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Summary

Quadratic forms capture multivariate information in a single number, making them useful,
for example, in hypothesis testing. When a quadratic form is large and hence interesting,
it might be informative to partition the quadratic form into contributions of individual
variables. In this paper it is argued that meaningful partitions can be formed, though
the precise partition that is determined will depend on the criterion used to select it.
An intuitively reasonable criterion is proposed and the partition to which it leads is
determined. The partition is based on a transformation that maximises the sum of the
correlations between individual variables and the variables to which they transform under
a constraint. Properties of the partition, including optimality properties, are examined.
The contributions of individual variables to a quadratic form are less clear-cut when
variables are collinear, and forming new variables through rotation can lead to greater
transparency. The transformation is adapted so that it has an invariance property under such
rotation, whereby the assessed contributions are unchanged for variables that the rotation
does not affect directly. Application of the partition to Hotelling’s one- and two-sample
test statistics, Mahalanobis distance and discriminant analysis is described and illustrated
through examples. It is shown that bootstrap confidence intervals for the contributions of
individual variables to a partition are readily obtained.

Key words: Corr-max transformation; collinearity; discriminant analysis; Hotelling; Maha-
lanobis distance; rotation.

1. Introduction

Quadratic forms feature as statistics in various multivariate contexts. Well-known ex-
amples include Hotelling’s T 2 statistic and the Mahalanobis distance. When the value of a
quadratic form is large, then an obvious question is: Which variables cause it to be large?
To illustrate, suppose x is an observation that should come from a distribution with mean
μ and variance �. However, it appears to come from a different distribution because the
Mahalonobis distance, equal to the quadratic form (x −μ)��−1(x −μ), is large. It might
be helpful to have a measure of the contribution of individual variables to the size of this
quadratic form.
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100 CONTRIBUTIONS TO A QUADRATIC FORM

When variables are correlated, it is not immediately apparent that a sensible answer
to this question can be given. However, we shall argue that the question can be answered
in a meaningful way and we will propose a method of partitioning a quadratic form into
contributions from individual variables. This does not imply that there is a “best” way of
forming such a partition, other than in some simple situations where arguments of symmetry
can be used. However, although a partition of a quadratic form may be arbitrary to a degree,
it can still be useful and informative. We show that the partition we propose meets certain
optimality criteria.

Our method of forming a partition is based on a transformation that we call the corr-max
transformation. Garthwaite, Critchley, Anaya-Izquierdo & Mubwandarikwa (2012) focussed
on a transformation referred to as the cos-square transformation, but also proposed a second
transformation called the cos-max transformation. The latter is closely related to the corr-
max transformation that we introduce here. However, while the cos-max transformation was
designed to transform a data matrix, the intended use of the corr-max transformation is the
transformation of a random vector. The cos-max transformation adjusts a data matrix by a
minimal amount while yielding a matrix with orthonormal columns; each of the original
variables is associated with exactly one of these columns. The corr-max transformation yields
a vector whose covariance matrix is proportional to the identity matrix, while each of the
original variables is associated with exactly one component of the transformed vector. The
strength of the associations is measured by correlations and the transformation is chosen to
maximise the sum of these correlations (hence our name for the transformation).

Collinearities between variables will reduce the strength of some associations. The
variables that are involved in a collinearity can be identified using the cos-max transformation
(Garthwaite et al. 2012). The coordinate axes corresponding to these variables can then be
rotated to yield a set of variables with little collinearity. We adapt the corr-max transformation
so that contributions to the quadratic form, as measured by the partition, will only change
for those variables that are affected by the rotation. We refer to this feature as the rotation
invariance property.

The task of determining which variables have most influence on a Mahalanobis distance
has attracted some attention in the literature. The Mahalanobis-Taguchi system, which features
in statistical process control, estimates the covariance matrix � from ‘normal’ data and
computes the Mahalanobis distances for a set of ‘abnormal’ data points, in order to determine
signal-to-noise ratios for individual variables and hence identify variables that are useful
diagnostics of abnormality (Taguchi & Jugulum 2002; Das & Datta 2007). In ecology, the
Mahalanobis distance has been used in the construction of maps that show suitable habitat
areas for a particular species. Pixels on the map are equated to points in multidimensional
space on the basis of environmental variables and the Mahalanobis distance is used to give
a measure of the distance from a point to the mean of the ecological niche. To identify
the minimum set of basic habitat requirements for a species, Rotenberry, Preston & Knick
(2006) proposed a decomposition of the Mahalanobis distance that exploits the eigenvectors
of �. Based on work in Rotenberry, Knick & Dunn (2002), they argued that the variables
that load heavily on the eigenvectors corresponding to the smallest eigenvalues are the most
influential in determining habitat suitability. Calenge, Darmon, Basille & Jullien (2008)
added a step to the method of Rotenberry et al. (2006), forming a further eigenvector
decomposition with the aim of producing biologically meaningful axes. The decomposition
we propose here is simpler to implement and has a straightforward interpretation, making it
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more likely to be put into practice. Rogers (2015) adopted it as a tool for identifying the key
climate variables in determining future changes in the distribution of vector-borne diseases,
illustrating its use through application to dengue, an important tropical disease. He referred
to the contributions of variables being measured on the Garthwaite–Koch scale, citing a
technical report (Garthwaite & Koch 2013) that forms the basis of the present paper.

In Section 2 we argue that the value of a quadratic form can be meaningfully partitioned
into separate contributions of individual variables and give the criteria that determine the
corr-max transformation and our proposed partition. In Section 3 we obtain the transformation
and the partition. In Section 4 the transformation is adapted to have the rotation invariance
property and ways to exploit this property are suggested. In Section 5 we describe use
of the partition in contexts where Hotelling’s T 2 statistic or Mahalanobis distance arise,
and in discriminant problems involving two groups. Bootstrap confidence intervals for the
contributions of individual variables can be constructed to quantify uncertainty in these
contributions and to increase our insight into the relative importance of these contributions.
These ideas are illustrated in Section 6. Concluding comments are given in Section 7.

2. Rationale for a partition

Let Q be the quadratic form

Q = (X−μ)��−1(X−μ), (1)

where X= (X1,…, Xm)� is an m×1 random vector whose variance is proportional to � and
where μ is a given m×1 vector that is not necessarily the mean of X. This type of quadratic
form arises in various applications. For example, in Hotelling’s one-sample T 2 statistic, X
would take the value of a sample mean, � would be the population variance, and μ would
be the hypothesised population mean. The purpose of this paper is to give a method of
evaluating the contributions of individual variables to Q. Before doing so, we must first
consider whether it is possible, in principle, to meaningfully answer the question, What are
the contributions of individual variables to a quadratic form?

Clearly a good answer can easily be given when � is the identity matrix: the contribution
of each variable is then the square of the corresponding component of x −μ. Extension to
the case where � is diagonal is obvious. However, if � is not diagonal then it is less clear
that Q can be partitioned between variables in a meaningful way. To examine this issue, we
consider an example.

Specifically, let

μ=
⎛
⎝0

0
0

⎞
⎠ and �−1 =

⎛
⎝ 1 0 0

0 1 0.3
0 0.3 1

⎞
⎠,

and, to aid explanation, suppose the three components of x = (x1, x2, x3)� correspond to
standardised variables, age (x1), height (x2), and weight (x3). In this example the contribution
of age (x1) to Q is always clear, since

Q = (x1, x2, x3)

⎛
⎝ 1 0 0

0 1 0.3
0 0.3 1

⎞
⎠

⎛
⎝ x1

x2

x3

⎞
⎠= x2

1 + (x2, x3)

(
1 0.3

0.3 1

)(
x2

x3

)
.
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102 CONTRIBUTIONS TO A QUADRATIC FORM

If x2 = x3, then height and weight contribute equally to Q, from symmetry. Hence, even
though �−1 is not diagonal, the contributions of each variable to Q can be determined: age
contributes x2

1 while height and weight each contribute (Q − x2
1)=2.

