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ABSTRACT In the present report we describe a CD4+8-
heat stable antigen-negative (HSA-) thymocyte subpopulation
that expresses a distinguishably low density of aj3 T-cell
antigen receptors (TCRIo) from the majority of CD4+8- high
density TCR (TCRhi) mature-type thymocytes. This subpop-
ulation appears relatively late in life. Analysis of MEL-14,
Pgp-1 (CD44), ICAM-1 (CD54), and NKl.1 expression on this
subpopulation revealed that the CD4+8- TCRIO population was
a population having unique characteristics (MEL-14-, CD44+,
ICAM-1+, and NK1.1+) compared to the CD4+8- TCRhI
thymocytes, most of which are MEL-14+, CD44-, ICAM-1-,
and NK1.1-. When TCR a-chain variable region (Vp) usage
was analyzed, this thymic population expressed predominantly
products of Vp7 and Vp8.2 TCR gene families. Interestingly,
cells with Vp8.1 TCRs, which are reactive to Mls-la antigens,
were not eliminated from the CD4+8- HSA- TCRIO subpop-
ulation but had been eliminated from the major CD4+8- HSA-
TCRhi subpopulation in Mls-la strains. A subset with a phe-
notype similar to the CD4+8- HSA- TCRI thymocytes was
also identified primarily in bone marrow, and this subset
constituted approximately half of the CD4+ T cells in the bone
marrow. The CD4+8- HSA- TCRIO cells showed extremely
high proliferative responses to immobilized anti-TCR antibody
but generated negligible responses to allogeneic H-2 antigens
compared to the responses generated by the major CD4+8-
HSA- CD3hi cells. However, the CD4+8- HSA- TCRIO cells in
Mlsdb mice mounted vigorous proliferative responses to Mls-l
antigens but not in Mls-1 mice. The properties of this T-cell
subset suggest that these cells belong to a lineage distinct from
the major T-cell population.

In previous studies, we (1) and others (2-4) have shown that
phenotypically mature CD4+ single-positive thymocytes con-
tain heat stable antigen (HSA)-dull and HSA-negative sub-
populations. Sequential analysis ofthe thymocyte maturation
revealed that the CD4+8- HSAdull thymocytes appeared
earlier than CD4+8- HSA- thymocytes. These findings
suggest that the former population matures into the latter
thymocyte population and that the CD4+8- HSA- thymo-
cytes are likely to be direct progenitors of peripheral CD4+
T cells (1).
However, even among the CD4+8- HSA- seemingly ma-

ture thymocyte subpopulation, heterogeneity was found.
When these cells were analyzed for CD3 or T-cell antigen
receptor (TCR) expression, 10-20% of these cells expressed
a distinguishably low-density TCR phenotype (TCRlO). Fur-
thermore, the population expressed the NK1.1 antigen,
which is generally expressed only on natural killer cells (5, 6).
In the present study, we focused our investigation on this
NK1.1+ CD4+8- TCRIo subpopulation. We were especially
concerned with the ontogeny of these cells, their surface

phenotype, tissue distribution, and responsiveness to several
stimulations.

MATERIALS AND METHODS
Mice. AKR/J mice were obtained from The Jackson Lab-

oratory. C57BL/10 SnSlc (B10), B10.BR SgSnSlc (BR),
B10.D2/nSnSlc (D2), DBA/2CrSlc, and CBA/NSlc mice
were obtained from the Shizuoka Laboratory Animal Coop-
eration (Hamamatsu, Japan). CBA/Jjcl mice were obtained
from Japan Clea Cooperation (Tokyo). Mice were used at
10-14 weeks of age unless otherwise indicated.

