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Abstract

Background: Oxygenation-sensitive (OS) Cardiovascular Magnetic Resonance (CMR) is a promising utility in the
diagnosis of heart disease. Contrast in OS-CMR images is generated through deoxyhemoglobin in the tissue, which
is negatively correlated with the signal intensity (SI). Thus, changing hematocrit levels may be a confounder in the
interpretation of OS-CMR results. We hypothesized that hemodilution confounds the observed signal intensity in
OS-CMR images.

Methods: Venous and arterial blood from five pigs was diluted with lactated Ringer solution in 10 % increments to
50 %. The changes in signal intensity (SI) were compared to changes in blood gases and hemoglobin concentration.
We performed an OS-CMR scan in 21 healthy volunteers using vasoactive breathing stimuli at baseline, which was then
repeated after rapid infusion of 1 L of lactated Ringer’s solution within 5–8 min. Changes of SI were measured and
compared between the hydration states.

Results: The % change in SI from baseline for arterial (r = -0.67, p < 0.0001) and venous blood (r = -0.55, p = 0.002) were
negatively correlated with the changes in hemoglobin (Hb). SI changes in venous blood were also associated with SO2

(r = 0.68, p < 0.0001) and deoxyHb concentration (-0.65, p < 0.0001). In healthy volunteers, rapid infusion resulted in a
significant drop in the hemoglobin concentration (142.5 ± 15.2 g/L vs. 128.8 ± 15.2 g/L; p < 0.0001). Baseline myocardial
SI increased by 3.0 ± 5.7 % (p = 0.026) following rapid infusion, and in males there was a strong association between
the change in hemoglobin concentration and % changes in SI (r = 0.82, p = 0.002). After hyperhydration, the SI
response after hyperventilation was attenuated (HV, p = 0.037), as was the maximum SI increase during apnea
(p = 0.012). The extent of SI attenuation was correlated with the reduction in hemoglobin concentration at the
end of apnea (r = 0.55, p = 0.012) for all subjects and at maximal SI (r = 0.63, p = 0.037) and the end of breath-hold
(r = 0.68, p = 0.016) for males only.

Conclusion: In dynamic studies using oxygenation-sensitive CMR, the hematocrit level affects baseline signal intensity
and the observed signal intensity response. Thus, the hydration status of the patient may be a confounder for OS-CMR
image analysis.
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Background
Oxygenation-sensitive (OS) Cardiovascular Magnetic
Resonance (CMR) is a promising tool to assess myocar-
dial oxygenation changes [1]. In contrast to other im-
aging modalities like coronary angiography or cardiac
CT, it is not an anatomy-derived surrogate parameter
for myocardial perfusion and oxygen supply, as OS-
CMR detects net changes in myocardial oxygenation
incorporating the contributing factors like blood oxygen-
ation, blood flow, myocardial workload and oxygen ex-
traction but also collateralization or coronary steal [2].
OS-CMR is based on the so-called Blood Oxygen Level-
Dependent (BOLD) effect, which takes advantage of the
paramagnetic deoxygenated hemoglobin as an inherent
contrast. An increase in deoxyhemoglobin would result
in a decrease in signal intensity in T2*-weighted se-
quences. Hence, a decrease in tissue oxygenation corre-
sponds to a decrease in signal intensity. This technique
was first proposed by Ogawa et al. and has since been
used in functional MRI (fMRI) studies [3], which detects
the activation of brain areas in response to distinct stim-
uli or triggered by tasks with an increase in local blood
flow [4]. In recent cardiac studies, this technique has
been used together with coronary vasodilators such as
adenosine to measure the oxygenation reserve, by com-
paring the images under adenosine to a set of baseline
images. Myocardial segments that fail to show an in-
crease have a high probability of being subtended to a
relevant coronary artery stenosis, being already max-
imally dilated after a fixed obstruction and thus failing
to respond to adenosine [5–8]. With newer sequences,
the temporal and spatial resolution is sufficient to use
OS-CMR to detect rapid and dynamic myocardial oxy-
genation changes using breathing maneuvers. Breathing
maneuvers such as hyperventilation and apnea result in
systemic changes in blood carbon dioxide levels, which
act as a strong modifier of coronary vascular tone [9,
10]. The sequence of hyperventilation with subsequent
apnea has shown to yield changes in myocardial oxygen-
ation at least as strong as adenosine infusion in healthy
volunteers [11]. Such a protocol would not only be free
of radiation and pharmacologic contrast agents, but
would also require neither potentially dangerous vasodi-
lators nor uncomfortable carbon dioxide levels adjusted
by complicated and expensive breathing circuits [12]. OS-
CMR is being utilized increasingly to investigate cardiac
pathologies and offers an innovative and potentially clinic-
ally feasible diagnostic protocol together with breathing
maneuvers [1, 2, 11, 13–15].
However, many factors influencing the technical as-