To expand this example, suppose x3 to be slightly greater in magnitude than x2. Then
the contribution of age to Q would still be x2

1 while, in dividing the balance of Q between
height and weight , it seems reasonable to give weight slightly the greater portion. Other
situations are also readily constructed where common sense can indicate, approximately,
the contributions of each variable to Q. Usually though, there will be no partition of Q that
is unquestionably better than any alternative. However, it may still be the case that sensible
methods of partitioning Q broadly agree on the contributions made by individual variables.
We construct a partition that helps interpret the results of some statistical analyses by giving
a clearer relationship between the data variables and a test statistic or some other quantity
that is based on Q. The transformation that underlies the partition is defined in the next
section.

Before ending this section we introduce further notation that will be used in the remainder
of the paper. Bold-face italic capital letters X, Y, W�, Ŵ, etc. are m×1 random vectors. Sub-
scripts are added to denote components of the vector: X= (X1,…, Xm)�, Ŵ= (Ŵ1,…, Ŵm)�,
etc. The notation �̂ is used to denote a generic estimate of the m×m population variance ma-
trix, �. Likewise �̂1 is used to denote the standard unbiased estimate of � given by one sample
and �̂p is used to denote the standard pooled estimate of � based on independent samples
from two populations that both have variance �. The symbols �2

i , �̂2
i are used to denote the

ith diagonal entries of � and �̂, respectively. The symbols D and D̂ are used to denote m×m
diagonal matrices with ith diagonal entries equal to �−1

i and �̂−1
i , respectively (i =1,…, m).

Thus D�D and D̂�̂D̂ have diagonal entries equal to 1. The symbol X= (x1,…, xn)� is used
to denote the n×m data matrix whose rows are the n observations and x̃i is used to denote
the ith column of X. The symbols A, Â, B, C, H, �, � are used to denote m×m matrices
and � and �d are used to denote m×m and d ×d orthogonal matrices, respectively.

3. The corr-max transformation

To form our partition, we consider transformations of the form

X �→W=A(X−μ), (2)

where W is an m×1 vector and

W�W= (X−μ)��−1(X−μ) (3)

for any value of X. Then

Q =
m∑

i=1

W 2
i , (4)

where W= (W1,…, Wm)�, so W yields a partition of Q. The partition will be useful and
meaningful if

(a) the components of W are uncorrelated and have identical variances, and
(b) it is reasonable to identify Wi with the ith x-variable, as the contribution of that

x-variable to Q can then sensibly be defined as W 2
i .
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The following theorem gives the transformation that maximises �m
i=1cor(Xi, Wi) under

the constraints that (2) and (3) hold, where cor(·, ·) denotes correlation. Proofs of theorems
are given in Appendix A.

Theorem 1. SupposeW=A(X−μ) and var(X)∝�. If (3) holds for all X, then the components
of W are uncorrelated with identical variances. If, in addition, A is chosen to maximise
�m

i=1cor(Xi, Wi), then A = (D�D)−1=2D, where D is a diagonal matrix such that D�D has
diagonal entries equal to 1.

We define the corr-max transformation to be the transformation given by (2) with
A= (D�D)−1=2D. From Theorem 1, this transformation yields a W that satisfies requirement
(a). For (b), we first note that it is always possible to scale and translate Xi so that it has
the same variance and the same mean as Wi, whence the degree to which Xi equates to Wi

would primarily be determined by its correlation with Wi. (Perfect correlation would imply
that they were identical.) Moreover, scaling and translation do not change the nature of a
variable. Otherwise, for example, temperature measurements on the Celsius and Fahrenheit
scales would not be equivalent. Hence, the degree to which Wi equates to the ith x-variable
is largely determined by cor(Xi, Wi). Consequently under a sensible criterion the corr-max
transformation satisfies (b) as fully as possible, since it maximises �m

i=1cor(Xi, Wi) when
the constraint equations (2) and (3) hold. The extent to which the corr-max transformation
satisfies (b) is discussed further in Section 7.

Theorem 1 completes the specification of our partition for the case where � is known.
To summarise, if X takes the value x and var(X) ∝�, the corr-max transformation yields
the new vector w = (D�D)−1=2D(x −μ) and the contribution of the ith x-variable to Q(x)=
(x −μ)��−1(x −μ)� is defined to be w2

i (i =1,…, m).
When � is unknown, we replace it in the foregoing method with an estimate, �̂ say. In

some contexts this type of substitution can have drawbacks but here it seems appropriate, since
it yields properties similar to Theorem 1, but in terms of maximising sample correlations,
which we denote by cors(·, ·), rather than population correlations. This result is given in
Theorem 2. Its proof is similar to that of Theorem 1 and is omitted.

Theorem 2. Suppose that the sample variance of X is proportional to �̂ and �m
j=1cors(Xj, Ŵj)

is to be maximised, subject to Ŵ= Â(X−μ) and Ŵ
�
Ŵ= (X−μ)��̂

−1
(X−μ)� for any X.

Then Â= (D̂�̂D̂)−1=2D̂ and

Ŵ= (D̂�̂D̂)−1=2D̂(X−μ), (5)

where D̂ is diagonal and D̂�̂D̂ has diagonal entries equal to 1.

While the corr-max transformation yields a sensible method of partitioning Q into
contributions of individual variables, other reasonable methods may well give a slightly
different partition, but differences should be small when there is a close relationship between
each Wi variable and the x-variable with which it is paired. Information about the strength
of these relationships is provided by the correlations between Xi and Wi (i =1,…, m). The
following theorem gives a simple means of finding the values of these correlations and, more
generally, the correlations cor(Xi, Wj) and cors(Xi, Ŵj) for i =1,…, m; j =1,…, m. It has the
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104 CONTRIBUTIONS TO A QUADRATIC FORM

interesting implications that cor(Xi, Wj)=cor(Xj, Wi) and cors(Xi, Ŵj)=cors(Xj, Ŵi) for all i

and j, since (D�D)1=2 and (D̂�̂D̂)1=2 are both symmetric matrices.

Theorem 3. Suppose W= (D�D)−1=2D(X−μ) and var(X)∝�. Then cor(Xi, Wj) equals the
(i, j)th entry of (D�D)1=2. Similarly, if Ŵ= (D̂�̂D̂)−1=2D̂(X−μ) and the sample variance of
X is proportional to �̂, then cors(Xi, Ŵj) equals the (i, j)th entry of (D̂�̂D̂)1=2.

So far we have only considered the partition of a quadratic form, but the corr-max
transformation also gives a useful partition of the bilinear form U��−1V, provided var(U)∝�
and var(V) ∝�. Theorem 4 gives the relevant result. Its proof follows from the proof of
Theorem 1.

Theorem 4. Suppose var(U)∝� and var(V)∝� where U and V are m×1 random vectors. Let
WÅ =AU andW◦ =AVwhere A is a square matrix. Under the constraint (WÅ)�W◦ =U��−1V,
both �m

i=1cor(Ui, W Å
i ) and �m

i=1cor(Vi, W ◦
i ) are maximised when A= (D�D)−1=2D.

