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ABSTRACT
Background: T2R bitter taste receptors play a crucial role in sinonasal innate immunity by upregulating mucociliary clearance and nitric oxide (NO)

production in response to bitter gram-negative quorum-sensing molecules in the airway surface liquid. Previous studies showed that phytochemical flavonoid
metabolites, known as anthocyanidins, taste bitter and have antibacterial effects. Our objectives were to examine the effects of anthocyanidins on NO production
by human sinonasal epithelial cells and ciliary beat frequency, and their impact on common sinonasal pathogens Pseudomonas aeruginosa and Staphylococcus
aureus.

Methods: Ciliary beat frequency and NO production were measured by using digital imaging of differentiated air-liquid interface cultures prepared from
primary human cells isolated from residual surgical material. Plate-based assays were used to determine the effects of anthocyanidins on bacterial swimming
and swarming motility. Biofilm formation and planktonic growth were also assessed.

Results: Anthocyanidin compounds triggered epithelial cells to produce NO but not through T2R receptors. However, anthocyanidins did not impact ciliary
beat frequency. Furthermore, they did not reduce biofilm formation or planktonic growth of P. aeruginosa. In S. aureus, they did not reduce planktonic growth,
and only one compound had minimal antibiofilm effects. The anthocyanidin delphinidin and anthocyanin keracyanin were found to promote bacterial
swimming, whereas anthocyanidin cyanidin and flavonoid myricetin did not. No compounds that were tested inhibited bacterial swarming.

Conclusion: Results of this study indicated that, although anthocyanidins may elicited an innate immune NO response from human cells, they do not cause
an increase in ciliary beating and they may also cause a pathogenicity-enhancing effect in P. aeruginosa. Additional studies are necessary to understand how
this would affect the use of anthocyanidins as therapeutics. This study emphasized the usefulness of in vitro screening of candidate compounds against multiple
parameters of both epithelial and bacterial physiologies to prioritize candidates for in vivo therapeutic testing.

(Am J Rhinol Allergy 30, 261–268, 2016; doi: 10.2500/ajra.2016.30.4331)

Chronic rhinosinusitis (CRS)1,2 affects more than one in eight
adults in the United States1,3 and accounts for �$8 billion in

direct health care costs3–5 and �$20 billion dollars in total economic
burden6 annually. CRS is a syndrome of complex etiologies that
involve chronic infection and/or persistent inflammation of the para-
nasal sinuses, often linked to ineffective sinonasal mucociliary clear-
ance7 and/or chronic bacterial infection and biofilm formation.8 Pa-
tients with CRS who require surgery report worse quality-of-life
scores for physical pain and social functioning than those patients
with chronic obstructive pulmonary disease, congestive heart failure,
or angina.9

CRS accounts for one in five adult antibiotic prescriptions in the
United States,10,11 a modality that is becoming less effective with the
emergence of antibiotic-resistant microorganisms. Nonantibiotic top-
ical CRS therapeutics are needed. Bitter taste receptors (T2Rs) are
emerging potential therapeutic targets.12–16 Originally identified on
the tongue, T2Rs are also located throughout the sinonasal cavity,12–16

where they stimulate nitric oxide (NO) production17–19 or antimicro-
bial peptide secretion.20 Moreover, a nonfunctional (“nontaster”)
polymorphism in the TAS2R38 gene encoding T2R38 is an indepen-
dent risk factor for CRS17,18,21 and predicts surgical outcome in non-
polypoid CRS.22 Because T2Rs regulate important host defense re-
sponses in the sinonasal cavity, bitter compounds may be useful as
topical therapeutics to stimulate endogenous immune responses.

Anthocyanidins are a class of naturally occurring plant flavonoids
found in red berries and other fruits, with antioxidant activity in
vitro.23 Moreover, anthocyanidins can activate some T2R receptors24,25

and have been linked to endothelial NO production.26 Because NO is
an important component of sinonasal innate immunity,19,27,28 we
hypothesized that anthocyanidins may activate sinonasal T2Rs to
generate NO. In addition, anthocyanidin-rich plant extracts have
antibacterial properties against Staphylococcus aureus,29,30 Esche-
richia coli,29,31 Corynebacterium diphtheria,32 Moraxella catarrhalis,32