pects of the underlying T2*-sensitive sequences remain
confounders. The hydration status of an individual
may be such a confounder [16]. Lin et al. (1998) could
show that hemodilution has an effect on baseline

signal intensity in fMRI brain scans that use the same
sequence principle [17, 18]. More importantly, hemo-
dilution has been shown to influence the relative signal
response during the execution of identical tasks in
fMRI scans [19, 20].
The aim of this study was to assess the differences in

oxygenation-sensitive signal intensity free of vaso-
active effects in an in-vitro setup and during vaso-
active breathing maneuvers in healthy subjects. We
hypothesized that hemodilution results in an increase
in baseline signal and leads to an attenuation in signal
intensity changes after hemodilution during dynamic
breathing maneuvers.

Methods
In-vitro study
Venous and fully oxygenated arterial blood samples from
five pigs ventilated with 100 % oxygen were used to
assess hemoglobin-dependent changes in oxygenation-
sensitive (OS) signal intensity (SI) independent of vaso-
motor effects. The blood was obtained immediately after
euthanasia of five animals used for another experiment
[21]. The study was conducted in accordance with the
Guide to the Care and Use of Experimental Animals by
the Canadian Council on Animal Care and approved by
the local Animal Care and Use Board and followed
internationally accepted guidelines. The arterial (A100)
and venous (V100) blood was diluted with Lactated
Ringer’s solution in 10 % steps down to 50 % of the ori-
ginal sample (A50 and V50, respectively), and stored in
10 ml syringes. Before the scan, the specimens were
inverted, a 1 ml sample was withdrawn for a blood gas
analysis (Radiometer-ABL780, Radiometer, Brønshøj,
Denmark), and then the samples were placed in the
MRI scanner. A heart rate of 60/min was simulated on
the identical 3 T scanner with the same OS-sequence as
described in the imaging protocol for the in-vivo part
of this study.

In-vivo study
This study protocol was approved by the local research
ethics board of the Institut de Cardiologie de Montréal
(ICM #13-1447). In order to examine the relevance of
hemodilution to clinical studies, 21 healthy volunteers
were recruited to participate in this study by public ad-
vertisement. Inclusion criteria were age >18 years and
ability to give informed consent. Participants with any
history of cardiovascular, respiratory, cerebral or renal
disease, pregnancy, smoking within the last 6 months or
any contraindication for MRI scans were excluded. The
subjects were required to refrain from the consumption
of caffeinated beverages 12 h prior to the scan.
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Experimental protocol
An 18-Gauge i.v. line was placed in a cubital or ante-
cubital vein for the initial measurement of the baseline
hematocrit and hemoglobin concentration. After acquisi-
tion of baseline images, 1 L of Ringer’s Lactate solution
was rapidly infused over 5–8 min with a pressure bag
(300 mmHg). Immediately after rapid i.v. hydration, a
second blood sample was acquired before a second set
of images was acquired (hyper-hydration) using the iden-
tical protocol as that used for baseline scans. Non-
invasive blood pressure was measured before and after
hemodilution, heart rate was continuously recorded dur-
ing the scans and rate-pressure product was calculated
by multiplying the systolic blood pressure with the heart
rate. A vasoactive breathing maneuver according to Fi-
scher et al. was employed as an activation-dependent
stimulus analogue to fMRI scans at baseline and after
hemodilution [11].

