Experiment 1 (Wald F test).
ePreodor Experiment 2 (Wald F test).

*p � 0.05; **p � 0.01; ***p � 0.001 level; significant coefficient (t value); #for a continuous factor, the Wald F test was significant, but the t value for the coefficient was not significant.

Table 3. GLS model results for gamma powera

Odor period Preodor period

E1 E2 E1 E2

Interceptb,c,d,e 1.36 (0.23)*** 2.33 (0.53)*** 0.95 (0.17)*** 1.92 (0.45)***
Taskd

GNG Reference
TAC 0.03 (0.08) �0.05 (0.15) 0.15 (0.06)** 0.03 (0.12)

Regionb,c,d,e

OB Reference
aPC �0.83 (0.07)*** �0.95 (0.15)*** �0.58 (0.05)*** �0.52 (0.12)***

Odor setb,d

Training Reference
Extreme 0.22 (0.25) — 0.08 (0.19) —
S2 0.23 (0.27) �0.25 (0.52) 0.19 (0.20) �0.18 (0.43)
S3 0.36 (0.25) �0.26 (0.49) 0.16 (0.18) �0.24 (0.41)
S4 �0.21 (0.18) �0.26 (0.38) �0.14 (0.13) �0.18 (0.32)
S5 �0.19 (0.18) — �0.08 (0.13) —
S6 �0.19 (0.62) — �0.03 (0.46) —
S8 — �0.39 (0.50) — �0.32 (0.41)

Odor
Odor A Reference
Odor B �0.02 (0.07) 0.09 (0.16) 0.03 (0.05) 0.01 (0.13)

logVP (power/kPa) �0.04 (0.21) �0.12 (0.37) 0.001 (0.001) �0.00.4 (0.30)
Performanced (power/%) 0.001 (0.001) 0.004 (0.002) 0.001 (0.001)# 0.003 (0.002)
Samp durationb (power/ms) �0.0004 (0.0002)** �0.0003 (0.0003) �0.0001 (0.0001) �0.000 (0.0002)
Day (power/d) 0.02 (0.01) �0.02 (0.04) 0.01 (0.01) �0.03 (0.03)

For a–e, *, **, ***, and # definitions, see Table 2.
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significant, so it is unlikely that the response asymmetry in GNG
drove any differences.

Odor set was the major determinant of differences in beta
power. In both experiments, odor set was a significant factor
during the odor period (Table 2; Experiment 1: F(6,1243) � 16.80,
p � 0.001; Experiment 2: F(4,294) � 15.59, p � 0.001). S2 pro-
duced the largest beta power. Post hoc multiple comparisons (us-
ing Bonferroni adjustments; Experiment 2: � � 0.0024, E3: � �
0.005) suggest that in both experiments S2 beta was significantly
larger than S3 beta (Experiment 1: p � 0.0004; Experiment 2: p �
0.0001).

Beta power was associated with sampling duration in both
experiments during both the preodor and odor periods but in
opposite directions (Table 2; Wald F test was significant for all
but Experiment 2 odor period. Experiment 1 (odor): F(1,1243) �
37.37, p � 0.001; Experiment 1 (preodor): F(1,1243) � 23.86, p �
0.0001; Experiment 2 (odor): F(1,294) � 3.83, p � 0.0512; Exper-
iment 2 (preodor): F(1,294) � 8.76, p � 0.0033). Associations with
preodor beta mean that the amount of beta power before the
sampling period can predict the duration of the subsequent sam-
pling period. Associations with odor period beta mean that larger
or smaller beta power is associated with longer sampling dura-

Table 4. GLS model results for slow gamma powera

Odor period Preodor period

E1 E2 E1 E2

Interceptb,c,d,e 1.51 (0.28)*** 2.88 (0.62)*** 1.00 (0.20)*** 2.41 (0.54)***
Taskd

GNG Reference
TAC 0.05 (0.09) 0.03 (0.17) 0.19 (0.06)** 0.18 (0.14)

Regionb,c,d

OB Reference
aPC �0.84 (0.08)*** �0.79 (0.16)*** �0.51 (0.06)*** �0.16 (0.14)

Odor setb,d

Training Reference
Extreme 0.28 (0.30) — 0.16 (0.21) —
S2 0.32 (0.33) �0.56 (0.60) 0.23 (0.23) �0.44 (0.50)
S3 0.53 (0.30) �0.53 (0.57) 0.20 (0.21) �0.46 (0.47)
S4 �0.23 (0.21) �0.65 (0.44) �0.17 (0.15) �0.48 (0.38)
S5 �0.19 (0.21) — �0.07 (015) —
S6 �0.15 (0.74) — 0.03 (0.51) —
S8 — �0.90 (0.57) — �0.66 (0.48)

Odor
Odor A Reference
Odor B �0.03 (0.09) 0.05 (0.18) 0.03 (0.06) �0.05 (0.15)

logVP (power/kPa) �0.03 (0.25) �0.19 (0.41) 0.03 (0.17) �0.08 (0.34)
Performanced (power/%) 0.002 (0.001)* 0.004 (0.003) 0.002 (0.001)# 0.002 (0.003)
Sampling durationb (power/ms) �0.0004 (0.0002)* 0.0001 (0.0003) �0.0001 (0.0001) 0.0003 (0.0003)
Dayb (power/d) 0.02 (0.01)* �0.05 (0.04) 0.01 (0.01) �0.06 (0.04)

For a–e, *, **, ***, and # definitions, see Table 2.