Antibodies and Flow Cytometry. Primary monoclonal anti-
bodies (mAbs) used for immunofluorescence staining and flow
cytometry in these experiments and their P-chain variable
region (Va) and p-chain constant region (Ca) specificities were
KJ-25 (anti-TCR V3) (7), KT4 (anti-TCR V4) (8), MR9-4
(anti-TCR V,95) (9), 44.22.1 (anti-TCR V,96) (10), TR310 (anti-
TCR Vp7) (11), F23.1 (anti-TCR Vp8.1, -2, -3) (12), KJ-16
(anti-TCR Vp8.1, -2) (13), F23.2 (anti-TCR V,8.2) (14), MR10-2
(anti-TCR V,9) (15), KT1Ob (anti-TCR V,10) (16), RR3-15
(anti-TCR V911) (17), 2C11 (anti-CD3-,-) (18), H57.597 (anti-
TCR Ca) (19), KM201 [anti-CD44 (Pgp-1)] (20), MEL-14 (21),
Jild (anti-HSA) (22), PK-136 (anti-NK1.1) [purchased from
American Type Culture Collection (ATCC), Rockville, MD],
MALA-2 [anti-CD54 (ICAM-1)] (23), FD441.8 [anti-LFA-1
(CD11a)] (purchased from ATCC), F7D5 (anti-Thy-1.2) (Olac,
Bichester, U.K.), 020-210 [anti-CD5 (Lytl.2)] (Meiji Institute
of Health, Japan), and 7D4 [anti-interleukin 2 (IL-2) receptor
a chain] (purchased from ATCC). Phycoerythrin (PE)-anti-
CD4 was purchased from Becton Dickinson. Fluorescence-
labeled secondary antibodies and avidin used herein were
fluorescein isothiocyanate (FITC)-anti-mouse IgG, FITC-anti-
rat IgG, FITC-anti-hamster IgG, biotin-anti-mouse IgG,
biotin-anti-rat IgG (Cappel Laboratories), PE-anti-rat IgG
(Jackson ImmunoResearch), and PE-streptavidin and Tan-
dem-streptavidin (Southern Biotechnology Associates, Bir-
mingham, AL). Flow cytometry analysis was performed on a
FACScan (Becton Dickinson), and cell sorting was performed
on a FACStar (Becton Dickinson). Data acquisition and anal-
ysis of the data were basically according to Arase et al. (1).

Cell Preparation. Fresh thymocytes from each group oftwo
to three mice were treated with anti-Lyt2.2 or anti-Lyt2.1
mAbs (Meiji Institute of Health) and in some experiments
with additional Jild mAb followed by rabbit complement
(24). To completely remove the remaining CD8+ or HSA+
cells, we mixed the resultant cells with Dynabeads M-450
(Dynal, Oslo). Purity of the cell preparation was checked by

Abbreviations: BM, bone marrow; HSA, heat-stable antigen; LN,
lymph node; mAb, monoclonal antibody; Spl, spleen; TCR, T-cell
antigen receptor(s); PE, phycoerythrin; FITC, fluorescein isothio-
cyanate; Vp, 3-chain variable region; Cp, 1-chain constant region;
IL-2, interleukin 2.
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fluorescence-activated cell sorting and was always shown to
be >98%. Spleen (Spl), lymph node (LN), and bone marrow
(BM) T cells were purified by using a nylon wool column.
TCR Stimulation. Purified anti-TCR Cp antibody (H57.597)

was immobilized on flat-bottomed 96-well microculture
plates (Falcon). Thereafter, 5 x 104 T cells sorted by fluo-
rescence-activated cell sorting were cultured in 200 1d of
RPMI 1640 supplemented with 10% fetal calf serum, peni-
cillin (100 units/ml), streptomycin (100 1Lg/ml), and 50 tkM
2-mercaptoethanol. The plates were incubated at 370C in a
humidified 5% C02/95% air atmosphere in an incubator for
3 days. Twelve hours prior to harvesting, 1 ,uCi (1 Ci = 37
GBq) of [3H]thymidine was added to each well. The cultures
were harvested and assayed in a liquid scintillation counter.
For assessment of IL-2 production by these cells, the culture
supernatants taken before addition of [3H]thymidine were
added to cultures of an IL-2-dependent cell line, CTLL-2, for
1 day. Thereafter, [3H]thymidine uptake of the cultures was
analyzed as described above.
Mixed Lymphocyte Reaction. CD8- HSA- thymocytes