Imaging protocol
Images were acquired in a clinical 3 T MRI system
(Magnetom Skyra, Siemens Healthcare, Erlangen, Germany)
using a 30-channel coil setup with body and spine coils. For
the in-vitro study, the samples were scanned with a simu-
lated 60/min heart rate immediately after localization, after
being placed in the scanner to minimize sedimentation. For
healthy volunteers, all images were acquired during a
breath-hold at end-expiration. Left-ventricular (LV) func-
tion was assessed using a standard ECG-gated balanced
steady-state free-precession (bSSFP) sequence in six LV-
centered radial long-axis slices (slice thickness: 8 mm; TR:
3.26; TE 1.43 ms).
One mid-ventricular slice was acquired during all

oxygenation-sensitive scans using a retrospective ECG-
gated bSSFP prototype sequence (slice thickness 10.0 mm,
TR 3.49 ms, TE 1.57 ms, flip angle 35°). After acquisition
of baseline images for both the normo- and hypervolemic
state during a short breath-hold, the subjects performed
60 s hyperventilation (35 breaths/min) with constant cine
acquisition during a maximal consecutive breath-hold as a
dynamic vasoactive maneuver at both levels. A metro-
nome was used to ensure consistency of the respiratory
rate. Volunteers were instructed to use the alarm bell to
signal the break-point of the voluntary apnea and to im-
mediately recommence breathing.

Image analysis
Image analysis was performed using certified CMR
evaluation software (cvi42, Circle CVI, Calgary, Alberta,
Canada). In the in-vitro samples, SI was measured after
defining a contour in the long-axis (LAX) orientation
of the syringes. For the assessment of left-ventricular func-
tion, parameters in the volunteers endo- and epicardial
contours were traced in end-systole and end-diastole.

In OS-CMR images, manual endo- and epicardial con-
tour tracing was completed in end-systolic frames. Mean
myocardial SI was automatically generated by the soft-
ware following contour tracing. All SI values were
expressed as percent change (ΔSI[%]) between two
images.

ΔSI %ð Þ ¼ SI maneuverð Þ−SI baselineð Þ
SI baselineð Þ � 100

The change in signal intensity between the baseline
and hyper-hydration images was calculated, and the rela-
tive SI changes during the vasoactive breathing maneu-
vers were compared between the two hydration states.
Specifically, differences between end-hyperventilation
(HV), peak (SImax), as well as after 30 s apnea (SI30s) and
end-breath-hold SI (SIend) changes were examined. A
second reader, blinded to the hydration status, the man-
euver and the subjects’ demographics, read 39 out of
220 images (18 %) to assess inter-observer reproducibil-
ity. For the in-vitro samples, the same equation was used
to calculate the %change in SI from the undiluted blood
samples (100 %) to the LRS-diluted samples (90, 80, 70,
60 and 50 %), respectively.

Statistical analysis
Statistical analysis was performed using Prism 6 (Graph-
Pad Software Inc., California, USA). All variables were
checked for normal distribution using the D’Agostino-
Pearson omnibus normality test. Student’s t tests were
performed for those values with normal distribution,
otherwise Mann-Whitney or Wilcoxon tests were used.
To test correlation between quantitative variables, Pear-
son correlation coefficients or Spearman rank test were
determined. Differences in blood levels to baseline in the
in-vitro data was analyzed with a one-way ANOVA
(Friedman test) with a Dunn post-hoc test for multiple
comparisons. Variables are presented as means ± stand-
ard deviation. Images of nine participants (39 readings)
were replicated by a second independent reader, and in-
ter‑observer reliability was assessed using a two-way
intraclass correlation (ICC) test with SPSS version 23
(SPSS IBM, New York, USA). P < 0.05 was deemed
significant.

Results
In-vitro data
The changes in hemoglobin concentration, hemoglobin
saturation, absolute deoxy-hemoglobin (deoxyHb) con-
centration and the deoxyHb fraction of arterial and ven-
ous blood samples are shown in Table 1. Values differed
significantly between the undiluted (A100 and V100)
and the diluted samples (p < 0.001). Arterial blood had no
detectable deoxyHb. In the venous blood, the absolute
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deoxyHb concentration (p < 0.001) and the fraction of
deoxy-Hb fell with increasing dilution (p < 0.001), while
oxygen saturation showed a small increase (p < 0.001). Ac-
tual hemoglobin concentration for the same dilution of
venous and arterial samples did not differ.
The % change in SI from the baseline sample for

venous (r = -0.55, p = 0.002) and arterial blood (r = -0.67,
p < 0.0001) were negatively correlated with the changes in
hemoglobin concentration, respectively (Fig. 1a). Further,
there was a relationship between changes in SI and SO2

(r = 0.68, p < 0.0001, Fig. 1b) as well as the deoxyHb
concentration of venous blood (-0.65, p < 0.0001, Fig. 1c).