Table 5. GLS results for fast gamma powera

Odor period Preodor period

E1 E2 E1 E2

Interceptb,c,d,e 1.21 (0.21)*** 1.80 (0.49)*** 0.89 (0.16)*** 1.40 (0.43)**
Taskd

GNG Reference
TAC 0.02 (0.07) �0.13 (0.14) 0.11 (0.05)* �0.13 (0.12)

Regionb,c,d,e

OB Reference
aPC �0.85 (0.06)*** �1.17 (0.14)*** �0.68 (0.05)*** �0.93 (0.12)***

Odor setb,d

Training Reference
Extreme 0.16 (0.23) — �0.002 (0.18) —
S2 0.14 (0.25) 0.07 (0.51) 0.15 (0.20) 0.13 (0.42)
S3 0.18 (0.23) 0.03 (0.48) 0.11 (0.18) 0.03 (0.40)
S4 �0.19 (0.16) 0.15 (0.37) �0.11 (0.13) 0.18 (0.31)
S5 �0.20 (0.16) — �0.10 (0.13) —
S6 �0.23 (0.57) — �0.09 (0.45) —
S8 — 0.16 (0.49) — 0.09 (0.40)

Odor
Odor A Reference
Odor B �0.02 (0.07) 0.13 (0.16) 0.03 (0.05) 0.07 (0.13)

logVP (power/kPa) �0.05 (0.19) �0.06 (0.37) 0.004 (0.15) �0.0001 (0.29)
Performanced,e (power/%) 0.001 (0.001) 0.005 (0.002) 0.001 (0.001)# 0.005 (0.002)*
Sampling durationb,c (power/ms) �0.0003 (0.0001)* �0.001 (0.0002)** �0.0001 (0.0001) �0.0002 (0.0002)
Day (power/d) 0.01 (0.01) 0.01 (0.03) 0.01 (0.01) 0.0004 (0.03)

For a–e, *, **, ***, and # definitions, see Table 2.
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tions. In Experiment 1, during both the preodor and odor peri-
ods, sampling duration was negatively correlated with increased
beta power such that each 100 ms of odor sampling was predicted
by a decrease of 0.1 unit of preodor beta and associated with a
decrease of 0.4 unit of beta in the odor period. In Experiment 2,
increased sampling duration was positively correlated with beta
power such that each 100 ms of sniffing was predicted by an
increase of 0.1 unit of beta power during the preodor period and
associated with an increase of 0.3 unit of beta power during the
odor period.

Previous studies on beta power have shown that beta increases
with learning (Martin et al., 2004b, 2007). In Experiment 1, each
rat was tested on each odor set until the performance criterion of
80% or 10 d, so we expected to replicate the increase of beta over
days as rats learned to discriminate each of the odor sets. Day was
a significant factor in beta power only during the preodor period
in Experiment 2 (F(1,294) � 7.51, p � 0.0065); with each addi-
tional day, within an odor set, preodor beta power decreased by
0.13 unit. In Experiment 1, beta power during odor sampling did
not change significantly over days, in contrast to previous studies;
and in Experiment 2, beta power changed only in the preodor
period and opposite the expected direction.

Summarizing the session beta band statistics: When rats per-
formed only one task (Experiment 1), beta power was stronger in

aPC than OB and stronger in TAC than GNG before the odor
started; during odor sampling, there were no differences in task
or brain region. In Experiment 1, beta power scaled with odor set,
with S2 producing the largest beta oscillations, the Extreme odor
set, and S3 the smallest beta, and all test odor sets larger than the
training odor set, matching our previous results (Martin et al.,
2007). We did not replicate previously observed increases in beta
power with learning across days (Martin et al., 2004b, 2007).
Sampling duration during the odor period in Experiment 1 de-
creased in proportion to preodor and odor period beta power
increases.

There were some differences when rats performed both
tasks in Experiment 2. Beta power did not vary significantly
across tasks but was still larger in the aPC than the OB in the
preodor period. Beta power in Experiment 2 was significantly
affected by the odor sets, similar to Experiment 1, but the
training odor set produced large beta in Experiment 2, in
contrast to Experiment 1. In Experiment 1, the training odor
set was the odor set on which the rats first learned the task. In
Experiment 2, this same odor set was used during retraining to
a new task, but neither the task nor the odor set was entirely
new. Sampling duration was related to beta power in the op-
posite direction in Experiment 2 relative to Experiment 1.
Increases in odor sampling time were associated with increases
in beta power in preodor and odor periods.

The session statistics give us tractable statistical samples
with low numbers of comparisons, but examination of the raw
data shows that beta oscillations endure for only a portion of
the odor sampling period or preodor period (Figs. 1, 4).
Therefore, we analyzed the data with an eye for temporal dy-
namics using the trace analysis as described in Materials and
Methods. Beta band trace models revealed additional infor-
mation on temporal structure within a sampling bout. In both
experiments, beta power during odor sampling is not elevated
until 200 –250 ms after the nose-poke, or after at least 1–2 full
sniffs of the odor stimulus (estimated odor delay is 60 ms; Fig.
4a). In Experiment 1, there are extensive periods of significant
task differences in beta power in the preodor period, where
TAC has stronger prestimulus beta than GNG (Fig. 4ai),
matching the session statistics. Also in Experiment 1, aPC
shows stronger beta than OB for extended preodor and odor
periods, but only in the preodor and early odor periods in
Experiment 2 (Fig. 4b); these results vary somewhat from
those derived from session statistics above, which do not take
account of differences in portions of a sampling period. In
Experiment 2, the odor A beta power increase began earlier
than odor B, contributing to the significant odor effect in
session statistics (Fig. 4cii, Table 2). The most robust modu-
lation of beta power was due to the odor set, where beta power
varied not only in overall power but also in temporal dynamics
(Fig. 4d).

Gamma (62–110 Hz)
Recently, it has been proposed that differential activity of mitral
and tufted cells may be inferred by activity in discrete gamma
bands, where higher frequency gamma oscillations may signify
tufted cell firing and lower frequency may signify mitral cell firing
(Manabe and Mori, 2013). Given this hypothesis and the pro-
nounced bimodal distribution of mean gamma frequencies for
individual wave-packets (Fig. 2), in addition to the broadband
gamma analysis, we divided the gamma band into slow (62– 80
Hz) and fast (80 –110 Hz) bands. Analysis followed the same
pattern as that outlined for beta oscillations, focusing first on the

Figure 3. Summary of session statistics. Session statistics are computed on the entire odor or
preodor period using GLS models across all factors listed in Tables 2–5. Results are displayed for
preodor and odor periods for each band and experiment. Within each band, the left 2 pairs of
markers are for Experiment 1, and the right for Experiment 2 for comparison. The scale for beta
power is larger than for the gamma bands. a, Power comparisons by task for beta, gamma, slow
gamma, and fast gamma. b, Power comparisons by brain region (OB and aPC). c, OB-aPC
z-coherence (arctanh of coherence) values. Dashed horizontal lines indicate the values from
shuffled trials for estimate of the random values.
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full preodor and odor periods, followed by trace analysis to look
at the temporal dynamics.