were stained with FITC-anti-CD44 and PE-anti-CD4. Stained
cells were sorted into CD4+ CD44+ and CD4+ CD44- pop-
ulations. In purification of AKR thymocytes, CD8- HSA-
thymocytes were mixed with MEL-14-coated Dynabeads to
enrich the CD44+ population before sorting. Splenic CD4+ T
cells were prepared by sorting the nylon wool-purified spleen
cells after staining with PE-anti-CD4. The purity of sorted
cells was always >98%. These sorted responder T cells (8 x
104) and spleen cells (2 x 105) treated with mitomycin c at 50
pug/ml for 30 min were mixed together in 200 ,ul ofRPMI 1640
medium supplemented as described above. These cells were
cultured in a 96-well round-bottomed microculture plate
(Falcon) for 4 days. To evaluate cell proliferation, [3H]thy-
midine incorporation was measured as described above.

RESULTS
A Thymocyte Subpopulation with Low TCR Expression

Among CD4+8- Single-Positive Thymocytes. In contrast to
peripheral T cells, adult murine CD4+8- single-positive thy-
mocytes consist of heterogeneous subpopulations when fur-
ther classified by HSA expression. Namely, =:50% of
CD4+8- thymocytes are weakly HSA positive (1-4). When
TCR expression on CD4+8- HSA- thymocytes was ana-
lyzed, a cell population expressing a low level ofCD3 (CD310)
was detected among the HSA- cells (Fig. 1). The proportion
of the CD310 population among the CD4+8- HSA- thymo-
cytes was 21.1%. Similar cells with the TCRlo phenotype
were observed when the anti-TCR C, (H57.597) or the
anti-TCR Vp8 (F23.1) mAb was used (data not shown). We
then analyzed the expression of various kinds of surface
antigens on the CD4+8- HSA- thymocytes in B1O.BR mice
(12 weeks old) (Fig. 1). The majority of the cells in the
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FIG. 1. Phenotypic analysis of CD4+8- HSA- thymocytes.
CD4+8- HSA- thymocytes were stained with mAbs that recognize
the antigens indicated in the figure followed by Tandem-streptavidin,
FITC-anti-CD3, and PE-anti-CD4. Expression of CD3 (x axis) and
the other antigens indicated (y axis) on the CD4+8- HSA- popula-
tion is illustrated.

population with the CD4+8- high-density CD3 (CD3hi) phe-
notype expressed MEL-14, but only a small proportion
expressed the CD44, NK1.1, or ICAM-1 antigens. To the
contrary, a majority ofthe CD3lO population expressed CD44,
NK1.1, and ICAM-1, but only a small proportion expressed
MEL-14. No obvious difference was observed in expression
ofthe LFA-1, Kk, Thy-1, or CD5 antigens between CD3hi and
CD3lO populations. No significant expression of the IL-2
receptor a chain was observed on either subpopulation.
TCR VP Usage in CD4+8- HSA- TCRDO Thymocytes. We

then analyzed TCR Vp usage in the CD4+8- HSA- CD310
thymocytes from B10 mice. Since CD4+8- HSA- CD3Io cells
were all CD44+ (Fig. 1), we analyzed the CD4+8- HSA-
CD44+ (CD44+) population as representative of the CD4+8-
HSA- CD310 population and compared the Vp usage with the
CD4+8- HSA- CD44- (CD44-) population, which appeared
to represent the CD4+8- HSA- CD3hi population. Fig. 2
shows that a high proportion of CD44+ thymocytes express
Vp7 and Vp8.2 TCRs as compared to CD44- thymocytes. In
contrast, significantly lower proportions of the CD44+ cells
were V3+, Vp4+, Vp6+, V10+, and V911+ as compared to
CD44- cells. Next, we analyzed TCR Vp expression in seven
different strains to see the efficiency of negative selection of
thymocytes expressing self-reactive TCRs (Table 1). VP5+ or
VP11+ thymocytes were eliminated in most I-E+ strains (9,
17), and VP6+ or VP8.1+ thymocytes were eliminated in I-E+
and Mls-la strains (10, 14). Table 1 shows that the Vp5+ or
V11+ cells had been eliminated or reduced in the both CD44+
and CD44- populations of I-E+ strains. Similarly, V,6+ cells
were eliminated from both populations in I-E+ and Mls-la
strains. By contrast, considerable proportions ofVp8.1+ cells
were seen in the CD44+ populations of MlS-la strains, even
though in the CD44- populations the Vp8.1+ cells were
completely eliminated.