Bacillus cereus,33 and Pseudomonas aeruginosa.34 However, other
studies have indicated that anthocyanidins do not have antibacte-
rial effects against B. cereus,34 E. coli,34,35 or P. aeruginosa,30 or that
anthocyanidins only reduce inflammation.36 The interactions be-
tween anthocyanidins and bacteria are complex,37–39 but interest in
anthocyanidins has increased with the correlation between con-
sumption of grapes and grape products (e.g., wine) with lower
incidences of cancers and inflammatory diseases.40

We hypothesized that anthocyanidins may be potential natural
topical therapeutics for CRS, either as T2R agonists or direct anti-
microbials. Because plant compounds can have multiple effects on
airway epithelial cells,41 we sought to investigate the effects of
various representative anthocyanidins on primary human epithe-
lial cells and common sinonasal pathogens, P. aeruginosa and S.
aureus. In addition to microbiologic assays, we used optical imag-
ing of air-liquid interface (ALI) cultures of primary human sino-
nasal cells isolated from residual surgical material, a state-of-the-
art in vitro model for testing epithelial cell responses to novel
compounds. Analysis of the results of this study emphasizes the
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importance of testing multiple parameters of epithelial cell re-
sponses when screening candidate compounds in vitro, which may
help to identify and prioritize the best compounds for subsequent
in vivo testing.

METHODS

Solutions and Reagents
Anthocyanidins (Fig. 1) were obtained from Cayman Chemical

(Ann Arbor, MI). Stock solutions of chemicals were dissolved in
dimethyl sulfoxide before dissolving in Dulbecco’s phosphate-buff-
ered saline (PBS), with the highest working concentrations reflecting
no more than 0.1% dimethyl sulfoxide, a level that does not affect
sinonasal ALIs.19,20,42,43 In the experiments, PBS was primarily used on
the apical side and Hank’s Balanced Salt Solution (which contained 10
mM HEPES and Minimal Essential Medium amino acids) basolater-
ally, as described elsewhere.19,20,42–44 4-Amino-5-methylamino-2�,7�-
difluroescein (DAF-FM) was from Life Technologies, Inc. (Carlsbad,
CA). All other reagents were from Sigma-Aldrich (St. Louis, MO).

Sinonasal ALI Cultures
ALIs were prepared as described elsewhere.19,20,43–46 Patients were

recruited from the Department of Otorhinolaryngology—Head and
Neck Surgery, University of Pennsylvania, with full institutional re-
view board approval (protocol 800614, “Pathogenesis of Chronic Rhi-
nosinusitis”). Informed consent was obtained during the preoperative
clinic visit or in the preoperative waiting room. The criterion for
patient selection was those patients undergoing sinonasal surgery.
Criteria for exclusion were a history of systemic diseases (Wegener’s
granulomatosis, cystic fibrosis, sarcoid, immunodeficiencies) and the
use of antibiotics, oral corticosteroids, or antibiologics (e.g., omali-
zumab) within 1 month of surgery.

ALIs were established from sinonasal epithelial cells enzymically
dissociated from residual surgical material and grown in proliferation
medium that consisted of Dulbecco’s Modified Eagle’s Medium (In-
vitrogen/Life Technologies, Inc.)/Nutrient Mixture F-12 Ham and
bronchial epithelial basal medium (Lonza Group, Basel, Switzerland)
for 7 days. Cells were then trypsinized and seeded on Transwell cell
culture inserts (6–7 � 104 cells per membrane; Corning Inc., Corning,
NY) coated with bovine serum albumin, bovine collagen, and fi-
bronectin. Five days later, the culture medium was removed from the
upper compartment and the epithelium was allowed to differentiate
in medium that consisted of 1:1 Dulbecco’s Modified Eagle’s Medium
and bronchial epithelial basal medium (Lonza Group) with human
epidermal growth factor, epinephrine, bovine pituitary extract, hy-
drocortisone, insulin, triiodothyronine, and transferrin, with penicil-
lin, streptomycin, retinoic acid, and fetal bovine serum in the basal
compartment.

Low-Light–Level Live-Cell Fluorescence Imaging of
Intracellular NO Production

Cells were loaded with DAF-FM as described elsewhere19,20,43,44,47

by incubation in 10 �M DAF-FM diacetate and 5 �M 2-(4-carboxy-
phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a cell-per-
meant NO scavenger to prevent NO production during loading. After
30 minutes, cultures were washed with PBS to remove 2-(4-carboxy-
phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and unloaded
DAF-FM, followed by 15 minutes of incubation to allow for dye
retention. Images were acquired on an IX-81 microscope (�10, 0.3 NA
UPlanFLN objective; Olympus, Tokyo, Japan) at 5-second intervals by
using a 488 laser and FluoView confocal system (Olympus). Because
magnitudes of fluorescence changes were used to approximate NO
production, care was taken to follow the loading protocol strictly to
normalize dye loading, and microscope and/or software settings

were identical for each experiment. No gain, offset, or gamma alter-
ations were used.