Full gamma band (62–110 Hz)
Task differences were limited for the gamma band. The TAC task
produced more gamma than GNG but only in the preodor period
in Experiment 1 (Table 3; Fig. 3a; F(1,1243) � 9.54, p � 0.0021).
The difference was in the same direction in Experiment 2 during
the preodor period, but it was not significant (p � 0.05). Gamma
power did not differ significantly by task during the odor period
in either experiment.

Gamma was larger in the OB than in
the aPC in both experiments and periods
(Table 3; Fig. 3b; Experiment 1 (odor):
F(1,1243) � 148.59, p � 0.0001; Experi-
ment 1 (preodor): F(1,1243) � 134.62, p �
0.0001; Experiment 2 (odor): F(1,294) �
42.35, p � 0.0001; Experiment 2 (preo-
dor): F(1,294) � 17.85, p � 0.0001). This is
in line with previous research that has
consistently shown larger gamma in the
OB than in the aPC (Martin et al., 2004a;
Beshel et al., 2007).

Odor set component (A, B) did not af-
fect the amount of gamma, but gamma
power did depend on the odor set in Ex-
periment 1 for both the preodor and odor
periods (Table 3; odor F(6,1243) � 5.70, p �
0.0001; preodor: F(6,1243) � 4.14, p �
0.0004). Post hoc analysis showed that in
the odor period S3 had larger gamma than
S5 (Bonferroni correction � � 0.0024).
No pairwise comparisons were significant
in the preodor period. When rats per-
formed both tasks (Experiment 2),
gamma power did not vary by odor set.

Gamma power decreased significantly
with longer sampling times during the
odor period in Experiment 1 (F(1,1243) �
7.69, p � 0.0056). The direction was also
negative in Experiment 2 but was not sig-
nificant. Preodor gamma power did not
predict sampling duration in either
experiment.

In Experiment 1 during the preodor
period, increases in gamma power may
correlate with better performance. The
GLS coefficient was not significant (p �
0.1046), but the Wald F test was (F(1,1243)

� 3.97, p � 0.0466). Building a model
without the performance term was not
significantly different from the full model
(p � 0.10), which suggests that perfor-
mance, if significant, is a small effect. The
estimated coefficients for the odor period
in Experiment 1 and the preodor and odor
periods in Experiment 2 were all positive,
but not significant.

Summarizing the gamma band session
level analysis, we find that the largest and
most persistent effect is the larger gamma
power in OB compared with aPC (Table 3;
Fig. 3). Other effects were smaller and less

consistent across the two experiments. When rats knew only one
task (Experiment 1), TAC rats produced larger preodor gamma
than GNG rats, and there was some variability of gamma power
across odor sets, decreased gamma with increased sampling time,
and some increase in performance with increased preodor
gamma. These effects disappeared when rats knew both tasks
(Experiment 2).

Full gamma band power trace analysis shows fast changes over
the behavioral epochs (Fig. 5). There is an abrupt surge in gamma
power at nose-poke-on. The sniffing pattern is also clearly seen
within many of these plots as brief increases and decreases in

Figure 4. Beta band trace power comparisons. Each row of plots shows a different main effects comparison for Experi-
ments 1 and 2. These values are the outputs of the GLS analysis in which interaction terms were not significant, which
means that the task plots in a include values from both OB and aPC, and the region plots in b include data from both GNG
and TAC, etc. Black points below the plots indicate significance markers ( p � 0.05) from GLS analysis on the time slice. We
consider as significant only effects with a large number of consecutive significance markers. ai, aii, Task effects are
significant before the nose-poke and in the early odor sampling period in Experiment 1, with TAC exhibiting stronger beta
power. bi, bii, Brain region effects are significant in both experiments before nose-poke and in Experiment 1 during the
period of strong beta during odor sampling, with stronger beta in the aPC. ci, cii, Odors (A or B) show no effects on beta
power in Experiment 1, but beta increase starts earlier for odor A in Experiment 2 (left vs right in TAC, CS � vs CS � in GNG,
respectively). di, dii, Odor sets produced differences in beta power during the odor sampling period in both experiments
and before the nose-poke in Experiment 2. The training odor set produced negligible beta in Experiment 1 and increased
beta in Experiment 2. The extreme odor set produced very little beta. T, Training odor set; E, extreme odor set; S#, numbered
odor sets (see Table 1). Power values are smoothed in time over a 50 point (�25 ms) window.
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gamma power in the early sampling pe-
riod; each sniff corresponds to a gamma
event in individual trials (Rojas-Líbano et
al., 2014), which points to stereotyped be-
havior across animals and sessions. This
pattern is most clearly defined in GNG
compared with TAC rats (Fig. 5a). There
is a marked difference in gamma power
between the OB and aPC for the entire
analysis period in Experiment 1 (Fig. 5bi).
This difference is present in Experiment 2,
but there is a large portion of the later half
of the odor-period where the power was
not different between the two structures
(Fig. 5bii). There were no differences in
gamma power between component odors
A and B (Fig. 5c), and the individual odor
set effects were not consistent between the
experiments (Fig. 5d). The extreme odor
set was used only in Experiment 1, and it
shows high gamma power that builds with
later sniffs than the other odor sets, ac-
companied by low beta power (Figs. 1, 4d,
5d).