Both U �→WÅ and V �→W◦ are corr-max transformations, since A= (D�D)−1=2D. From
this, and from the theorem, it is reasonable to identify the ith components of WÅ and W◦ with
the ith components of U and V, respectively. Then (WÅ)�W◦ is our partition of U��−1V,
giving W Å

i W ◦
i as the contribution of the ith x-variable to U��−1V. In Section 5 we use the

theorem to form a partition of Fisher’s linear discriminant function. When � is estimated
from data, results corresponding to Theorem 4 hold with Â= (D̂�̂D̂)−1=2D̂.

4. Rotation invariance property

When the correlations between Xi and Ŵi are weak for some values of i, there will
generally be strong collinearities between some of the x-variables. The standard diagnostic
for detecting collinearities are variance inflation factors. Suppose the values of X1,…, Xm

are observed on each of n items (n > m) and let R2
j denote the multiple correlation coef-

ficient when Xj is regressed on the other X variables. Then the variance inflation factor
for Xj, VIFj say, is defined to be (1 − R2

j )−1. This will be large if Xj is involved in a
collinearity. Garthwaite et al. (2012) showed that the x-variables involved in a collinearity
can be identified using the cos-max transformation. Example 2 in Section 5.2 illustrates
this.

Collinear variables can be replaced by non-collinear variables via orthogonal rotation of
coordinate axes. This can clarify the relationship between x-variables and a quadratic form,
as examples will illustrate. Only axes corresponding to collinear variables need be rotated.
The results of a rotation are sensitive to scale, so before rotation we scale the x-variables.
This is the same as in principal component analysis, where variables are frequently scaled
to have identical variances before applying the principal component transformation (which
is an orthogonal rotation).

Here var(X) ∝� and D�D has diagonal entries all equal to 1, so the components of
DX have identical variances. Let � be an m×m orthogonal matrix and put Y=�D(X−μ),
so that Y is obtained by a re-scaling of X−μ, followed by an orthogonal rotation. Suppose
that we want to apply a transform

Y �→W� =CY, (6)
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in such a manner that there are large correlations between Yi and W �
i for i = 1,…, m.

The components of Y are not all equally important – after rotation some components will
have a smaller variance than others and those with smaller variances are deemed to be
less important, as in principal components analysis. The corr-max transformation would
choose C to maximise �m

i=1cor(Yi, W �
i ) but now, to reflect the differing importance of some

variables, we choose C to maximise �m
i=1{var(Yi)}1=2cor(Yi, W �

i ). This gives greater weight
to the Yi with greater variance. Theorem 5 gives the resulting matrix C and properties of
the transformation.

Theorem 5. Let Y= �D(X− μ) where � is a given orthogonal matrix and var(X) ∝ �.
Suppose �m

i=1{var(Yi)}1=2cor(Yi, W �
i )} is to be maximised, subject toW� =CY and (W�)�W� =

(X−μ)��−1(X−μ), where C is a square matrix. Then:

(i) the components of W� are uncorrelated and have identical variances;
(ii)

C= (�D�D��)−1=2 =�(D�D)−1=2��;

(iii)

W� =�(D�D)−1=2D(X−μ); (7)

(iv) [{var(Yi)}1=2cor(Yi, W �
j ] is equal to the (i, j)th entry of (�D�D��)1=2;

(v) with W� written as W�(�) to highlight that it is a function of �,

W�(�)=�W�(I) (8)

where W�(I)= I(D�D)−1=2D(X −μ).

The transformation from X− μ to W� will be referred to as the adapted corr-max
transformation. It is identical to the ordinary corr-max transformation if there is no rotation,
that is when �= I. If � is unknown, we replace it with an estimate, �̂, and put

Ŵ
� =�(D̂�̂D̂)−1=2D̂(X−μ). (9)

The contribution of the ith variable to the quadratic form is evaluated as (w�
i )2, where w�

i

is the value taken by the ith component of W� or Ŵ
�
.

From equation (8) we obtain the same result whether (a) we multiply D(X−μ) by the
rotation matrix � and transform the result, or (b) we transform D(X−μ) and multiply the
result by �. That is, with the adapted corr-max transformation, the operations of rotation
and transformation are commutative.

This property allows us to rotate the coordinate axes corresponding to x-variables
involved in a collinearity while neither affecting the identity of other x-variables, nor altering
assessments of the latter variables’ contributions to the quadratic form. To elucidate, suppose
that we want to rotate the first d of the m axes. Then the rotation matrix � has the following
block-diagonal form:

�=
[

�d 0
0 Im−d

]
, (10)

where �d is a d ×d orthogonal matrix. MultiplyingX by � only changes the first d components
of X and leaves its other components unchanged, so the latter components are the original
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variables. Moreover, under the transformation in equation (7), the last m − d components
of Ŵ

�
are unaffected by �d ; the rotation only changes its first m components. Thus, under

the adapted corr-max transformation, the rotation of selected axes will leave some variables
unchanged (those corresponding to unrotated axes) and the contributions of those variables
to the quadratic form, as measured by the partition, will also be unchanged. We refer to this
as the rotation invariance property.

Ideally, a partition yields orthogonal components that are closely related on a one-
to-one basis with meaningful quantities. When these quantities cannot be the original x
variables because of a collinearity, the rotation invariance property suggests that we might
rotate the axes corresponding to variables involved in the collinearity, and then apply the
transformation. There should still be close pairwise relationships between each unrotated
variable and the variable to which it transforms, as these relationships are not compromised
by the rotation. Also, there should now be close relationships between the quantities obtained
through rotation and the variables to which they transform.

A rotation is attractive if it yields meaningful quantities. If, say, the only collinearity
was between the first two variables, X1 and X2, a sensible rotation might be

�2 =
[

2−1=2 2−1=2

2−1=2 −2−1=2

]
and �=

[
�2 0
0 Im−2

]
,

which constructs two new variables, one proportional to the sum of X1 and X2, and the
other proportional to their difference. This will often create variables that have a natural
interpretation and the new variables will also have a low correlation if the variance of X1 is
similar to the variance of X2. If rotation is used to counteract more than one distinct collinearity
between the x variables, then �m should have a block diagonal form, with a separate block
for each collinearity. An example is given in Section 5.2. When a collinearity involves more
than two variables, constructing meaningful variables that have low correlations can be a
challenging task. An approach based on orthogonal contrasts that might sometimes be useful
is described in Appendix B.

While rotation can be helpful when collinearities are present, we should stress that
rotation is never essential. The standard corr-max transformation of Section 3 can be applied
whenever � is a positive-definite matrix, even if � contains high correlations, and it will
yield a sensible partition of a quadratic form, as we discuss further in Section 7. Hence axes
should only be rotated when the new variables that are constructed have an understandable
interpretation.

5. Applications

In Section 5.1 we describe some common applications in which the corr-max trans-
formation yields a partition that quantifies the contributions of individual variables to a test
statistic. In Section 5.2 an example is given in which collinearity is present and some x-axes
are rotated while applying the transformation.

5.1. Hotelling T2, Mahalanobis distance and discriminant analysis

The standard application in which the partition is useful is where a statistic of interest,
� say, has the form

© 2016 Australian Statistical Publishing Association Inc.