In-vivo data
Demographics
The participants’ demographics are displayed in Table 2.
While there was no difference in age and body mass
index (BMI), height (p < 0.001) and weight (p < 0.001)
were significantly higher in males. All variables passed the
D’Agostini-Pearson Test for normal data distribution.

Hemoglobin concentration and hematocrit
Rapid infusion of 1 L Lactated Ringer’s solution re-
sulted in a significant drop in the hemoglobin concen-
tration (142.5 ± 15.2 g/L vs. 128.8 ± 15.2 g/L; p < 0.0001)
and hematocrit (42.0 ± 4.1 % vs. 38.2 ± 4.0 %, p < 0.0001).
There was no difference in relative hemoglobin (-12.73 ±
2.1 vs. -12.6 ± 2.4 g/L, p = 0.5) or hematocrit (-4.4 ± 0.6
vs. -3.2 ± 0.7 %, p = 0.2) changes between male and fe-
male participants.

Breath-hold performance
Maximal voluntary apnea was shorter after hemodilution
(68.4 ± 20.1 s vs. 79.6 ± 21.2 s; p = 0.001). There was a weak

but significant correlation between hemoglobin concentra-
tion and breath-hold time (R = 0.31, p = 0.0495)

Left-ventricular function parameters
There was a significant increase in end-diastolic volume,
stroke volume, cardiac output and the rate pressure
product during hemodilution (Table 3).

Image quality
In oxygenation-sensitives images 18 out of 680 (2.65 %)
end-systolic image frames had to be excluded due to
poor image quality mostly due to breathing artifact at
the transition from hyperventilation to apnea. In all
other images image quality was good to excellent. There
was no difference in image quality between the hydration
states (2.47 % vs. 2.86 % exclusion rate). A strong intra-
class correlation coefficient (ICC) of 0.924 (95 % CI:
0.0801–0.969, p < 0.001) indicated a strong agreement be-
tween readers.

Influence of hemoglobin concentration on oxygenation-
sensitive signal intensity changes
Baseline myocardial SI in OS-CMR images increased by
3.0 ± 5.7 % (p = 0.026) following rapid infusion. Figure 2a
shows the increase in baseline SI in a subject after he-
modilution at rest. There was no relationship observed
between hemoglobin concentration and changes in SI in
the entire collective (p = 0.56) or in females (p = 0.19),
however in the eleven males there was a strong associ-
ation between absolute changes in hemoglobin concen-
tration and %changes in SI (R = 0.82, p = 0.002, Fig. 4a).
SI decreased after hyperventilation and increased during

apnea at both hydration states. However, an attenuation of
signal intensity response to the breathing maneuvers was

Table 1 Changes in blood parameters during hemodilution of arterial and venous blood of healthy swine in vitro

Total Hb Conc. (g/L) FHHb (%) DeoxyHb Conc. (g/L) SO2 (%)