Slow gamma (62– 80 Hz)
The slow or low-frequency range of the
gamma band has been provisionally at-
tributed to mitral cells, due to its position
in the later part of the sniff cycle (Fig. 1a,b)
(Manabe and Mori, 2013). Slow gamma
power is generally larger in amplitude
than fast gamma power, matching expec-
tations from the 1/f falloff of power in the
frequency spectrum (Kay, 2015), so it is
reasonable to expect that slow gamma
power will recapitulate most of the results
from the full band.

Task differences in slow gamma
power were significant only in Experi-
ment 1; TAC rats showed more power
than GNG rats during the preodor pe-
riod (Table 4; Fig. 3a; F(1,1243) � 12.29,
p � 0.0005).

As with the entire gamma band, we
found that there was significantly larger
slow gamma in the OB than in the aPC during the odor period in
both experiments and during the preodor period in Experiment 1
(Table 4; Fig. 3b; Experiment 1 (odor): F(1,1243) �108.40, p�0.0001;
Experiment 1 (preodor): F(1,1243) � 83.09, p � 0.0001; Experiment 2
(odor): brain region, F(1,294) � 21.25, p � 0.0001). The difference
was not significant in the preodor period in Experiment 2, but it was
in the same direction. This result largely replicates the results from
the full gamma band.

Slow gamma power did not differ by odor component (A,
B), but the power did vary by odor set during both preodor
and odor periods in Experiment 1 (odor: F(6,1243) � 6.78, p �
0.0001; preodor: F(6,1243) � 4.96, p � 0.0001). Post hoc analysis
showed more slow gamma in S3 than S5 during the odor pe-
riod (Bonferroni correction, � � 0.0024; p � 0.0007). There
were no significant pairwise comparisons in the preodor pe-
riod for either experiment.

Odor period slow gamma power increased slightly over test
days within odor sets in Experiment 1 (Table 4; F(1,1243) �
3.88, p � 0.0491; �0.02 unit of slow gamma power increase
per day). Performance was also positively correlated with in-
creased slow gamma power during the Experiment 1 odor
period (F(1,1243) � 3.92, p � 0.0480; Table 4). For each 1%
increase in performance, there is a 0.002 unit increase in slow
gamma power. Performance was also positively correlated in
Experiment 1 during the preodor period (F(1,1234) � 3.92, p �
0.0480), but the coefficient in the model was not significant
( p � 0.4256). As a further test to determine whether perfor-
mance was significant, we built a model without performance,
which did not differ significantly from the full model ( p �
0.1081). This may mean that, if performance is significant, it is
a small effect. Finally, sampling duration was negatively cor-
related with slow gamma power in Experiment 1 during the
odor period (F(1,1243) � 6.33, p � 0.0120); each 100 ms of

Figure 5. Gamma band trace power comparisons. Plots arrayed as in Figure 4. ai, aii, Task effects are significant before the
nose-poke in Experiment 1, with TAC exhibiting stronger gamma power. bi, bii, Brain region effects are significant in both
experiments before nose-poke and during the initial odor sampling period and in Experiment 1 during the entire preodor and
sampling period, with stronger gamma in the OB. ci, cii, Odors (A or B) show no significant differences in gamma in either
experiment. di, dii, Odor sets produce differences in gamma power for both experiments during late odor sampling, and Experi-
ment 1 shows a significant effect of odor set during the entire preodor and odor periods. Legends as in Figure 4d. Power values are
smoothed in time over a 50 point (�25 ms) window.
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sniffing correlated with a decrease 0.04 unit of slow gamma.
These effects were not seen in Experiment 2.

Summarizing the session level statistics for the slow gamma
band, we find the results to be similar to the full gamma band.
The major effect in this band is the increase in odor period
slow gamma in the OB relative to the aPC in both experiments,
and in the preodor period for Experiment 1. Preodor gamma
was stronger for TAC than GNG rats in Experiment 1. Also in
Experiment 1, gamma varied by odor set, increased over days,
predicted increases in performance, and may be negatively
correlated with sampling duration in the odor period. These
results did not repeat in Experiment 2 where rats knew both
tasks.

Slow gamma trace models show a difference in dynamics
between the OB and aPC, with elevated OB slow gamma dur-
ing odor sampling and a large increase early in odor sampling,
matching what the entire gamma band showed (Figs. 5b, 6b).

In Experiment 1, slow gamma is stron-
ger in the OB than the aPC (Fig. 6bi). In
Experiment 2, OB slow gamma is only
stronger during the early odor period
(Fig. 6bii). Only Experiment 1 shows
task differences in slow gamma and only
in the preodor period with TAC stron-
ger than GNG (Fig. 6ai). In Experiment
1, throughout both the preodor and
odor periods, there are significant odor
set differences in slow gamma power
(Fig. 6di). In Experiment 2, the odor set
differences occur only during the later
part of the odor period (Fig. 6dii).

Fast gamma (80 –110 Hz)
The fast or high-frequency range of the
gamma band has been provisionally at-
tributed to tufted cells, due to its position
in the early part of the sniff cycle (Fig. 1b)
(Manabe and Mori, 2013). Our analyses
show some differences between slow and
fast gamma.

Similar to slow gamma, fast gamma
power was significantly larger in TAC
than GNG during the preodor period in
Experiment 1 (Table 5; Fig. 3a; F(1,1243) �
5.69, p � 0.0172).

As seen above in broad band and slow
gamma, fast gamma was larger in the OB
than in the aPC during the odor and preo-
dor period in both experiments (Table 5;
Fig. 3b; Experiment 1 (odor): F(1,1243) �
185.48, p � 0.0001; Experiment 1 (preo-
dor): F(1,1243) � 194.94, p � 0.0001; Exper-
iment 2 (odor): F(1,294) � 70.65, p � 0.0001;
Experiment 2 (preodor): F(1,294) � 66.03,
p � 0.0001).

Fast gamma power did not vary by
odor component (A, B), but it did vary by
odor set in Experiment 1 during both the
odor and preodor period (Table 5; odor:
F(6,1243) � 4.06, p � 0.0005; preodor:
F(6,1243) � 3.02, p � 0.0062). Post hoc anal-
ysis showed no significant pairwise com-
parisons.