Tissue Distributions of CD4+8- HSA- CD3'° Thymocytes.
We then tried to identify the CD4+8- CD310 population in
various lymphoid tissues. Fig. 3 demonstrates the expression
of CD3 and MEL-14 or CD3 and CD44 antigens on the CD4+
cells from Spl, LN, or BM. The CD4+ T cells with the CD310
and CD44+ phenotype were found most frequently in BM
(they comprise 37.8% of the entire CD4+ T cells in this
location). To the contrary, in LN or SpI only a very small
proportion of such CD3IO CD44+ T cells could be detected.
Similarly CD4+ CD310 MEL-14- T cells were detected most
frequently in BM (39.2%) but were hardly detectable in LN
or Spl. No significant numbers of T cells from peripheral
blood, Peyer's patches, or intestinal LN showed the pheno-
type of the CD4+ CD310 CD44+ or MEL-14- population (data
not shown). When Vp8 expression on the CD4+ CD44+ or
CD4+ MEL-14- T cells in Spl, LN, or BM was analyzed and
compared with those in the thymus, high proportions of Vp8+
cells, similar to those in the thymus, were noted only in BM
T cells (Table 2).
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FIG. 2. TCRV expressiononCD4+8- HSA- CD44+ orCD4+8-
HSA- CD44- thymocytes. Pooled CD8- HSA- thymocytes from
three B10 mice were stained with FITC-anti-TCR Vq, PE-anti-CD4,
and Tandem-anti-CD44 mAbs. The proportion of each type of TCR
Vp-positive cells in CD4+ CD44+ or CD4+ CD44- cells is illustrated.
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Table 1. TCR Vp usage of CD44+ or CD44- CD4+8-
HSA- thymocytes

Mouse TCR Vp
strain I-E Mls-1 CD44 -5 -6 -8.1* -8.2 -11
B10 - b + 1.5 4.0 7.8 34.3 2.1

- 1.8 9.2 5.9 13.7 3.8
B1O.BR + b + 0.3 2.8 5.1 39.1 0.0

- 0.0 9.2 2.4 16.8 0.2
CBA/N + b + 0.4 5.0 7.5 37.2 0.5

- 0.2 12.2 4.0 17.6 0.3
CBA/J + a + 0.4 1.1 5: 35.9 0.6

- 0.3 0.1 0.1 19.7 0.2
DBA/2 + a + 0.6 0.6 .21 37.5 0.8

- 1.0 0.1 0.0 16.6 1.7
AKR/J + a + 0.6 0.4 12 20.0 0.3

- 0.0 0.0 0.1 12.7 0.1
CD8- HSA- thymocytes pooled from three mice were stained

with PE-anti-CD4, Tandem-anti-CD44, and FITC-anti-TCR Vp anti-
bodies. Data were calculated by subtracting the background staining.
Underlined values indicate that these populations have not been
eliminated significantly.
*Frequencies of Vp8.1+ cells were calculated by subtracting the
frequencies of Vp8.2+ cells (F23.2+) from Vp8.1,2+ cells (KJ-16+).

Ontogenetic Study ofthe CD4+8- HSA- CD3P Thymocytes.
To examine the appearance of the CD4+8- HSA- CD310
thymocytes in ontogenetic terms, we analyzed thymocytes
from B1O.BR mice of various ages (10 days and 3, 6, 10, and
18 weeks). As shown in Fig. 4A, only a small proportion of
CD310 cells was detected in the thymus of 10-day-old mice.
Thereafter, the proportion of the CD310 cells gradually in-
creased, and rather high proportions were demonstrated in
the thymus after 10 weeks. These findings indicate that the
CD4+8- HSA- CD3Io cells appear at a late stage compared
to the CD4+8- HSA- CD3hi population. Similarly, the pro-
portion of CD4+ CD310 cells in BM gradually increased with
age, although the population size was much larger than that
of the thymus (Fig. 4B).