A100 92.0 ± 6.3

A90 81.0 ± 5.8*

A80 75.2 ± 12.3*

A70 65.0 ± 10.7*

A60 60.6 ± 6.1*

A50 45.8 ± 7.12*

V100 93.8 ± 7.0 34.7 ± 10.6 32.7 ± 11.4 64.3 ± 10.9

V90 87.2 ± 9.0* 33.8 ± 8.0* 29.4 ± 7.1* 65.2 ± 8.1*

V80 79.0 ± 9.6* 32.7 ± 9.2* 25.8 ± 7.5* 66.2 ± 9.4*

V70 72.2 ± 12.7* 31.4 ± 8.9* 22.5 ± 6.5* 67.6 ± 9.1*

V60 68.8 ± 12.0* 29.3 ± 9.8* 20.9 ± 10.0* 69.7 ± 10.0*

V50 47.2 ± 5.2* 26.4 ± 9.6* 12.2 ± 3.3* 72.7 ± 10.0*

Changes of blood parameters: There is a significant decrease in hemoglobin (Hb), deoxyHb fraction (FHHb) and absolute concentration, while oxygen saturation
increased compared to baseline with increasing dilution steps. *P < 0.001 for changes in blood parameters of the diluted samples compared to the undiluted
arterial (A100) or venous (V100) baseline
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observed after hyperventilation (HV, p = 0.037) and at the
maximal SI increase during apnea (SImax, p = 0.012) of the
breathing maneuver. At 30 s (SI30s) into the breath-hold,
there was only a trend (p = 0.057) for an attenuated SI in-
crease at hyperhydration (Fig. 3). Although breath-hold
length was significantly shorter after rapid infusion, there
was no difference for the time point of maximal signal in-
tensity (SImax) during apnea (34.03 ± 13.09 vs. 29.51 ±
11.59 s, p = 0.18).

Relationship between hemoglobin changes and SI
attenuation during vasoactive breathing maneuvers
With increasing reduction in hemoglobin concentration
(ΔHb), we found a stronger attenuation in SI (difference
in SI-response in identical maneuver) for SImax in males
(r = 0.63, p = 0.037) but not in females (r = 0.24, p = 0.51),
resulting in only a trend for a correlation for the entire co-
hort (r = 0.42, p = 0.058), (Fig. 4b). Figure 2b shows the
difference in the SImax in one subject before and after he-
modilution. SI attenuation was also found to be correlated
to the changes in hemoglobin concentration at the end of
the breath-hold (SIend) in the entire collective (r =
0.55, p = 0.012). Looking at gender differences this was
also true for the male subgroup (r = 0.68, p = 0.016, Fig. 4c)
but did not apply in females (r = 0.54, p = 0.105).

Discussion
Our results demonstrate for the first time that hemodilu-
tion may increase baseline signal intensity in oxygenation-

Fig. 1 Relationship between signal intensity changes with blood
results. a Relationship between the differences in hemoglobin
concentration of the blood samples compared to baseline with
changes in oxygenation-sensitive signal intensity of arterial and venous
blood samples in vitro. Differences in hemoglobin concentration were
negatively correlated to changes in signal intensity for venous (r = -0.55,
p= 0.002) and arterial blood (r = -0.67, p < 0.0001). b Differences
between absolute deoxyhemoglobin concentration (g/L) in venous
blood and SI changes (%). There was a moderate relationship between
the difference in hemoglobin concentrations and changes in SI (-0.65,
p < 0.0001). c Relationship between changes in hemoglobin saturation
of venous blood (SvO2) and changes in oxygenation-sensitive signal
intensity (%change SI). There was a moderate correlation between
venous hemoglobin saturation and signal intensity changes
(r = 0.68, p < 0.0001)

Table 2 Participant demographics

Parameter All (n = 21) Male (n = 11) Female (n = 10) p-value

Age (years) 21.4 ± 6.7 29.0 ± 1.8 28.0 ± 2.4 p = 0.69

Height (cm) 168.7 ± 10.5 175.8 ± 2.0 160.8 ± 2.6 * p < 0.001

Weight (kg) 67.6 ± 14.1 76.6 ± 3.1 57.8 ± 3.4 * p < 0.001

BMI (kg/m2) 23.6 ± 3.3 24.5 ± 0.8 22.3 ± 1.1 p = 0.09

Participant demographics: There was a difference in height and weight
between male and female participants (*p < 0.001), however, BMI and age did
not differ
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sensitive images but also attenuate the observed signal
response to vasoactive breathing maneuvers. The under-
standing of this relationship is important for the clinical
applications of OS-CMR [2]. Patients with changing fluid
status may show altered signal intensity responses, which
may confound results and their interpretation. During
heart failure, for example, an attenuated signal intensity
response may underestimate coronary vascular reactivity
or even falsely suggest inducible oxygenation deficits.
In the in-vitro data, the concentration and fraction of

deoxyHb were negatively correlated to the signal inten-
sity of the sample and positively correlated to the
hemoglobin saturation. Interestingly, both the hemodilu-
tion of arterial and venous blood resulted in an increase
in signal intensity of the sample. Although there was no
significant difference in the slope of the regressions, the
less pronounced increase observed in venous blood can
be explained by the signal-attenuating effects of the
deoxyHb.
During the dilution of deoxyHb, the T2* effect based on

the paramagnetic properties of deoxyHb is reduced, which
augments the relative impact of T2 effects, leading to a
higher signal intensity. Establishing this relationship in vitro
is an important step to distinguish the SI effects of the
simple hemodilution of deoxyhemoglobin from the more