High-Speed Digital Imaging of Ciliary Beat
Frequency

Ciliary beat frequency (CBF) was performed as described else-
where.19,20,43,44,46,48 Images of beating cilia from mature cultures were
visualized by using a �20 objective on an inverted microscope (DM
IL; Leica Microsystems, Inc., Wetzlar, Germany) with a model A602f
Basler area scan high-speed monochromatic digital video camera
(Basler, AG, Ahrensburg, Germany) at 100 frames/s. Video images
were analyzed with the Sisson-Ammons Video Analysis (SAVA)
system version 2.1 (Ammons Engineering, Clio, MI). Experiments
were performed at �28°C. Whole-field analysis was performed, with
each measured point representing a single cilium. The reported fre-
quencies represent the arithmetic means of these values.

Biofilm Formation Assays
Crystal violet biofilm assays were carried out as described else-

where.49–51 Briefly, 100 �L of 0.5 McFarland P. aeruginosa (PAO1 or
ATCC 27853) or S. aureus (methicillin-resistant strain M252) cultures in
50% lysogeny broth (LB) were added to a 96-well plate and grown for
48 hours statically at 37°C. Media were changed after 24 hours. The
plates were washed two to three times with water, then stained
with 1% crystal violet for 30–60 minutes, followed by a second
wash. Stained biofilms were solubilized in crystal violet with 30%
acetic acid and read in a spectrophotometer plate reader at �550

Figure 1. Compounds tested in this study. Two anthocyanidins, delphinidin
and cyanidin, were tested. Keracyanin, the glycosylated anthocyanin deriv-
ative of cyanidin, also was examined. The non–anthocyanidin flavonoid
myricetin was used as a control.
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Figure 2. Anthocyanins and anthocyanidins can stimulate sinonasal epithelial nitric oxide (NO) production. (A) Average traces of 4-amino-5-methylamino-
2�,7�-difluroescein (DAF-FM) fluorescence (n � 6 ALI cultures from three patients), showing increases in reactive nitrogen species (RNS) production in
response to 9 and 90 �M delphinidin, an anthocyanidin. (B) Pharmacology of the delphinidin-induced response. DAF-FM fluorescence increases in response
to 90 �M delphinidin (103 � 23 units; n � 3 cultures from three patients) were inhibited in the presence of L-NG-nitroarginine methyl ester (L-NAME) (11 �
7; n � 5 cultures from three patients; p � 0.01) but not D-NG-nitroarginine methyl ester (91 � 13; n � 4 cultures from three patients; p � not significant
[n.s.]), U73122 (90 � 14; n � 3 cultures from three patients; p �n.s), or U73343 (88 � 17; n � 4 cultures from three patients; p � n.s.). (C) DAF-FM
fluorescence increases in response to another anthocyanidin, cyanidin (90 �M; 112 � 17; n � 5 cultures from three patients), were likewise inhibited by
L-NAME (8 � 1; n � 3 cultures from three patients; p � 0.01) but not U73122 (93 � 9; n � 3 cultures from three patients; p � n.s.). (D) The anthocyanin
keracyanin similarly caused an increase in RNS production at 3 �M (58 � 10; n � 5 cultures from four patients) and 30 �M (107 � 8; n � 7 cultures from
four patients). Response to 30 �M was inhibited by L-NAME (8 � 6; n � 3 cultures from three patients; p � 0.01) but not U73122 (104 � 12; n � 7 cultures
from four patients; p �n.s.). For all bar graphs, **p � 0.01 compared with control (first bar) by one-way analysis of variance with the Dunnett posttest.
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nm. Variation was minimized by normalizing values to LB only
(control) conditions grown on the same plate.

P. aeruginosa and S. aureus Planktonic Growth
Assay

Briefly, 100 �L of anthocyanidin solution was added to at least
three wells of a 96-well plate, followed by 100 �L of an overnight
culture diluted to the optical density of a 0.5 McFarland standard in
LB, and subsequent incubation for 2 hours at 37°C, with periodic
shaking at 30-minute intervals. Before spotting on the LB agar plates,
dilutions were made at 1:10, 1:100, 1:1000, and 1:10,000 with LB.
Colony-forming units (CFUs) were manually counted after overnight
incubation.