Functional Analysis of the CD4+8- HSA- CD3I0 Thymo-
cytes. In the next set of experiments, we analyzed respon-
siveness of CD4+8- HSA- CD310 cells sorted from B10
thymocytes by the immobilized anti-TCR Cp mAb. As shown
in Fig. 5, CD4+8- HSA- CD310 thymocytes generated pro-
liferative responses through perturbation of the TCR that
were almost 10 times greater than those of normal splenic
CD4+ T cells. Similarly, significantly high levels of IL-2 were
detected in the supernatant of the CD4+8- HSA- CD310
thymocytes stimulated with anti-TCR C9 mAb compared to
those of CD4+ splenic T cells.
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Table 2. Proportions of Vp8+ cells in CD4+ T cells from
various tissues
Tissue CD44+ CD44- MEL-14+ MEL-14-
Thymus DA 21.4 20.7 40 9
LN 24.5 25.8 24.1 26.9
Spl 27.2 24.6 23.5 28.3
BM 441 22.7 23.9 AL1
Each tissue was pooled from three mice. CD8- HSA- thymocytes

or nylon wool-purified T cells were stained with PE-anti-CD44,
Tandem-anti-CD4, and FITC-anti-CD3 or anti-Vp8 mAbs. The pro-
portion of CD3+ cells in each population was >99%o. Underlined
values are significantly higher than those of LN or Spl.

Next, we carried out syngeneic and allogeneic mixed
lymphocyte reactions in addition to anti-TCR stimulation
with H57.597 in BlO.BR (Mls-lb), B10 (Mls-lb), AKR (Mls-
la), and CBA/J (Mls-la) mice. As shown in Table 3, the
CD44+ thymocytes showed only negligible responses to
allogeneic H-2 antigens as compared to the CD44- thymo-
cytes or splenic CD4+ T cells. When reactivity to AKR
stimulator cells was analyzed in B10 or B1O.BR mice, the
CD44+ thymocytes showed vigorous and comparable prolif-
eration to those of CD44- thymocytes or CD4+ splenic T
cells. This finding indicates that the reactivity of the CD44+
thymocytes to Mls-la antigens is comparable to that of the
CD44- thymocytes or CD4+ splenic T-cell populations.
However, in AKR/J and CBA/J mice (Mls-la) no greater
responses to the syngeneic stimulators could be detected
among CD44+ thymocytes than with CD44- thymocytes or
splenic CD4+ T cells. This finding is of interest, since
significant proportions of Vp8.1+ cells were present in the
CD44+ population ofthe AKR/J and CBA/J thymocytes (see
Table 1).

DISCUSSION
In the present study, we have demonstrated a thymocyte
subset characterized by the surface phenotype CD4+8-,
HSA-, and CD31O or aB TCRIo. The CD4+8- HSA- TCRlo
subset made up about 10% of the whole CD4+8- thymocytes
or about 20%o of the CD4+8- HSA- thymocytes in adult
B1O.BR mice. Furthermore, a similar population was dem-
onstrated to comprise about 40% of BM CD4+ T cells. By
contrast, these CD310 T cells could not be detected in
significant numbers in LN or Spl. Most ofthe CD4+8- HSA-
TCRIO cells were shown to be NK1.1+, CD44+, ICAM-1+,
and MEL-14-. The expression pattern ofthe CD44, MEL-14,
and ICAM-1 on the CD4+8- HSA- TCRlo population is
identical to that expressed on memory T cells as reported (23,
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FIG. 3. Tissue distributions of CD4+8- TCRIO CD44+ MEL-14-
T cells. Cells from B1O.BR (12-week-old) mice were stained with
Tandem-anti-CD4, FITC-anti-CD3, and PE-anti-MEL-14 or PE-anti-
CD44. Expression ofCD3 and MEL-14 or CD44 on the CD4+ T cells
is illustrated. The proportions of each population are indicated.