P. H. GARTHWAITE AND I. KOCH 107

�=�(X−μ)��̂
−1

(X−μ), (11)

with �̂ an estimate of �, var(X) ∝ � and � a known positive scalar. From equation (5),
the corr-max transformation yields Ŵ= (D̂�̂D̂)−1=2D̂(X−μ), and the contribution of the ith
x-variable to � is evaluated as �w2

i , where (w1,…, wm)� is the value of Ŵ given by data.
Before the partition can be applied, X, �̂, �, and μ must be identified and it must be

checked that var(X)∝�. (The matrix D̂ is obtained from �̂.) The individual contributions, �w2
i

for i =1,…, m, then follow automatically. After using the transformation the analyst should
examine the correlations between components of Ŵ and the corresponding components of
X; rotation of x-axes might be considered if some correlations are low. (In our examples
we consider rotating axes when correlations are 0.8 or lower.)

In the following four applications, the first three have precisely the form given in (11),
while the fourth is closely related to it.

(a) Hotelling’s one-sample T 2 statistic. A random sample of size n is taken from
N(μ, �), giving a sample mean X and sample covariance �̂1. The standard test of
the hypothesis μ=μ0 is based on Hotelling’s one-sample T 2 statistic,

T 2
1 =n(X−μ0)��̂

−1

1 (X−μ0). (12)

Let the role of X in (11) be played by X, so that var(X) =�=n. The partition is
obtained by putting �̂= �̂1, �=n and μ=μ0.

(b) Hotelling’s two-sample T 2 statistic. Two random samples of sizes n1 and n2 are
drawn from the multivariate normal distributions, N(μ1, �) and N(μ2, �), that have
the same covariance matrix. Then the hypothesis μ1 =μ2 is tested using Hotelling’s
two-sample T 2 statistic,

T 2
2 ={n1n2=(n1 +n2)}(X1 −X2)��̂

−1

p (X1 −X2), (13)

where X1 and X2 are the sample means and �̂p is the pooled estimate of � derived
from the two samples. Let the role of X in (11) be played by X1 −X2, so var(X)∝�.
Put �̂= �̂p, �=n1n2=(n1 +n2) and μ=0 to obtain the contributions of individual
variables to T 2

2 .
(c) Mahalanobis distance. If X(1) and X(2) are two m×1 vectors, then the Mahalanobis

distance between them is

(X(1) −X(2))
��̂

−1
(X(1) −X(2)). (14)

Here X(1) and X(2) must be independent, but either or both of them could be individual
observations, or sample means, or one of them could be a vector of known constants.
We suppose var(X(i))=ki� (i =1, 2) where k1 or k2 (but not both) may equal 0. We
also suppose that E(�̂) ∝� so, for example, �̂ might be the maximum likelihood
estimate or an unbiased estimate of �. Let X=X(1) −X(2), so var(X)∝�. Put �=1
and μ=0. Then the partitioning gives the contributions of individual variables to
the Mahalanobis distance.

(d) Fisher’s linear discriminant function. Suppose an observation needs to be classified
as belonging to one of two classes that are characterised by the multivariate normal
distributions N(μ1, �) and N(μ2, �), with sample means X1 and X2 and common
estimated covariance matrix �̂p. A new observation XÅ is classified as belonging
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to class 1 on the basis of Fisher’s linear discriminant function if

r(XÅ)=
{
XÅ − 1

2
(X1 +X2)

}�
�̂

−1

p (X1 −X2) > 0. (15)

Consider the transformations

Ŵ◦ = (D̂�̂pD̂)−1=2D̂(X1 −X2) (16)

and

ŴÅ = (D̂�̂pD̂)−1=2D̂{XÅ − 1

2
(X1 +X2)}. (17)

Since var(X1 −X2)∝� and var[XÅ − 1
2 (X1 +X2)]∝�, Theorem 4 applies. Hence the

ith components of both Ŵ◦ and ŴÅ can be identified with the ith x-variable. Let W ◦
i

and W Å
i denote these components. Because r(XÅ)=�m

i=1W ◦
i W Å

i , the contribution
of the ith x-variable to r(XÅ) is given by the observed value of W ◦

i W Å
i .

We use two examples to explore how the transformation and partition work in practice.
In the first example we apply the transformation without rotation of variables and consider
applications (a), (c) and (d). In the second example, given in the next subsection, we illustrate
application (b) and apply the transformation to both rotated and un-rotated variables.

Example 1: Swiss bank notes Flury & Riedwyl (1988) present data on 100 genuine Swiss
1000-franc bank notes. Six measurements were made on each note: length (length), left-ht
(height measured on the left), right-ht (height measured on the right), lower (distance from
the inner frame to the lower border), upper (distance from the inner frame to the upper
border), and diagonal (length of the diagonal). These measurements are the data values of
X= (X1,…, X6)�. Their sample standard deviations are (0.388, 0.364, 0.355, 0.643, 0.649,
0.447) and the reciprocals of these standard deviations form the diagonal entries of D̂. The
sample correlation matrix of X is:

D̂�̂D̂=

⎛
⎜⎜⎜⎜⎜⎝

1.000 0.411 0.416 0.229 0.057 0.032
0.411 1.000 0.664 0.242 0.208 −0.265
0.416 0.664 1.000 0.255 0.133 −0.150
0.229 0.242 0.255 1.000 −0.632 −0.001
0.057 0.208 0.133 −0.632 1.000 −0.260
0.032 −0.265 −0.150 −0.001 −0.260 1.000

⎞
⎟⎟⎟⎟⎟⎠ (18)

where �̂ is the sample covariance matrix. It can be seen that no correlation is larger than 0.664.
The mean vector for the banknote measurements is x = (214.969, 129.943, 129.720, 8.305,
10.168, 141.517)�.

If the corr-max transformation is applied to a vector X to yield a vector Ŵ, the corre-
lations between components of X and the corresponding components of Ŵ are equal to the
diagonal entries of (D̂�̂D̂)1=2. These diagonal entries are 0.96, 0.90, 0.91, 0.91, 0.91 and
0.98. They are all large, indicating close one-to-one relationships between each x-variable
and its corresponding component of Ŵ, so rotation of x-variables is unnecessary.

Hotelling’s one-sample T 2 statistic might be used to test the hypothesis that the popula-
tion mean vector is, say, μ0 = (215.007, 129.979, 129.756, 8.369, 10.233, 141.562)�. These
values have been chosen so that, for each variable, the hypothesised population mean exceeds
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the sample mean by 0.1 standard deviations. The value of the test statistic, given by equation
(12), is T 2

1 =8.74. We have already calculated D̂ and D̂�̂D̂. Setting X and μ equal to x and
μ0 respectively in equation (5) gives Ŵ=−(0.051, 0.053, 0.055, 0.164, 0.182, 0.138)�. As
�=100, the contribution of the ith x-variable to T 2

1 is 100w2
i , so the contributions of the six

x-variables are 0.512, 0.532, 0.552, 1.642, 1.822 and 1.382. These values sum to 8.75, which
differs slightly from T 2

1 because we have listed all contributions to 2 decimals only, and not
given their precise values. The actual sum of the contributions equals T 2

1 as the theory tells
us. Although for each component the sample mean differs from the hypothesised population
mean by an equivalent amount, the last three x-variables (lower, upper, and diagonal) make
larger contributions to the T 2

1 statistic than the first three x-variables (length, left-ht and
right-ht ).

As an example involving Mahalanobis distance, suppose the measurements for an
additional banknote that might be a forgery are x2 = (215.8, 129.7, 129.0, 6.9, 8.6, 143.2)�.
The Mahalonobis distance between x2 and the mean value of X in the sample of 100 genuine
banknotes x, is given by equation (14) with X(1) =x and X(2) =x2. The value of this distance
is 55.69, which gives clear evidence the note is a forgery (p < 0.0001). Our partition can
be used to determine which characteristics of the new banknote distinguish it from the
genuine banknotes. We put X= x− x2 and μ= 0 in equation (5), to obtain Ŵ. As �= 1,
the contribution of the ith x-variable to the Mahalanobis distance is the square of the ith
component of Ŵ. These squared values are (8.64 0.87 4.54 16.66 15.12 9.86). Hence the
measurements that most distinguish the new banknote from genuine banknotes are X4 (lower )
and X5 (upper ).