During the odor period in both experiments, sampling dura-
tion was negatively correlated with fast gamma power, such that
longer sampling times were associated with decreases in fast
gamma power (Table 5; Experiment 1: F(1,1243) � 6.50, p �
0.0109; Experiment 2: F(1,294) � 7.14, p � 0.0079).

In both experiments, preodor increases in fast gamma power
correlated with increased performance (Table 5; Experiment 1:
F(1,1243) � 3.86, p � 0.0496; Experiment 2: F(1,294) � 5.56, p �
0.0190). The effect in Experiment 1 may be quite weak because the
estimated coefficient is not significant when viewed in model results
(p � 0.1051) but is significant with the Wald’s F test. Building a new
model for Experiment 1 without the performance term was not sig-
nificantly different from the full model (p � 0.11), which suggests
that, if performance is significant in that experiment, it is a small
effect.

Summarizing session-level statistics for the fast gamma band
shows a more consistent picture across the two experiments than

Figure 6. Slow gamma power trace analysis. Plots arrayed as in Figure 4. ai, aii, Task effects are significant before the
nose-poke in Experiment 1, with TAC exhibiting stronger slow gamma power. bi, bii, Brain region effects are significant in
both experiments during the initial odor sampling period and for Experiment 1 during the entire preodor and odor periods
with stronger slow gamma in the OB. ci, cii, Odors (A or B) show no significant differences in slow gamma in either
experiment. di, dii, Odor sets produce differences in slow gamma power during the odor sampling period in both experi-
ments, and Experiment 1 shows a significant effect of odor set during the preodor period as well. Power values are
smoothed in time over a 50 point (�25 ms) window.
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for the other bands. Fast gamma power is
stronger in the OB than the aPC in both
preodor and odor periods for Experiment
1 and Experiment 2. In both experiments,
longer sampling duration during the odor
period correlated with decreases in fast
gamma power, suggesting that later peri-
ods of odor sampling may not engage fast
gamma. In both experiments, increased
performance was correlated with in-
creases in preodor fast gamma, but only
weakly so in Experiment 1. In Experiment
1, TAC showed stronger preodor fast
gamma than GNG, and there was some
variability in fast gamma during odor
sampling across odor sets.

Trace models show both similarities and
differences to the full and slow gamma
bands as oscillations change throughout the
behavioral epoch (Fig. 7). Similar to the full
gamma and slow gamma bands, in both ex-
periments there is significantly more fast
gamma power in the OB than in the aPC
(Fig. 7b); for both experiments, the differ-
ence persists throughout the entire analysis
period for this frequency band. TAC pro-
duces stronger fast gamma than GNG for
much of the preodor period in Experiment
1 (Fig. 7ai). High-frequency gamma power
varies by odor set during the entire preodor
and odor periods in Experiment 1 and dur-
ing the early and late odor sampling periods
in Experiment 2 (Fig. 7d). The extreme odor
set shows the same late-onset sustained high
power for the high-frequency gamma band
as it does for low gamma and the full band
(Fig. 7di).

Coherence
Coherence measures represent shared
activity with consistent phase relation-
ships between the OB and aPC. Coher-
ence is independent of power within
either area, and thus may show different
effects than power within each of the
brain regions, as we have discussed previously (Kay and
Beshel, 2010). Overall, coherence analysis showed fewer sig-
nificant differences across factors than power analysis, but
there were different patterns for the two experiments. Because
most of the comparisons within each band were not signifi-
cant, we present the statistics on significant results in the text
rather than in tables.

In Experiment 1, beta band OB-aPC coherence was stron-
ger for the TAC than the GNG task during the preodor period
(Fig. 3c; F(1,597) � 4.60, p � 0.0323). Experiment 1 gamma
band coherence was stronger in TAC than GNG during both
the preodor and odor periods (gamma(odor): F(1,597) � 5.21, p
� 0.0229; gamma (preodor): F(1,597) � 7.25, p � 0.0073; slow
gamma(odor): F(1,597) � 5.58, p � 0.0185; slow gamma (preo-
dor): F(1,597) � 0.0057; fast gamma (odor): F(1,597) � 4.76, p �
0.0295; fast gamma (preodor): F(1,597) � 6.75, p � 0.0096).

The task differences that were present in Experiment 1 were
not present in Experiment 2. In Experiment 2, beta band coher-

ence did not differ for any of the factors, but there were several
significant effects on gamma band coherence. Preodor and odor
period gamma band coherence decreased with increased sam-
pling duration (preodor: sampling duration coefficient (SE) �
�0.0001 (0.00002) power/ms; F(1,77) � 13.55, p � 0.0004; odor:
sampling duration coefficient (SE) � �0.00006 (0.00002) pow-
er/ms; F(1,77) � 11.79, p � 0.0010)). The amount of decrease was
small; in the preodor period, each 100 ms of subsequent sampling
was correlated with a decrease of 0.002 unit of gamma
z-coherence. In the odor period, each 100 ms of sampling was
correlated with a decrease of 0.006 unit of gamma z-coherence.

Fast gamma coherence during both preodor and odor periods in-
creased over days within odor sets in Experiment 2 (preodor: day coef-
ficient (SE) � 0.007 (0.003) power/d; F(1,77) � 4.95, p � 0.0290; odor:
day coefficient (SE) � 0.006 (0.003) power/d; F(1,77) � 4.08,
p � 0.0468).

Trace coherence models examine gamma and beta coher-
ence over time and show that coherence relationships are tem-

Figure 7. Fast gamma power trace analysis. Plots arrayed as in Figure 4. ai, aii, Task effects are significant in the early preodor
period in Experiment 1, with TAC exhibiting stronger fast gamma power. bi, bii, Brain region effects are significant in both
experiments for the entire period shown. ci, cii, Odors (A or B) show no significant differences in fast gamma in either experiment.
di, dii, Odor sets produce differences in fast gamma power in Experiment 1 during the entire period shown. Experiment 2 shows a
significant effect of odor set only during the latter half of initial odor period and during the late odor period, when beta power is
large (Fig. 4dii). Power values are smoothed in time over a 50 point (�25 ms) window.