FIG. 4. Ontogenetic analysis of CD4+8- HSA- TCRIO thymo-
cytes (A) or CD4+ TCRlO BM cells (B). CD3 expression on the
CD4+8- HSA- thymocytes or CD4+ BM cells from B1O.BR mice of
various ages is illustrated. The proportions of CD31J cells are
indicated.
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FIG. 5. Proliferative responses and IL-2 production by CD4+8-
HSA- CD31° thymocytes and splenic CD4+ T cells to stimulation
with immobilized anti-TCR Co mAb. CD4+8-- HSA- CD310 thymo-
cytes were prepared by sorting CD8- HSA- thymocytes into CD4+
CD310 population (o). Splenic CD4 I T cells were prepared by sorting
the splenic T cells into CD44 cells (e). Data are presented as the
mean change in cpm ± SD of triplicate determinations.

25-28). However, the expression of the NK1.1 antigens is
generally limited to natural killer cells (5, 6), and antigen-
specific CD4+ T cell lines did not express NK1.1 antigen
(unpublished observation). From this finding, we infer that
the CD4'8- HSA- TCR'° population represents a lineage
different from the major T-cell population and that this
lineage may play a distinct role, which is also reflected by its
restricted tissue location.

This CD4 8- HSA- TCRIO population highly expresses the
Vg7 and V,68 TCR repertoire. Furthermore, in Mls-1a strains,
the V38.1 TCR-1 cells that are reactive to Mls-1a antigens were
not eliminated from this population. On the other hand,
self-reactive V46', V85', or Vpl11 cells had been almost
completely eliminated. These differences in efficacy of neg-

ative selection of self-reactive thymocytes observed between
the V,66, Vp5, or Vf11 TCR and the Vp8.1 TCR repertoire may
be due to the difference in affinity to self-antigens or to a

difference in maturation stages (29). Recently, Takahama et
al. (30) reported Ly6C1 CD4+8- thymocytes that express a

high proportion of V38.2 TCR. However, when Ly6C ex-

pression on CD4+8- HSA- TCR'° thymocytes was analyzed,
these thymocytes did not necessarily express Ly6C antigen
(57% were Ly6C- in CD4 8- HSA- TCRIO thymocytes).
Furthermore, in an MIs-la strain, self-reactive Vs6+ cells
were eliminated from CD4'8- HSA- CD44+ thymocytes,
unlike CD4+8- Ly6C+ thymocytes.
The CD48- HSA TCR'° population appeared in the

thymus or BM later than other T-cell populations. Further-
more, a forbidden clone (V38. 1+) was shown not to have been
eliminated from the CD4'8- HSA- TCRIO population as

Proc. Natl. Acad. Sci. USA 89 (1992) 6509

described above. Thus, one possible origination of the pop-

ulation may be from extrathymic tissues such as BM. Actu-
ally, we (31) and others (32) have reported that activated T
cells can reenter the thymus. However, the possibility that
this population has been generated in the thymus in a manner
different from the major thymocyte population cannot be
eliminated by the present studies.

Functional analysis demonstrated that the CD4+8- HSA-
TCR'° thymocytes elicit negligible allogeneic H-2 responsive-
ness compared to the major CD4'8- thymocytes or the
splenic CD4' T cells, although they responded vigorously to
stimulation with immobilized anti-TCR mAb. On the con-

trary, when the responsiveness of the CD4+8- HSA-- TCRI°
population to Mls-1a antigens was quantified in Mls1b
strains, cells of this population showed comparable re-

sponses to those exhibited by the major CD4+8- thymocytes
or the splenic CD4+ T cells. This unique responsiveness is
presumably attributable to the highiy skewed TCR reper-

toire. However, in Mls-1a strains the CD4r8- HSA- TCRIO
thymocytes mounted no responsiveness to Mls-1a antigens,
even though they contained a considerable proportion of
V38.1+ cells. Thus, the forbidden clones bearing self-reactive
Vg8.1 TCR in this population seem to be rendered tolerant to
the self-antigens in a manner distinct from the usual clonal
elimination.
From the clinical point of view, the feature of the relatively

abundant CD4+ CD44+ MEL-14- TCR'° T cells in BM seems

important. T cells that represent a very small fraction of total
marrow cells (1-2%) exert significant influences on the prog-
nosis of patients transplanted with allogeneic BM cells. BM
T cells induce a graft versus host reaction that has been
shown to be lethal, depending on the combination of donors
and recipients. On the other hand, graft versus host reaction
becomes a benefit especially when BM transplantation is
performed for treatment of leukemia patients (33, 34) (graft
versus leukemia reaction). Thus, it seems critical to deter-
mine what functional significance the CD4+8- HSA- TCRI°
population has in vivo, especially when BM transplantation is
employed in appropriate patients.
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Table 3. Proliferative responses of CD4+8- HSA- CD44+ thymocytes to stimulation with allogeneic H-2 antigens, MIs-la antigens, or
anti-TCR mAb