The Swiss bank notes dataset given by Flury & Riedwyl (1988) contained 100 faked
bank notes in addition to the 100 genuine notes. As an example that involves Fisher’s
discriminant rule, we consider the task of using these data to classify a note as genuine or
from the same popultation as the fakes. The pooled sample covariance matrix based on all
200 notes is

�̂p =

⎛
⎜⎜⎜⎜⎜⎝

0.1371 0.0448 0.0406 −0.0217 0.0169 0.0085
0.0448 0.0988 0.0663 0.0163 0.0186 −0.0241
0.0406 0.0663 0.1076 0.0198 0.0154 0.0052

−0.0217 0.0163 0.0198 0.8473 −0.3768 0.1191
0.0169 0.0186 0.0154 −0.3768 0.4128 −0.0487
0.0085 −0.0241 0.0052 0.1191 −0.0487 0.2555

⎞
⎟⎟⎟⎟⎟⎠. (19)

Table 1 summarises the analysis. The first two rows, X1 and X2, show the sample means
of the genuine and faked bank notes, respectively. The note to be classified is XÅ. Equation
(15) gives −20.34 as the value of r(XÅ), indicating that the new note should be classified
as coming from the same population as the fakes. Applying equations (16) and (17) we
obtain Ŵ

◦
and Ŵ

Å
(fourth and fifth rows). The contributions of individual x-variables to

r(XÅ) are evaluated as the diagonal entries of Ŵ
◦
(Ŵ

Å
)�, shown in the last row. Unlike the

previous two examples, some of these values are negative; negative values suggest the new
note is from the same population as the faked notes. The last three variables, lower , upper,
and diagonal , underlie the outcome of the discrimination rule, as they make much larger
contributions to r(XÅ) (in absolute value) than the first three variables.

In Section 1 we noted that Rotenberry et al. (2006) examined eigenvectors corresponding
to small eigenvalues in order to determine influential variables on a Mahalanobis distance.
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Table 1
Values from the discriminant analysis for a Swiss bank note

X1 X2 X3 X4 X5 X6

X1 214.969 129.943 129.720 8.305 10.168 141.517
X2 214.823 130.300 130.193 10.530 11.133 139.45
XÅ 214.4 130.1 130.3 9.7 11.7 139.8
̂W◦

0.38 −0.001 −1.48 −4.16 −2.80 4.56
̂W

Å −1.44 −0.64 1.49 1.21 2.10 −1.46

[ ̂W◦
( ̂W

Å
)�]ii −0.55 0.001 −2.21 −5.04 −5.89 −6.67

Before leaving this example we illustrate their method by applying it to the case where
we have 100 genuine banknotes and an additional banknote that might be a forgery. Their

approach is to decompose the quadratic form Q = (x −x2)��̂
−1

(x −x2) as

Q =
m∑

j=1

u2
j =�j

where uj = (x −x2)�γ j, �1 >… >�m are the eigenvalues of �̂ and γ 1,…, γ m are the corre-
sponding eigenvectors. They focus on small eigenvalues because, if �j is small, then X �γ j

varies little for the X values in the hundred genuine banknotes, so that a large value of
(x −x2)�γ j is more indicative of forgery. The eigenvalues of the sample covariance matrix
of the genuine banknotes are 0.69, 0.36, 0.19, 0.087, 0.080 and 0.041, so interest centres
on either just the smallest eigenvalue or the smallest three eigenvalues. The following are
the eigenvectors for the three smallest eigenvalues:

length left-ht right-ht lower upper diagonal

Smallest −0.011 0.737 −0.666 −0.050 −0.062 0.072
2nd smallest 0.113 −0.360 −0.481 0.559 0.548 0.116
3rd smallest 0.786 −0.243 −0.280 −0.243 −0.244 −0.354

Based on just the eigenvector corresponding to the smallest eigenvalue, X2 and X3

(left-ht and right-ht ) are clearly the most important variables, since in the case of that
eigenvector they have much larger coefficients (in absolute value) than the other variables.
However, if the three eigenvectors displayed above are all considered relevant, then deciding
which x-variables are important is not clear-cut and requires the analyst to make an intuitive
judgment. Moreover, there is no obvious method of determining the relative quantitative
importance of different variables, and with any such method the answers are likely to depend
on whether the three smallest eigenvalues or only the very smallest are considered “small”.

5.2. Collinearities, rotation and quadratic forms

Some advantages of the (un-adapted) corr-max transformation are diminished when
strong collinearities are present: not every X variable will be closely related to the transformed
variable with which it is paired. Here we examine a dataset in which collinearities are present
and illustrate use of the cos-max transformation matrix to identify the variables that are
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collinear. To identify collinearities we apply the cos-max transformation to data that have
been standardised to have means of 0 and variances of 1, making the cos-max and corr-max
transformations very similar, as will be seen.

The dataset contains two strata whose means will be compared using Hotelling’s two-
sample T 2 statistic. We partition the test statistic into the contributions of individual vari-
ables/variable combinations by applying the adapted corr-max transformation. The rotation
matrix (�) we use in the transformation creates meaningful non-collinear variables from the
variables that are involved in the collinearities.

Example 2: Female and male athletes The data relate to the following nine measurements
(X1,…, X9) that were made on n1 =100 female and n2 =102 male athletes collected at the
Australian Institute of Sport (Cook & Weisberg 1994): Wt (weight), Ht (height), Rcc (red
blood cell count), Hg (hemoglobin), Hc (hematocrit), Wcc (white blood cell count), Ferr
(plasma ferratin concentration), Bfat (% body fat), and SSF (sum of skin folds). It is assumed
that the two groups (females and males) may have different means, μ1 and μ2, but have a
common covariance matrix �. Let �̂p denote the pooled estimate of �. The pooled correlation
matrix, D̂�̂pD̂, takes the value

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.00 0.68 0.05 0.10 0.06 0.15 0.06 0.63 0.65
0.68 1.00 −0.04 −0.11 −0.04 0.05 −0.15 0.34 0.34
0.05 −0.04 1.00 0.78 0.86 0.14 −0.05 −0.04 −0.05
0.10 −0.11 0.78 1.00 0.90 0.13 0.01 −0.04 −0.06
0.06 −0.04 0.86 0.90 1.00 0.15 −0.06 −0.08 −0.11
0.15 0.05 0.14 0.13 0.15 1.00 0.12 0.21 0.21
0.06 −0.15 −0.05 0.01 −0.06 0.12 1.00 0.16 0.16
0.63 0.34 −0.04 −0.04 −0.08 0.21 0.16 1.00 0.97
0.65 0.34 −0.05 −0.06 −0.11 0.21 0.16 0.97 1.00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

Under the cos-max transformation, a data matrix X is transformed to (X�X)−1=2X. Let
Xs denote the data matrix after variables have been centred and scaled so that the correlation
matrix of Xs is X�

s Xs. If we put (X�
s Xs)−1=2 = H = (h1,…,hm)� then, as Garthwaite et al.

(2012) pointed out, the variance inflation factor for the jth variable (VIFj) is equal to h�
j hj.