Plate-based Assays for P. aeruginosa Motility
Plates were prepared as described elsewhere,53,54 with some slight

modifications, by using M9 media, 0.5% casamino acids, 0.01%
MgSO4, 0.2% glucose, and 0.4% (swimming) or 0.8% (swarming) agar.
Agar solutions were allowed to cool to the touch while stirring to
avoid any heat deactivation of the flavonoid compounds, added after
autoclaving. The plates were inoculated with 5 �L of an overnight P.
aeruginosa culture grown at 37°C in LB diluted with LB to an optical
density of 0.5 and allowed to dry on the bench. Once dry, the plates
were incubated at 37°C for 16–20 hours and subsequently imaged.

Data Analysis and Statistics
Data were analyzed in SAVA and/or Fiji.55 Statistical analyses were

performed in Excel (Microsoft Corporation, Redmond, WA) and/or
Prism (GraphPad Software, Inc., La Jolla, CA) with p � 0.05 consid-
ered statistically significant. For multiple comparisons with one-way
analysis of variance, the Bonferroni posttest was used when prese-
lected pairwise comparisons were performed, and the Dunnett post-
test was used when values were compared with a control value. All
data are presented as mean � standard error of the mean (SEM).

RESULTS

Anthocyanidins Trigger Sinonasal Epithelial Cells
to Produce NO

NO generation can be activated by receptor-driven changes in
intracellular calcium concentrations that stimulate NO synthase acti-
vation.19,42,56 Cellular NO production was imaged in real time by
using DAF-FM, which reacts with NO-derived reactive nitrogen spe-
cies to form a fluorescent benzotriazole.19 Treating the apical side of
ALIs with delphinidin, a representative anthocyanidin found in Cab-
ernet Sauvignon grapes,57,58 elicited DAF-FM fluorescence increases
over �5 minutes, which signaled production of NO (Fig. 2 A). This
was confirmed by using the NO synthase inhibitor L-NG-nitroargin-
ine methyl ester (L-NAME) and inactive stereoisomer D-NG-ni-
troarginine methyl ester. L-NAME, but not D-NG-nitroarginine
methyl ester, blocked DAF-FM fluorescence increases in response to
delphinidin (Fig. 2 B), which demonstrated that this indeed reflected
NO production. However, the DAF-FM fluorescence responses were
not blocked by phospholipase C inhibitor U73122 (Fig. 2 B). The
inactive analog of U73122, U73343, also showed no effect (Fig. 2 B).
The structurally similar cyanidin activated similar NO responses that
were inhibited by L-NAME but not U73122 (Fig. 2 C).

Anthocyanidins are often found as glycosylated anthocyanins (Fig.
1). Keracyanin is the anthocyanin derivative of cyanidin, found in
black currants and raspberries.59 To determine if anthocyanins have
similar effects, we tested keracyanin on sinonasal ALIs. Keracyanin
similarly stimulated NO production that was inhibited by L-NAME
but not by U73122 (Fig. 2 D). In addition, delphinidin- and keracya-
nin-induced DAF-FM fluorescence responses were not dependent on
the TAS2R38 gene, which encodes T2R38.60,61 There was no significant
difference between cultures homozygous for the functional TAS2R38
PAV “taster” allele and those homozygous for the nonfunctional AVI
“nontaster” allele (Fig. 3), which confirmed the lack of involvement of
this taste receptor in these responses.

Anthocyanidins and Anthocyanins Do Not Impact
Ciliary Beat Frequency

To determine if anthocyanin- and/or anthocyanidin-stimulated
NO production results in increased ciliary beating, we imaged CBF
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in vitro by using high-speed digital imaging. Changes in CBF were
reported as a ratio of stimulated basal frequencies. No significant
differences were observed when ALIs were stimulated with del-
phinidin (Fig. 4 A) or keracyanin (Fig. 4 B). Application of aden-
osine 5�-trisphosphate (ATP), a purinergic agonist and a positive
control to assess responsiveness, induced a robust 40–50% CBF
increase.