Mouse Stimulator cells

Exp. strain Tissue Cell MC B10 BR CBA/N D2 AKR CBA/J anti-TCR mAb*

1 B10 Thy CD44- 88 ± 14 150 ± 20 3506 ± 720 44,977 + 3944 1,636 + 149t
B10 Thy CD44- 77 ± 28 177 ± 107 289 ± 20 22,072 ± 60 50,154 ± 455
B10 SpI CD4- 103 ± 20 176 ± 55 2485 ± 223 28,363 ± 1286 11,050 ± 2,367

2 BR Thy CD44-- 164 + 59 129 ± 12 3679 + 627 24,232 ± 2437 1,647 ± 740
BR Thy CD44+ 147 ± 62 135 ± 11 613 + 336 14,067 ± 1234 48,247 ± 18,714
BR SpI CD4' 170 ± 76 192 ± 157 1991 + 453 14,117 ± 1345 8,234 ± 2,772

3 AKR/J Thy CD44- 80 ± 65 ND 9994 + 2076 316 ± 72 1,662 ± 343
AKR/J Thy CD44< 27 ± 4 ND 268 + 147 163 ± 132 71,330 ± 2,984
AKR/J SpI CD4+ 91 ± 31 247 ± 214 5705 + 534 435 ± 417 10,623 ± 2,412
BR SpI CD4+ 107 ± 55 208 ± 202 3153 + 607 18,710 ± 4216 6,353 ± 866

4 CBA/J Thy CD44- 414 ± 56 240 + 86 5794 + 569 1,580 ± 315 6,082 ± 1,630
CBA/J Thy CD44+ 406 ± 188 ND 1079 + 229 540 ± 140 53,998 ± 3,235
CBA/J SpI CD4+ 203 ± 124 199 ± 45 4834 + 703 1,070 ± 616 34,339 ± 6,934
CBA/N Spl CD4+ 138 ± 124 205 ± 177 3256 + 288 33,837 ± 3,520 5,235 + 957

The data are the mean cpm ± SD of triplicate determinations. ND, not determined; Thy, thymus.
*Thirty thousand cells were stimulated with immobilized anti-TCR mAb.
tData are the mean change in cpm ± SD of triplicate determinations.



Proc. Natl. Acad. Sci. USA 89 (1992)

in part by a Grant-in-Aid for Scientific Research (B, C), a Grant-in-
Aid for Cancer Research, The Ministry of Education, Science and
Culture, Japan, the Uehara Memorial Foundation, and the National
Institute of Aging (Grant AgO5628-08).

1. Arase, H., Fukushi, N., Hatakeyama, S., Ogasawara, K.,
Iwabuchi, K., Iwabuchi, C., Negishi, I., Good, R. A. & Ono6,
K. (1990) Immunobiology 180, 167-183.

2. Wilson, A., Day, L. M., Scollay, R. & Shortman, K. (1988)
Cell. Immunol. 117, 312-326.

3. Ramsdell, F., Jenkins, M., Dinh, Q. & Fowlkes, B. J. (1991) J.
Immunol. 147, 1779-1785.

4. Bendelac, A. & Schwartz, R. H. (1991) Nature (London) 353,
68-71.

5. Hackett, J., Tutt, M., Lipscomb, M., Bennett, M., Koo, G. C.
& Kumar, V. (1986) J. Immunol. 136, 3124-3131.

6. Tutt, M. M., Kuziel, W. A., Hackett, J., Bennett, M., Tucker,
P. W. & Kumar, V. (1986) J. Immunol. 137, 2998-3001.

7. Pullen, A. M., Marrack, P. & Kappler, J. W. (1988) Nature
(London) 335, 796-801.

8. Tomonari, K., Lovering, E. & Spencer, S. (1990) Immunoge-
netics 31, 333-339.

9. Bill, J., Kanagawa, O., Linten, J., Utsunomiya, Y. & Palmer,
E. (1990) J. Mol. Cell. Immunol. 4, 269-279.

10. MacDonald, H. R., Schneider, R., Lees, R. K., Howe, R. C.,
Acha-Orbea, H., Festenstein, H., Zinkernagel, R. M. & Hen-
gartner, H. (1988) Nature (London) 332, 40-45.