7762 • J. Neurosci., July 20, 2016 • 36(29):7750 –7767 Frederick et al. • Oscillations Define Olfactory Neurocognitive Modes



porally more stable than the momentary changes in power
within a frequency band (Fig. 8). In Experiment 1, beta coher-
ence is constant for TAC and higher than GNG until the 250
ms point during odor sampling (Fig. 8a); GNG beta coherence
starts lower and reaches a maximum at �500 ms. Gamma
band coherence is constant throughout Experiment 1 and
stronger for TAC than GNG (Fig. 7c). In Experiment 2, beta
coherence starts lower, increases beginning at �200 ms of
odor sampling, and reaches a maximum after 500 ms of odor
sampling for both tasks (Fig. 8b); gamma coherence is con-
stant in Experiment 2 (Fig. 8d). The experiment differences
persist if coherence analysis on Experiment 1 is restricted to
the same rats that performed Experiment 2 (data not shown),
suggesting a systemwide connectivity difference between the
two experimental contexts.

Comparing dynamics across bands
To more closely inspect the changing picture of slow and fast
gamma dynamics, we computed a ratio of slow to fast gamma
power for each time point for both experiments (Fig. 9a). This
allows us to address the possibility of a trade-off in the circuits re-
sponsible for producing gamma over the course of the sampling
bout and to determine whether the two gamma bands always work
together in the same way. The time courses of the ratio in the OB
and aPC are the same for both experiments, pointing to a unified
dynamical process engaging OB mitral and tufted cells that un-
derlies both tasks, independent of the context in which the tasks
are learned or performed. In the OB, before nose-poke-on and
odor sampling, there is a stable slow/fast gamma ratio, which
shifts to lower values just before nose-poke-on, representing in-

creased fast compared with slow gamma
power. This continues for the first two
sniffs (�200 ms), and then a transition
begins; slow gamma dominates over fast
gamma and builds for the remainder of
the analysis period. When we plot all three
bands on the same plot for each task, we
can see the pattern of give and take be-
tween gamma and beta oscillations (Fig.
9b,c). In Experiment 1 for both tasks,
starting at �250 ms (Fig. 9bi,ci; following
the first full sniff after the odor arrives at
the sampling port), beta and high-
frequency gamma oscillations oppose
each other for the remainder of the odor
sampling period. In Experiment 2, this
transition starts a bit later (Fig. 9bii,cii). In
Experiment 2, the mean of the session me-
dian end sampling times over all rats and
sessions corresponds to the end of the rise
in beta power, as if beta represents an
accumulating process. Data from an indi-
vidual rat who performed both experi-
ments show this accumulation effect in
both experiments (Fig. 9d).

Reconciling previous studies
We began these experiments to test a
hypothesis that arose after observing
different results in two of our previous
studies. In our previous GNG study,
beta oscillations increased with learning
on each new odor set (Martin et al.,

2007). In a more complex TAC task than the one presented
here, gamma oscillations were associated with learning to dis-
criminate closely related odorants, and beta oscillations, al-
though present, did not track learning (Beshel et al., 2007; Kay
and Beshel, 2010). We show representative trials here to com-
pare the timing of gamma and beta oscillations in those studies
relative to the results from the current set of experiments (Fig.
10). There were some important differences between those
earlier studies and the current one; odor delivery had a longer
and less well-controlled delay (estimated to be 150 ms after
nose poke), the odor stayed on for 1.5 s, and we did not track
when the rat was in the odor port during the odor period after
the initial nose poke. Given these differences, we still see a
striking similarity between the earlier studies and this one.
Early sniffs after the nose poke are associated with gamma
oscillations, followed by beta oscillations. Beta was suppressed
for fine, relative to coarse, odor discrimination sessions in the
TAC task (Fig. 10c, compare with Figs. 1c, 4di).

Discussion
In this study, we have addressed the ways in which features of the
tasks we use to evaluate a cortical sensory system may impact the
types of answers we obtain. We examined the modulatory roles of
tasks, learning, and odors on the oscillatory dynamical states that
the olfactory system occupies during odor sampling. These two
states are defined by gamma (62–110 Hz) and beta (15–35 Hz)
oscillations of the LFP and map approximately onto the temporal
aspects of these oscillations in our previous studies (Figs. 9, 10).
We found that many features of a given task, the task itself, and
the number of tasks a rat performs can modify the strength of

Figure 8. Coherence between OB and aPC is modulated by task and experimental context. Trace coherence analysis for beta and
gamma bands with 95% confidence bounds. a, b, Beta band. a, In Experiment 1, TAC coherence is significantly greater than GNG
until 250 ms of odor sampling (when large beta oscillations appear, see Fig. 3; NB coherence measures are independent of power).
b, In Experiment 2, TAC coherence is decreased relative to Experiment 1 in the preodor and early odor periods. There is no task
difference in coherence in the beta band during Experiment 2. c, d, Gamma band. c, In Experiment 1, TAC coherence is stronger than
GNG for the entire analysis period. d, In Experiment 2, TAC coherence values decreased from levels in Experiment 1 showing no task
difference in Experiment 2 (Z-coherence is the arctanh of coherence; see Materials and Methods). Scales in a, b are different from
c, d to better visualize the different coherence values for beta and gamma oscillations, respectively. Gray dotted horizontal lines
indicate chance levels for each band and experiment from shuffled values with 95% confidence bounds (thickness of line). Power
values are smoothed in time over a 100 point (�50 ms) window.
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these oscillations. However, beneath this significant modulation
by myriad behavioral demands (Tables 2–5; Figs. 4 – 8) is a ste-
reotyped sequence of oscillatory states that define early and late
odor processing (Fig. 9).