complex SI-changing effects by the vasoactive breathing
maneuver in the participants during hemodilution.
The in-vitro data corresponds to the increase in base-

line signal intensity after rapid infusion of crystalloids in
healthy volunteers, leading to an attenuation of the T2*
effect, which explains the observed rise in signal inten-
sity. This effect was also observed in neurologic fMRI
studies by Lin et al. [17, 18]. The group assessed the effect
of mild and moderate acute hemodilution. The group con-
cluded that intra-voxel concentration of deoxyhemoglobin
was the main contributing factor causing changes in signal
intensity. It was shown that the increase in signal intensity
(or reduction in R2* or inverse of T2*) was proportional
to the decrease in hematocrit.
The linearity of the regression lines in our results sug-

gests that the baseline signal intensity can be normalized
for a known deviation of hemoglobin concentration.
Interestingly, the change in hemoglobin concentration
was only related to changes in signal intensity in male
subjects.

Table 3 Changes in left-ventricular function parameters

Cardiac parameter Normovolemia Hypervolemia p-value

End-Diastolic Volume (mL) 142.5 ± 8.0 147.3 ± 7.9 * p < 0.01

End-Systolic Volume (mL) 53.5 ± 4.1 53.5 ± 4.2 p = 0.998

Stroke Volume (mL) 89.0 ± 4.7 93.7 ± 4.3 * p < 0.005

Ejection Fraction (%) 63.1 ± 1.3 64.3 ± 1.3 p = 0.065

Cardiac Output (mL) 5710 ± 330 6177 ± 323 * p < 0.005

HR (beats/min) 64.3 ± 1.7 65.8 ± 1.6 p = 0.167

Rate-Pressure Product 8012 ± 366 8733 ± 345 * p < 0.001

Systolic Myocardial Mass (g) 115.8 ± 7.2 114.4 ± 6.9 p = 0.114

Left-ventricular function parameters: After rapid infusion of 1L Lactated Ringer’s
solution. There was an increase in end-diastolic volume, stroke volume, cardiac
output and rate-pressure product after hyperhydration (*p < 0.01)

Fig. 2 Differences in signal intensity changes between hydration states. DICOM subtraction images demonstrate that hemodilution increases the
OS signal at rest (a). Furthermore, the breathing maneuver could significantly induce a transient increase in myocardial oxygenation in normal
conditions (b), but this response was attenuated in a hemodiluted state (c)

Fig. 3 Differences in signal intensity changes between hydration
states. SI changes during vasoactive breathing maneuvers and after
hyperventilation (End-HV), peak values and values at the end of a
maximal breath-hold (End-BH) during normovolemia and hypervolemia
in healthy subjects (p < 0.05)
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Levin et al. (2001) performed repeated photic-stimulation
functional MR experiments before and after hemodilution
[19] in male subjects. Corresponding to a 6 % decrease in
hematocrit, the authors observed a statistically significant
reduction of the inducible response of 8 %. These results
are comparable to our data. Interestingly, in our study the
extent in signal intensity attenuation was only correlated to
the increase of hemodilution in males and not in females,
which showed a preserved response, despite a similar level
of hemodilution, similar body mass index values and the
same infusion volume. From the present data, we cannot
be sure about the physiologic reasons for the absence of
such a relationship in females. Yang et al. found that the re-
lationship between BOLD-SI changes in the brain and
hematocrit levels are modulated by sex [20]. In their study,
the inter-hemispheric connectivity within the pars occularis
extending to the precentral gyrus was found to be positively
correlated with hematocrit in females and negatively corre-
lated in males. However, the study could not clarify if these
affects were acute or to neural adaptations to chronic
hematocrit differences.
Yet, the observed sex differences in our study may be

explained by a higher total vasodilatory capacity which
had not been exhausted by the intravascular hypervole-
mia. A larger sample size might have detected a weaker
yet still existing relationship in female participants.
The increase in baseline SI and the attenuation in SI re-

sponse during vasoactive breathing maneuvers were
already observed at a mean drop in hemoglobin concen-
tration of 13.7 g/L (corresponding drop in HCT 3.8 %) in
our study. Such a relatively small change is easily encoun-
tered in clinical settings. In some patients, the drop in
hemoglobin concentration during volume substitution
after blood loss can exceed such change by far. Con-
versely, diuretic therapy may significantly increase in
hematocrit level. Thus, our data have clinical relevance for
the future use of OS-CMR in non-invasive cardiac testing.
The changes in ventricular volumes and function data

are explained by the increase in preload and consecutive
improvement in contractility, based on the Frank-Starling
mechanism. The increase in blood pressure leads to an