Anthocyanidins and Anthocyanins Have Minimal
Effects on P. aeruginosa and S. aureus Growth

We sought to determine if anthocyanidins or anthocyanins affect
biofilm or planktonic growth of P. aeruginosa or S. aureus, common
sinonasal pathogens sensitive to sinonasal NO production.14 We
tested two wild-type P. aeruginosa strains, ATCC 27853 and PAO1.
Although biofilm mass appeared to be slightly reduced in the pres-

ence of both keracyanin and delphinidin, the results were not statis-
tically significant (Fig. 5 A), which indicated that these compounds
had minimal or no antibiofilm effects. We also tested these com-
pounds on P. aeruginosa planktonic growth. No significant reduction
of CFUs was observed with either delphinidin or keracyanin (Fig. 5
B). As a control, the potent gram-negative antibiotic colistin sulfate
reduced CFUs by �1000-fold (Fig. 5 B). Similarly, we tested biofilm
and planktonic growth in methicillin-resistant S. aureus strain M2.
There was no significant difference in biofilm mass in the presence of
cyanidin or delphinidin, although there seemed to be a slight reduc-
tion in the latter. A small but statistically significant reduction was
observed in the presence of keracyanin (Fig. 5 C). There was no
significant difference in the percentage of S. aureus CFUs that re-
mained in the presence of cyanidin, delphinidin, or keracyanin rela-
tive to an LB-only control (Fig. 5 D).

N
or

m
al

iz
ed

 P
A

O
1 

bi
of

ilm
 m

as
s 

(c
ry

st
al

 v
io

le
t a

bs
or

ba
nc

e)

0.9 9 90 0.3 3 30LB

Delphinidin

( M)
Keracyanin

( M)

100%

50%

0%
1

10
100

1000
10000

100000
1000000

P.
 a

er
ug

in
os

a 
C

FU
s

LB LB

Colis
tin

Colis
tin0.9 9 90 0.9 9 900.3 3 30 0.3 3 30

Delp
hinidin

Kera
cy

an
in

Delp
hinidin

Kera
cy

an
in

** **

PAO1 ATCC 27853

A B

C

LB

9 
M C

ya
nidin

90
 M C

ya
nidin

9 
M D

elp
hinidin

90
 M D

elp
hinidin

9 
M K

era
cy

an
in

90
 M K

era
cy

an
in

N
or

m
al

iz
ed

 S
. a

ur
eu

s 
bi

of
ilm

 m
as

s 
(c

ry
st

al
 v

io
le

t a
bs

or
ba

nc
e)

* *
100%

50%

0% 1

10

100

1000

%
 S

. a
ur

eu
s 

C
FU

s 
re

m
ai

ni
ng

LB 0.9 9 90 0.9 9 90 0.9 9 90

Cyanidin ( M)

Delphinidin ( M)

Keracyanin ( M)

D

Figure 5. Anthocyanidins had minimal effects on Pseudomonas aeruginosa and Staphylococcus aureus planktonic and biofilm growth. (A) Bar graph
showing P. aeruginosa normalized biofilm mass (PAO1) grown in the presence of LB-only (control) or LB that contained delphinidin or keracyanin at
indicated concentrations. Although biofilm mass seemed to be slightly reduced, the values were not significant when compared with LB-only by one-way
analysis of variance (ANOVA) with the Dunnett posttest. Each biofilm mass measurement represents the average of five experiments, with each
experiment being the average of at least eight wells grown in a single 96-well plate. Normalized biofilm masses were 100 � 6 (LB-only), 72 � 7 (0.9
�M delphinidin), 71 � 5 (9 �M delphinidin), 75 � 5 (90 �M delphinidin), 88 � 14 (0.3 �M keracyanin), 70 � 6 (3 �M keracyanin), and 66 � 4
(30 �M keracyanin). (B) Bar graph, showing planktonic growth, measured by a colony-forming unit (CFU) spotting and counting assay of two P.
aeruginosa wild-type strains, PAO1 and ATCC 27853. CFUs were not significantly reduced in the presence of delphinidin or keracyanin at indicated
concentrations (ANOVA with the Dunnett posttest). The potent gram-negative antibiotic colistin sulfate was included as a control; **p � 0.01. CFUs
recovered for PAO1 were 15,571 � 2119 (LB), 10,417 � 1031 (0.9 �M delphinidin), 15,333 � 1312 (9 �M delphinidin), 8722 � 1370 (90 �M
delphinidin), 5667 � 623 (0.3 �M keracyanin), 9000 � 816 (3 �M keracyanin), 11,000 � 3391 (30 �M keracyanin), and 5 � 3 (10 �g/mL colistin).
CFUs recovered for ATCC 27853 were 22,000 � 3536 (LB), 17,667 � 4327 (0.9 �M delphinidin), 27,667 � 4249 (9 �M delphinidin), 12,667 � 4784
(90 �M delphinidin), 35,000 � 3342 (0.3 �M keracyanin), 16,333 � 1546 (3 �M keracyanin), 27,667 � 5573 (30 �M keracyanin), and 6 � 2 (10
�g/mL colistin). (C) Bar graph, showing S. aureus normalized biofilm mass grown in the presence of LB-only (control) or LB that contained cyanidin,
delphinidin, or keracyanin at indicated concentrations. Normalized S. aureus biofilm masses were 100 � 4% (LB), 97 � 6% (9 �M cyanidin), 106 �
5% (90 �M cyanidin), 81 � 5% (9 �M delphinidin), 94 � 5% (90 �M delphinidin), 59.7 � 8% (9 �M keracyanin), and 68 � 9% (90 �M keracyanin).
(D) Normalized S. aureus CFUs remaining were 100 � 7% (LB), 108 � 11% (0.9 �M cyanidin), 75 � 22% (9 �M cyanidin), 105 � 12% (90 �M
cyanidin), 88 � 11% (0.9 �M delphinidin), 128 � 6% (9 �M delphinidin), 93 � 4% (90 �M delphinidin), 116 � 8% (0.9 �M keracyanin), 95 �
4% (9 �M keracyanin), 111 � 10% (90 �M keracyanin); *p � 0.05 by ANOVA with Dunnett post-test. LB � lysogeny broth.
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Delphinidin, Cyanidin, and Keracyanin Do Not
Inhibit Bacterial Swarming Motility