Moreover, if VIFj is large, indicating a collinearity, then large components of hj correspond
to the variables that underlie the collinearity. In the present example, X�

s Xs = D̂�̂pD̂, so
examining the rows of (D̂�̂pD̂)−1=2 identifies variables involved in collinearities. (When
X�

s Xs = D̂�̂pD̂, the corr-max and cos-max transformations are the same.)
We put (D̂�̂pD̂)−1=2 = (h1,…,hm)� and give the values of the h�

j in Table 2. Values
greater than 0.80 in absolute value are given in bold-face type. The last column of the table
gives the VIF for each variable, e.g. 8.15 is the VIF for X5 and equals h�

5 h5. A VIF above
10 is often treated as indicative of collinearity (Neter, Wasserman & Kutner 1983 p. 392)
On this basis, X8 (Bfat ) and X9 (SSF ) are involved in collinearites and, from the bold-face
numbers in the display of h8 and h9, there is a collinearity between them. Weaker boundaries
for flagging a collinearity have also been proposed; Menard (1995, p. 66) suggests a VIF
above 5 should raise concern and O’Brien (2007) reports that boundary values as low as 4
have been suggested as rules of thumb. A boundary of 4 or 5 would indicate one further
collinearity, between X4 (Hg) and X5 (Hc).
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Table 2
Rows of (̂D̂�p

̂D)−1=2 and variance inflation factors for data on athletes

X1 X2 X3 X4 X5 X6 X7 X8 X9 VIF

h�
1 1.66 −0.61 0.06 −0.23 0.00 −0.01 −0.06 −0.17 −0.41 3.38
h�

2 −0.61 1.36 −0.03 0.23 −0.08 0.00 0.14 −0.06 0.07 2.31
h�

3 0.06 −0.03 1.75 −0.30 −0.80 −0.03 0.02 0.05 −0.10 3.83
h�

4 −0.23 0.23 −0.30 2.09 −1.12 0.00 −0.04 0.04 0.00 5.82
h�

5 0.00 −0.08 −0.80 −1.12 2.48 −0.08 0.06 −0.09 0.22 8.15
h�

6 −0.01 0.00 −0.03 0.00 −0.08 1.04 −0.05 −0.07 −0.06 1.09
h�

7 −0.06 0.14 0.02 −0.04 0.06 −0.05 1.04 −0.07 −0.02 1.11
h�

8 −0.17 −0.06 0.05 0.04 −0.09 −0.07 −0.07 3.27 −2.43 16.64
h�

9 −0.41 0.07 −0.1 0.00 0.22 −0.06 −0.02 −2.43 3.38 17.59

If the corr-max transformation is applied to X = (X1,…, X9)�, then the following are
the sample correlations between each x variable and the variable to which it transforms:

Variable: Wt Ht Rcc Hg Hc Wcc Ferr Bfat SSF
Correlation: 0.84 0.91 0.83 0.80 0.76 0.99 0.99 0.76 0.75

The correlations for Hg and Hc are a little low, suggesting that remedial action might
be taken to offset both the mild collinearity between this pair of variables as well as the
stronger collinearity between Bfat and SSF. To rotate the axes associated with these variable
pairs we replace the corr-max transformation by the adapted corr-max transformation given
by equation (9), with � set equal to the following block-diagonal orthogonal matrix:

�=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 2−1=2 2−1=2 0 0 0 0
0 0 0 2−1=2 −2−1=2 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 2−1=2 2−1=2

0 0 0 0 0 0 0 2−1=2 −2−1=2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

We refer to the variables to which Bfat and SSF transform as B+S and B−S, and those from
Hg and Hc as H +H and H −H. Rotation dramatically increased the correlations between the
new variables and their transformed values while leaving the corresponding correlations of all
other variables unchanged. The correlations between the rotated x variables and the variables
to which they transform are displayed below. These show a close one-to-one relationship
between the two sets of variables.

Variable: Wt Ht Rcc H+H H-H Wcc Ferr B+S B-S
Correlation: 0.84 0.91 0.83 0.91 0.96 0.99 0.99 0.95 0.99
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Before rotation, the sample means for the female and male athletes (x1 and x2), and
the pooled standard deviations (S.D.) were as follows.

Wt Ht Rcc Hg Hc Wcc Ferr Bfat SSF
Female: 67.34 174.59 4.405 13.560 40.48 6.994 57.0 17.85 87.0
Male: 82.52 185.51 5.027 15.553 45.65 7.221 96.4 9.25 51.4
S. D. 11.69 8.07 0.336 0.929 2.60 1.801 43.3 4.45 27.3

The reciprocals of the standard deviations constitute the non-zero (diagonal) entries of
the matrix D̂. When Hotelling’s T 2 test is used to compare the means of the two groups
we obtain a T 2

2 statistic equal to 1199.1. This value gives, as you might expect, very clear
evidence of differences between the two groups (p � 0.0000). However, the question of
which quantities contribute most to the T 2

2 value is still relevant.
Putting ŵ� =�(D̂�̂pD̂)−1=2D̂(x1 −x2) gives

ŵ� = (−1.75, −1.48, −1.08, −1.74, −0.49, −0.06, −1.28, 2.41, 2.57).

The partition allows us to evaluate the contributions of individual x-variables/variable com-
binations to T 2

2 as proportional to the squares of the components of ŵ�:

3.08, 2.19, 1.17, 3.02, 0.24, 0.00, 1.64, 5.81, 6.61.

(When multiplied by �, which here equals 100(102)=(100+102), these sum to the value of
the T 2

2 statistic, 1199.1, apart from rounding error.) On the scale given by our partition, the
largest contributors to the size of T 2 are the average of Bfat and SSF (contributing 24%)
and the difference between these same two quantities (contributing 28%). With the other
pair of variables whose axes were rotated, Hg and Hc, their average makes a substantial
contribution (13%) while the contribution from their difference is only 1%.

6. Bootstrap confidence intervals

The corr-max transformation gives point estimates of the contributions of individual
variables to a quadratic form. Obtaining theoretical results that give interval estimates of
these contributions is difficult, but the bootstrap can be used to obtain approximate confidence
intervals. We elucidate the procedure through examples.

6.1. Confidence interval for contributions to a Mahalanobis distance

In Example 1 there were 100 genuine Swiss 1000-franc bank notes and an additional
bank note that might be a forgery. The Mahalanobis distance between the potential forgery
and the mean of the genuine bank notes was 55.69 and the contributions of the six individual
variables were estimated as (8.64 0.87 4.54 16.66 15.12 9.86). To obtain bootstrap confidence
intervals for these contributions we generated 100 000 resamples from the 100 genuine bank
notes. Each resample was a random sample of size 100 drawn with replacement from the
100 genuine notes.

Each resample was used in the same way as the original sample. The Mahalanobis
distance between the potential forgery and the mean of the resample was calculated, with the
resample being used to estimate the covariance matrix, �̂. The contributions of individual
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Figure 1. Confidence intervals for the contributions of individual variables to the Mahalanobis
distance of a potential banknote forgery.

variables to the Mahalanobis distance were then evaluated using the corr-max transformation.
This gave 100 000 estimates of the contribution of each variable and the kth smallest of
these is equated to the (k=1000)th percentile of the bootstrap distribution. The median
for a variable’s contribution is thus the 50 000th smallest value and the endpoints of an
approximate 95% confidence interval are the 2500th smallest and 2500th largest values.
(This is the simplest method of forming bootstrap confidence intervals. As is well known,
it typically works reasonably well but produces some bias, so work is underway to explore
its performance in the current context and compare it with other bootstrap methods.)