11. Okada, C. Y., Holzmann, B., Guidos, C., Palmer, E. & Weiss-
man, I. L. (1990) J. Immunol. 144, 3473-3477.

12. Staerz, U. D., Rammensee, H., Benedetto, J. D. & Bevan,
M. J. (1985) J. Immunol. 134, 3994-4000.

13. Haskins, K., Hannum, C., White, J., Roehm, N., Kubo, R.,
Kappler, J. & Marrack, P. (1984) J. Exp. Med. 160, 452-471.

14. Kappler, J. W., Staerz, U., White, J. & Marrack, P. C. (1988)
Nature (London) 332, 35-39.

15. Utsunomiya, Y., Kosaka, H. & Kanagawa, 0. (1991) Eur. J.
Immunol. 21, 1007-1011.

16. Tomonari, K., Hederer, R. & Hengartner, H. (1992) Immuno-
genetics 35, 9-15.

17. Bill, J., Kanagawa, O., Woodland, D. L. & Palmer, E. (1989)
J. Exp. Med. 169, 1405-1419.

18. Leo, O., Foo, M., Sachs, D. H., Samelson, L. E. & Bluestone,
J. A. (1987) Proc. Natl. Acad. Sci. USA 84, 1374-1378.

19. Kubo, R. T., Born, W., Kappler, J. W., Marrack, P. & Pegeon,
M. (1989) J. Immunol. 142, 2736-2742.

20. Miyake, K., Underhill, C. B., Lesley, J. & Kincade, P. W.
(1990) J. Exp. Med. 172, 69-75.

21. Gallatin, W. M., Weissman, I. L. & Butcher, E. C. (1983)
Nature (London) 304, 30-34.

22. Bruce, J., Symington, F. W., McKearn, T. J. & Sprent, J. K.
(1981) J. Immunol. 127, 2496-2501.

23. Prieto, J., Takei, F., Gendelman, R., Christenson, B., Biber-
feld, P. & Patarroyo, M. (1989) Eur. J. Immunol. 19,1551-1557.

24. Onoe, K., Fernandes, G. & Good, R. A. (1980) J. Exp. Med.
151, 115-132.

25. Budd, R. C., Cerottini, J. C. & MacDonald, H. R. (1987) J.
Immunol. 138, 1009-1013.

26. Willerford, D. M., Hoffman, P. A. & Gallatin, W. M. (1989) J.
Immunol. 142, 3416-3422.

27. Sanders, M. E., Makgoba, M. W., Sharrow, S. O., Stephany,
D., Springer, T. A., Young, H. A. & Shaw, S. (1988) J.
Immunol. 140, 1401-1407.

28. Jung, T. M., Gallatin, W. M., Weissman, I. L. & Dailey, M. 0.
(1988) J. Immunol. 141, 4110-4117.

29. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkerna-
gel, R. M. (1989) Nature (London) 342, 559-561.

30. Takahama, Y., Sharrow, S. 0. & Singer, A. (1991) J. Immunol.
147, 2883-2891.

31. Fukushi, N., Arase, H., Wang, B., Ogasawara, K., Gotohda,
T., Good, R. A. & Onod, K. (1990) Proc. Natl. Acad. Sci. USA
87, 6301-6305.

32. Agus, D. B., Surh, C. D. & Sprent, J. (1991) J. Exp. Med. 173,
1039-1046.

33. Butturini, A. & Gale, R. P. (1988) Bone Marrow Transplant. 3,
185-192.

34. Truitt, R. L., Shih, C.-Y., LaFever, A. V., Tempelis, L. D.,
Andreani, M. & Bortin, M. M. (1983) J. Immunol. 131, 2050-
2058.

6510 Immunology: Arase et al.