During odor sampling, rats produce early OB gamma oscilla-
tions locked to stereotyped sniffing for the first 1–3 sniffs after the
odor arrives (Figs. 5–7; Tables 3–5). Beta oscillations emerge be-
ginning after 200 –250 ms of odor sampling, following early
gamma-associated sniffs (Figs. 4, 9). During this later sampling
period, the OB, PC, and other olfactory and limbic areas are
strongly coupled in the beta band (Figs. 1c, 8a,b) (Martin et al.,
2007; Kay and Beshel, 2010; Cohen et al., 2015a).

This conserved oscillation pattern suggests a set sequence of
neurocognitive states that are independently adjusted depending
on odors, discrimination context, and task demands. Thus, the
differences seen in previous studies, including our own, are likely
due to experimental design differences and not to categorical
differences between tasks. However, that some tasks can show
very different results suggests that task features strongly deter-
mine the range of answers that can be obtained from data regard-
ing the underlying system.

Gamma oscillations
We found two peak frequencies centered at 73 Hz and 85 Hz
(Fig. 2). A recent hypothesis predicts that tufted cells are associ-
ated with respiration-locked fast gamma early in a sniff and mi-
tral cells with slow gamma oscillations occurring later in a sniff
(Fukunaga et al., 2012; Igarashi et al., 2012; Payton et al., 2012;
Manabe and Mori, 2013). In support of this hypothesis, we find a
clear sequence of fast- and slow-gamma oscillations during early
odor sampling (Fig. 9b– d, black and blue traces, respectively).
Later in odor sampling, fast gamma is suppressed and slow
gamma is maintained while beta oscillations dominate (Figs. 6,
7), consistent with pathways predominated by mitral and tufted
cell projections to the pyriform cortex and olfactory tubercle,
respectively.

Beta oscillations
Beta oscillations showed a single peak frequency centered at 23
Hz in this study, and beta power modulation occurred in the
preodor and odor periods. We found no evidence of learning-
related frequency changes reported elsewhere (Martin et al.,
2004b) (Figs. 3, 4).

Figure 9. Relative time courses of the frequency bands. a, Fast versus slow gamma dynamics in OB and aPC from Experiments 1 (ai) and 2 (aii); values from OB and aPC are plotted on different
scales to emphasize the similarity in dynamics. The aPC has very little high-frequency gamma (compared with the OB, Figs. 5c, d, 6c, d), so the ratio of slow to fast gamma is very large in the PC. Both
tasks show the same time course of change in slow/fast gamma ratio in the OB and aPC. In the OB, fast gamma power rises during early odor sampling producing a dip in the ratio from 0 to 250 ms,
after which slow gamma increases steadily relative to fast gamma power during the rest of the sampling period. In the aPC, a decrease in the ratio (greater fast relative to slow gamma power) briefly
during early odor sampling is followed by a return to baseline values. b, Comparison of beta, slow gamma, and fast gamma power traces from model estimates in the GNG task (values are normalized to
prestimulus baseline values). Beta traces are displayed relative to the right vertical axis for ease of comparison. Left and right y-axes align at 1. Gray shaded vertical bars represent the distribution of end sampling
times over all subjects and sessions. Note the opposing changes in power over time in fast gamma and beta. Fast gamma drops well below baseline levels after the initial 250 ms of odor sampling, whereas slow
gamma returns to baseline after this early sampling period, increasing somewhat as sampling persists. Also note the easy identification of the first 3 gamma bursts associated with stereotyped sniffs. c,
Comparison of beta, slow gamma, and fast gamma power traces from model estimates in the TAC task. The stereotyped gamma bursts/sniffs are not as clearly defined as in the GNG task. In Experiment 2 for both
TAC and GNG (bii, cii), the sampling end time corresponds with the end of the rise in beta power. d, Example trace power plots from one rat that completed both experiments. Figure is from data using just S2
sessions. di, TAC power traces from Experiment 1 for odor sets S2, S3, and S4. dii, GNG power traces from Experiment 2 for odor sets S2, S3, and S4. diii, TAC power traces from Experiment 2 for the same odor sets.
Note the difference in gamma bursts between TAC and GNG. Values are smoothed in time over a 50 point (�25 ms) window.
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In the preodor period, beta power differed by task (Experi-
ment 1; larger in TAC), brain region (both experiments; larger in
aPC), and subsequent sampling duration (both experiments;
Figs. 3, 4). Interestingly, the direction of correlation between
preodor beta power and subsequent sampling duration was op-
posite between the experiments (Table 2), which may be due to
context differences (i.e., knowing one task or two). Baseline beta
power before stimulus onset was much higher in Experiment 1,
suggesting a difference between the two experimental contexts in
the dynamical structure of the system at baseline. Preodor beta
power and TAC beta coherence increases (Fig. 8) may be related
to beta band input from the lateral entorhinal cortex associated
with preafferent priming (Kay and Freeman, 1998) and odor pro-
cessing (Chapuis et al., 2013). In Experiment 2, TAC preodor beta
coherence is lower than in Experiment 1 and the same as GNG,
indicating a system-level change in the TAC task in the context of
also knowing GNG.

During the odor period, beta power was modulated by odor
set (both experiments; Table 2; Fig. 3a,b), sampling duration
(Experiment 1), and odor set component (A vs B, Experiment
2). In both experiments, odor set 2 produced the strongest
beta power, and this odor set has the highest vapor pressure
values (Table 1). Vapor pressure was not a significant factor in
the statistical model, but odor set and vapor pressure factors
were highly correlated, suggesting that behavioral context af-
fects the vapor pressure modulation of beta power in appeti-
tive learning, compared with passive odor exposure (Lowry
and Kay, 2007).