Fig. 4 Relationship of baseline oxygenation-sensitive signal intensity
and signal intensity response in relationship to hemoglobin changes
in healthy males. a There was strong negative relationship between
changes in hemoglobin concentration and signal intensity on
oxygenation-sensitive images before and after rapid infusion of
Lactated Ringer’s solution in healthy men (r = 0.82, p = 0.002) at
rest, suggesting an increase in relative SI with decreasing hematocrit.
b Relationship between the extent of hemodilution and the attenuation
of the maximal signal intensity response during apnea (r = 0.63,
p = 0.037) and c) at the end of the breath-hold (r = 0.68, p = 0.016)
in healthy males. A significantly decreased hemoglobin level was
associated with a stronger attenuation of the signal intensity response
in healthy males
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elevated rate-pressure product, with an increased myocar-
dial workload and thus higher oxygen extraction. While
this may suggest an explanation for the decreased signal
intensity response as well, the blood pressure remained
within the auto-regulation range for myocardial blood
flow and therefore, a decreased myocardial oxygen supply
would result in a consecutive compensatory increase in
blood flow to maintain a constant tissue oxygenation.
Thus, an increase of the myocardial oxygen extraction
less likely explains the observed hemoglobin-dependent
changes in OS-CMR.
A study of Zheng and colleagues on brain functional

connectivity in hemodialysis patient with end-stage renal
disease [22] showed that a weakening of the cortical and
subcortical network connectivity in these patients was
related to anemia. This observation could be explained
by a decreased T2* effect in anemic patients. Another
study observed a blunted myocardial oxygenation re-
sponse to adenosine in patients with chronic kidney dis-
ease and renal transplant patients [13]. The authors
attributed this finding to the possible presence of micro-
vessel disease, as these patients have a higher incidence
of cardiovascular events. However, the authors do not
state if the MRI scans were performed before or after
dialysis in these patients. The differences in fluid state
before and after dialysis could have had a profound effect
on the measured OS-signal response. It is possible that
the SI response may have been underestimated, which
leads to the conclusion of the presence of coronary artery
or microvascular coronary disease in these patients. Fur-
ther studies are warranted to assess the relationship
between altered fluid status, OS-signal response and heart
disease in order to deduct correct conclusions.

Limitations
The precise execution of breathing maneuvers may have
varied between participants and between breathing ma-
neuvers within subjects. To minimize variations, we
paced the respiratory rate for the subjects with a metro-
nome during hyperventilation and visually monitored it
by a camera installed in the scanner room. If breathing
appeared insufficiently deep or too slow, we immediately
intervened to correct that. As breath-hold duration dur-
ing maximal tolerable apnea is highly variable, we used
standard time points for comparison between fluid
states. The 30 s time point was reached by every partici-
pant. Further, we used the peak signal intensity change
during apnea and the signal intensity change at the end
of the maneuver, when participants had the urge to
breathe again for comparison. However, these time
points vary in the time point of acquisition during the
maneuver between participants and between runs. The
primary reader of the exams was not blinded to the fluid
state during which the images were acquired. However,

the second reader, who analyzed 18 % of the images, was
blinded to the fluid state, and there was an excellent
agreement between the readers. Results may be very dif-
ferent in a patient cohort with a more chronic systemic
fluid overload. Although our data opens up the potential
for normalizing the measured signal intensity response
to hemoglobin changes, there needs to be further re-
search, especially in patients with coronary pathologies
present in patients with heart failure that can be scanned
before and after re-compensation. Larger sample sizes
may allow for a more precise determination of the rela-
tionships and thus correction factors.

Conclusion
In dynamic studies using oxygenation-sensitive CMR, the
hematocrit level affects baseline signal intensity and the
observed signal intensity response. Thus, the hydration
status of the patient may be a confounder for OS-CMR
image analysis.
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