Figure 1 gives ‘pseudo-boxplots’ for the contributions of each of the six variables. As
in a conventional boxplot, the ends of the box indicate the interquartile range of the data
and the line within the box marks the median. However, we used the whiskers to depict the
central 95% confidence interval, rather than the trimmed range. The circles show the point
estimates (8.64,…, 9.86) given by the actual data. The figure indicates that measurements
of the height on the left and right sides (left-ht and right-ht) contribute comparatively little
to the Mahalanobis distance, while the distances from the inner frame to the lower border
(lower) and from the inner frame to the upper border (upper) contribute noticeably more.
Other firm conclusions are difficult to make, because there is substantial uncertainty as to
the contributions of variables.

6.2. Confidence interval for contributions to a two-sample T2 statistic

Example 2 involves the study of a group of 100 female athletes and a group of 102
male athletes. Nine variables were measured on each athlete and two pairs of variables
were rotated to reduce collinearities. The T 2

2 statistic for comparing the two groups was
calculated and gave overwhelming evidence that the groups differed. To form bootstrap
confidence intervals for the contributions of individual variables to this statistic, the groups
must be resampled separately - a resample consists of the measurements of 100 athletes
randomly drawn with replacement from the female athletes and 102 athletes drawn with
replacement from the male athletes. The T 2

2 statistic was determined for each of 100 000
resamples and the contribution of individual variables/variable combinations to the statistic
in each resample was evaluated using the adapted corr-max transformation.

Pseudo boxplots derived from the results are given in Figure 2. These show that the
primary contributions to the T 2 statistic are clearly from B+S and B−S, the combination
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Figure 2. Confidence intervals for the contributions of individual variables to a two-sample T 2

statistic for comparing female and male athletes.

variables that are formed from the sums and differences of Bfat (percentage of body fat) and
SSF (sum of skin folds). Other variables contribute noticeably less, but the only variable that
clearly makes almost no contribution is the white cell blood count (Wcc). The confidence
intervals are skewed to the right and the larger contributions tend to have wider confidence
intervals. These appear to be characteristic traits and can also be seen in Figure 1.

7. Concluding comments

The corr-max transformation is straightforward to calculate. The matrices �̂ and D̂ are
readily determined and a spectral decomposition gives, say, D̂�̂D̂ = H�H� where � is a
diagonal matrix of eigenvalues of D̂�̂D̂ and H is an orthogonal matrix whose columns are
eigenvectors. After � and �̂ have been determined, (D̂�̂D̂)−1=2 is set equal to H�−1=2H�.
Hence, the corr-max transformation and the partition it yields are readily implemented in any
programming language that offers matrix functions. To facilitate use of the partition in some
important applications, programs have been written in R that determine the contributions
of individual variables to a quadratic form in the contexts of Hotelling’s one-sample and
two-sample T 2 tests, Mahalanobis distance, and the classification of an item to one of two
populations on the basis of Fisher’s linear discriminant function. These programs are available
from URL: http://users.mct.open.ac.uk/paul.garthwaite.

The rotation of variables has received much attention in this paper, and further comment
is needed to give a balanced perspective on its role in partitioning a quadratic form. As
in equation (5), let Ŵ= (D̂�̂D̂)−1=2D̂(X−μ). When the correlations are high between each
component of Ŵ and the corresponding component of X, then the partition is clearly a sensible
way of evaluating the contribution of each x-variable. When some of these correlations are
low, they can sometimes be increased dramatically through rotations that yield interpretable
variables. This potential benefit of rotation was illustrated in Section 5.2. However, finding
suitable rotations that yield interpretable variables is not always possible. Moreover, even
when such rotations can be found, there are attractions in the simplicity of forming a
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partition that retains the original x-variables. We briefly return to the athletes data to show
that low correlations do not preclude a transparent relationship between the x-variables and
the contributions allocated to them by the partition.

Let X# denote the difference between an athlete’s measurements and the average for their
gender. Put XÅ = D̂X#, so that the components of XÅ = (X Å

1 ,…, X Å
9 ) are standardized values

of each variable. Let (Ŵ1,…, Ŵ9)� = Ŵ= (D̂�̂pD̂)−1=2XÅ. Then �Ŵ 2
i is the contribution of

the ith variable to the quadratic form � in equation (11). We focus on the two most highly
correlated variables, Bfat (X8) and SSF (X9). The partition uses the following equations
(obtained from Table 2) to determine their contribution to �.

Ŵ 2
8 = (−0.17X Å

1 −0.06X Å
2 +0.05X Å

3 +0.04X Å
4 −0.09X Å

5 −0.07X Å
6

−0.07X Å
7 +3.27X Å

8 −2.43X Å
9 )2

Ŵ 2
9 = (−0.41X Å

1 +0.07X Å
2 −0.10X Å

3 +0.00X Å
4 +0.22X Å

5 −0.06X Å
6

−0.02X Å
7 −2.43X Å

8 +3.38X Å
9 )2

These formulae show precisely how the contributions of individual variables to � are cal-
culated. In particular, the formulae show that the difference between X Å

8 and X Å
9 has a

substantial impact on the assessed contributions of Bfat and SSF. This arises from the
high correlation between them (the correlation is 0.96), so that a large difference between
their standardised differences is unexpected and so increases �. The role of the interaction
between Bfat and SSF can be further clarified by writing Ŵ 2

8 and Ŵ 2
9 as,

Ŵ 2
8 ={−0.17X Å

1 −0.06X Å
2 +0.05X Å

3 +0.04X Å
4 −0.09X Å

5 −0.07X Å
6

−0.07X Å
7 +0.84X Å

8 +2.43(X Å
8 −X Å

9 )}2
(22)

Ŵ 2
9 ={−0.41X Å

1 +0.07X Å
2 −0.10X Å

3 +0.00X Å
4 +0.22X Å

5 −0.06X Å
6

−0.02X Å
7 +2.43(X Å

9 −X Å
8 )+0.95X Å

9 }2
(23)

Written in this way, Ŵ 2
8 and Ŵ 2

9 seem a very reasonable reflection of the respective contri-
butions of Bfat and SSF to the quadratic form, inasmuch as the large terms in (22) both
involve X Å

8 while those in (23) both involve X Å
9 . We should note though, that while our

method gives contributions to Ŵ 2
8 and Ŵ 2

9 that seem reasonable, other methods may give
different values that also seem reasonable. We should also note that, in this example, the
low correlation on which we focused stems from a single collinearity between just two
variables. With multiple collinearities involving several variables, the relationship between
the x-variables and the contributions allocated to them would be less straightforward.

Experiments are often laborious and costly to conduct and the scientists who conduct
them would like to glean as much as possible from the data they gather. Not infrequently, a
quadratic form is central to a multivariate statistical analysis and then the scientists might
reasonably expect the quadratic form to yield more than just a p-value from a hypothesis test.
The method developed in this paper provides a means of learning more about a quadratic
form and hence should prove useful. It can always be applied, provided that �̂ is positive-
definite, and yields a well-defined numerical evaluation of the contributions of individual
x-variables to the quadratic farm. With multiple collinearities involving several variables, it
can be difficult to judge intuitively whether an evaluation is a sensible reflection of these
contributions and then the credibility of an evaluation must stem from the method used to
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produce it. Our method is derived from a clear, understandable criterion that gives it a sound
basis. In our experience the method has never given an evaluation that seems unreasonable
and we recommend its use for the decomposition of a quadratic form for any positive-definite
matrix �̂. In reporting results, the method used to obtain the decomposition should be stated
so as to define the evaluated contributions unambiguously.