Odor set and some learning-dependent temporal evolution of
beta were clearly evident (Fig. 4d). Beta oscillations were de-

pressed for the training odor set in Experiment 1 (Fig. 4di), con-
sistent with our previous study, suggesting that beta power
increases only after the first rule transfer to a new odor set (Mar-
tin et al., 2007). When the training odors were reintroduced in
Experiment 2, beta oscillations were strong in the post-training
context (Fig. 4dii). Changes in the PC and hippocampus associ-
ated with olfactory rule learning may support this transition (Saar
et al., 2012). However, this is the only learning-associated mod-
ulation of beta oscillations we observed, in contrast to previous
studies (Martin et al., 2004b, 2007; Cohen et al., 2015a,b). Our
rats performed more trials per session and learned many more
odor sets than in those studies. It is possible that the learning
modulation of beta seen in previous studies may be associated
with a more extended learning of the task and rule transfer rather
than odor association learning per se.

What the oscillations represent
Neocortical gamma and beta oscillations are thought to be re-
lated to attention (Gross et al., 2004; Buzsaki, 2006; Pritchett et
al., 2015), and OB gamma has provided insight into mechanism
and functionality of gamma in attention (Rojas-Líbano and Kay,
2008). OB gamma is relatively local to the OB, showing low co-
herence with other brain regions (Fig. 8c,d) (Martin et al., 2007;
Kay and Beshel, 2010). In the olfactory system, increased gamma
amplitudes represent greater local coherence and precision
among principal neurons (Gray and Skinner, 1988; Eeckman and
Freeman, 1990; Nusser et al., 2001) and is associated with dis-
criminating similar odors in mammals and insects (Stopfer et al.,
1997; Nusser et al., 2001; Beshel et al., 2007). Beta oscillations
represent systemwide coherent states (Kay et al., 2009). Preodor
increases in all frequency bands for TAC relative to GNG in Ex-
periment 1 may map onto a greater attentional demand in Exper-
iment 1 TAC, which produces lower performance. These preodor
task differences disappear in the context of Experiment 2, when
TAC performance increases.

Gamma power increases seen here were not as dramatic as in
our earlier study (Beshel et al., 2007) and did not map exclusively
onto odor similarity (Tables 3–5; Figs. 5–7d). In the previous
study, the TAC task was much more complex than the current
one, suggesting that cognitive load and input overlap may con-
tribute to the perceived differences in odor quality and the need
for gamma. Gamma increase appears delayed for the extreme
odor set (Figs. 5–7di), further suggesting that attentional de-
mands when discriminating very high overlap odors may require
not just enhanced gamma but also slower temporal processes that
engage more sniffs (Abraham et al., 2004). Gamma power and
frequency can also be affected by changes in sniff frequency (Ro-
sero and Aylwin, 2011), but we did not note any systematic dif-
ferences in LFP respiratory rhythm frequency across odors or
tasks.

Beta oscillations depend differently on the same network as
gamma. After the initial odor sniffs until the end of the sampling
bout, high-frequency OB gamma oscillations decrease and sys-
temwide beta oscillations increase (Fig. 9b– d), suggesting that
the physiological circumstances that favor beta oscillations may
prohibit high-frequency gamma. It is possible that the presumed
mitral cell slower gamma oscillations and the different targets of
mitral and tufted cells contribute to a state change as beta oscil-
lations are initiated in the circuit (Haberly and Price, 1977; Iga-
rashi et al., 2012). Two recent modeling studies argue that
switches from gamma to beta oscillations are driven by changes in
OB granule cell excitability due to combined centrifugal and sen-
sory inputs. One models beta oscillations as mediated by the long

Figure 10. Reconciliation of previous experiments. Example OB signals for individual trials
are shown from two previous studies. Nose-poke to start odor is at 0 s. Short gray vertical bar
represents rough estimate of odor arrival time in the setup for these studies (�150 ms). a, OB
data from a rat sniffing nonanone in a GNG task discriminating from butanone (Martin et al.,
2007). The beta oscillation begins at 450 ms after 3 brief sniffs carrying low-amplitude gamma
oscillations. b, OB data from a rat sniffing nonanone in a TAC task discriminating from butanone
(coarse discrimination) (Beshel et al., 2007). The beta oscillation begins at 800 ms after several
brief sniffs carrying irregular and low-amplitude gamma oscillations. c, OB data from the same
rat as in b, sniffing octanone in a TAC task discriminating from heptanone (fine discrimination).
Note the lack of beta and relatively enhanced gamma oscillations.
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decay times of increased NMDA and voltage-dependent calcium
currents in granule cells (Osinski and Kay, 2016). The other relies
on transitions from nonspiking to spiking states, which gives
strong pulses of inhibition to mitral cells (David et al., 2015).

Are beta oscillations necessary for odor discrimination? We
know that, with one full sniff after arrival of the odor (200 ms in
our apparatus), rats and mice usually identify odors above
chance; after 1 or 2 additional sniffs, performance increases in
these tasks and others (Rinberg et al., 2006; Frederick et al., 2011;
Rojas-Líbano and Kay, 2012). Longer sniffing times include beta
oscillations. Because of beta’s late-onset, wide system involve-
ment and being unnecessary for performance above chance, we
infer that gamma, not beta, oscillations are the basic sensory or
perceptual event. Beta oscillations are often the only consistently
coherent band across brain regions in many cortical systems (Kay
et al., 2009; Engel and Fries, 2010), which has led to the idea that
beta oscillations allow communication and transfer of informa-
tion within and between cortical areas (Rubino et al., 2006; Gou-
révitch et al., 2010; Kay and Beshel, 2010). We suggest that
olfactory beta oscillations are better associated with higher cog-
nitive processes, such as making choices or initiating actions
(Hermer-Vazquez et al., 2007) or even with conscious awareness
(Gaillard et al., 2009).

In conclusion, the results reported here suggest that the mix of
gamma followed by beta oscillations varies dependent on partic-
ular cognitive demands, but the two oscillatory modes likely rep-
resent different cognitive states occurring in defined sequence
and give us access to an underlying unified functional framework
consistent with a perception-action loop (Freeman, 1975, 1999).
This result comes only after challenging the system with mul-
tiple tasks and stimulus sets and reinforces the idea that cog-
nitive states reach down into relatively peripheral sensory
cortical systems, and these effects can vary dramatically de-
pending on context.
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