Appendix A: Proofs of theorems

Lemma 1. Suppose that B is a square matrix and tr(B) is to be maximised under the condition
that B�B=�, where � is a positive-definite matrix. Then B=�1=2, the symmetric square-
root of �.

Proof. Because � is positive-definite, B is of full rank, whence the singular value decompo-
sition theorem gives B=F�1=2G�, where � is a diagonal matrix and F and G are orthogonal
matrices. Then B�B=G�G�, so G�G� is the unique spectral decomposition of �. Also,
max{tr(B)}=max{tr(F�1=2G�)}=max{tr(�1=2G�F)}. Now G and F are orthogonal matri-
ces, so the maximum value that the (i, i)th entry of G�F can take is 1, and it can only equal
1 if the ith columns of G and F are equal. Hence tr(�1=2G�F) is maximised when G=F.
Thus B=G�1=2G� =�1=2.

Lemma 2. Suppose that E(Y)=0 and var(Y)∝�−1, and that E(Y�BY) is to be maximised,
where B is a square matrix and B�B=�. Then B=�1=2.

Proof. Let var(Y) = k�−1 where k is a scalar. Observe that E(Y�BY) = E[tr(Y�BY)] =
E[tr(BYY�)] = tr[BE(YY�)] = ktr[B�−1] = ktr[B(B�B)−1] = ktr[(B�)−1]. Hence we wish
to maximise tr[(B�)−1] under the constraint that B�B=� or, equivalently, that B−1(B�)−1 =
�−1. From Lemma 1, (B�)−1 =�−1=2, so B=�1=2.

Proof of Theorem 1. For any X, by assumption (X−μ)��−1(X−μ)=W�W= (X−μ)�A�

A(X−μ). Choosing X so that only one entry of (X−μ) is non-zero shows that the diagonal
entries of �−1 and A�A are equal. Choosing X so that only two entries of (X− μ) are
non-zero then does the same for off-diagonal entries, so �−1 = A�A. Since var(X) ∝�, it
follows that var(W)∝A�A� =A(A�A)−1A� = I. Consequently the components of W are
uncorrelated and have identical variances.

For the next part of the theorem, let WÅ =A{X−E(X)} and var(X)=k�. Then E(WÅ)=0
and var(WÅ)=kA�A� =kA(A�A)−1A� =kI. Let Z=D{X−E(X)} and put Z= (Z1,…, Zm)�,
so that E(Z)=0, var(Z)=kD�D, and var(Zi)=k for i=1,…, m. We know that cor(Xi, W Å

i )=
cor(Zi, W Å

i )=E(ZiW
Å
i =k). In addition cor(Xi, Wi)=cor(Xi, W Å

i ) becauseW−WÅ =A{E(X)−
μ}. Thus �m

i=1cor(Xi, Wi)=E(Z�WÅ=k)=E(Z�AD−1Z=k). Also the constraint A�A=�−1

is equivalent to (AD−1)�(AD−1) = D−1�−1D−1. Hence A must be chosen to maximise
E(Z�AD−1Z), where E(Z)=0, var(Z)∝D�D and (AD−1)�(AD−1)= (D�D)−1. From Lemma
2, AD−1 = (D�D)−1=2. Thus, A= (D�D)−1=2D and W = (D�D)−1=2 ×D(X−μ).

Proof of Theorem 3. Let var(X )= k�, Z=D{X−E(X)} and put Z= (Z1,…, Zm)�. It then
follows that cor(Xi, Wj)=cor(Zi, Wj). Now var(Z)=kD�D and var(W)=k(D�D)−1=2D�D×
(D�D)−1=2 = kI. Also, E[Z{W − E(W)}�] = E[Z{(D�D)−1=2Z}�] = E(ZZ�)(D�D)−1=2 =
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var(Z)(D�D)−1=2 = k(D�D)1=2. Hence cov(Zi, Wj) is the (i, j) entry of [k(D�D)1=2]. Since
var(Zi) = var(Wj) = k, both cor(Zi, Wj) and cor(Xi, Wj) equal the (i, j)th entry of (D�D)1=2.
Similar reasoning shows that cors(Xi, Ŵj) is the (i, j)th entry of (D̂�̂D̂)1=2.

Proof of Theorem 5. Part (i) follows from reasoning similar to the first steps of the proof
of Theorem 1. To prove (ii), let � = �D�D�� and let V= Y− E(Y), so that E(V) = 0
and var(V) ∝�. Put WÅ = CV, so that var(WÅ) = I since C�C =�−1. It then follows that
�m

i=1[{var(Yi)}1=2cor(Yi, W �
i )]=�m

i=1[{var(Vi)}1=2cor(Vi, W Å
i )]=�m

i=1cov(Vi, W Å
i )=V�WÅ =

V�CV. From Lemma 2, V�CV is maximised when C=�−1=2 = (�D�D��)−1=2. Addition-
ally, (�D�D��)−1=2 is the unique symmetric square-root of (�D�D��)−1 =�(D�D)−1��.
As [�(D�D)−1=2��][�(D�D)−1=2��] = �(D�D)−1��, it follows that (�D�D��)−1=2 =
�(D�D)−1=2��. Part (iii) follows immediately from (ii) and the definition of Y. The
proof of (iv) is analogous to the proof of Theorem 3. Part (v) is immediate from
equation (7).

Appendix B: Orthogonal matrices from contrasts

Suppose the first four x-axes are rotated by the transformation (Y1,…, Y4)� =�d (X �
1 ,…,

X �
4 )�, where

�d =

⎛
⎜⎝

2−1 2−1 −2−1 −2−1

2−1=2 −2−1=2 0 0
0 0 2−1=2 −2−1=2

2−1 2−1 2−1 2−1

⎞
⎟⎠ (24)

and X �
j = (Xj −�j)=�j for j =1…, 4, so that the X �

j are standardised x-variables. It is readily
checked that �d is an orthogonal matrix. The new variables are

Y1 = (X �
1 +X �

2 )=2− (X �
3 +X �

4 )=2 Y2 = (X �
1 −X �

2 )=21=2

Y3 = (X �
3 −X �

4 )=21=2 Y4 = (X �
1 +X �

2 +X �
3 +X �

4 )=2

Thus Y1 is the difference between the average of the first two X � variables and the average
of the other two X � variables, Y2 and Y3 are each proportional to the difference between
a pair of X � variables, and Y4 is proportional of the average of the four X � variables.
Consequently Y1,…, Y4 may all be meaningful combinations of the x-variables, although
this is obviously context dependent. The point of this example is that the top three rows
of �d form a (non-unique) set of orthogonal contrasts and contrasts can prove useful when
meaningful linear combinations of variables are sought. It is certainly the case that in the
analysis of experiments, contrasts among factor levels are commonly constructed for that
reason.

More generally, one approach to finding rotation matrices that give meaningful new
variables is to look for a set of meaningful orthonormal contrasts. Suppose the first d axes
are to be rotated, so that linear combinations of X �

1 ,…, X �
d are to be formed. A complete

set of orthonormal contrasts consists of d −1 linear combinations
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Yi =
d∑

j=1

�ijX
�
j i =1,…, d −1, (25)

such that �d
j=1�ij = 0, �d

j=1�
2
ij = 1 and, for i 	= k(k = 1,…, d − 1), �d

j=1�ij�kj = 0. The set of
orthonormal contrasts is not unique, giving flexibility in constructing the Yi. To form a rotation
matrix from these contrasts, we set the (i, j)th entry of �d equal to �ij (i = 1,…, d − 1; j =
1,…, d ) and the (d , j)th entry of �d equal to d−1=2 (j =1,…, d ).
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