Swarming motility, evidenced by a characteristic uneven radiance
of colonies from a spot on semisolid high-agar plates that mimics
gelatinous viscous surfaces, e.g., a mucosal membrane,54 plays a piv-
otal role in bacteria spreading and the onset of biofilm formation.54

Swarming requires intact flagellar function and the production of
rhamnolipids,54,62 linked to airway infection,63,64 as well as 3-hydroxy-
alkanoic acids.54 However, a plate-based swarming assay54 revealed
that neither delphinidin, cyanidin, nor keracyanin caused reductions
in bacterial swarming (Fig. 6A).

Delphinidin and Keracyanin Promote Bacterial
Swimming Mobility

Swimming is a method of Pseudomonas motility that occurs near
surfaces,65,66 is involved in chemotaxis,67 requires twitching68 and
flagellar motility, and is implicated in pathogenesis69,70 and biofilm
formation.71,72 Swimming is evidenced by an even colony spread,
characteristic of uncooperative motion, on lower-agar plates.53 Del-
phinidin and keracyanin caused a statistically significant increase
in swimming of both P. aeruginosa strains (p � 0.01) (Fig. 6, B and
C). However, this was not statistically significant with cyanidin
and the non–anthocyanidin flavonoid myricetin, which indicated
that variation exists in terms of flavonoid stimulation of bacterial
swimming.

DISCUSSION
Our results indicated that anthocyanidins stimulated sinonasal NO

production, previously shown to have antibacterial effects,19,73,74 but
not through bitter taste receptor stimulation. Although cyanidin can
activate both T2R39 (effective concentration [EC], 32 �M; EC50, 187
�M24) and T2R14 (EC, 250 �M24), the lower EC observed in this study
(90 �M) combined with the lack of inhibition by U73122 indicated
that these effects of anthocyanidins are not mediated through T2Rs.
Moreover, cells from patients who were homozygous for both func-
tional (PAV) T2R38 and nonfunctional (AVI) T2R38 responded
equally to delphinidin and keracyanin, which indicated that T2R38, a
major T2R isoform in sinonasal cilia, was not involved. Phospholipase
C�2 is an essential downstream component of taste signal transduc-
tion,12,13,15,16,19,20 and the lack of an effect of U73122 here indicated that
the anthocyanidin-stimulated production of NO observed is likely not
due to a taste receptor response. We previously demonstrated that
U73122 inhibits NO downstream of the T2R38 taste receptor ex-
pressed in sinonasal cilia.19,42 The mechanism of this NO production
remains unknown. We recently reported on a secreted S. aureus
compound that likewise stimulated acute taste receptor–independent
NO production.47 It remains to be determined if anthocyanidins ac-
tivate this same pathway.

Mucociliary clearance, driven by ciliary beating, removes foreign
debris, including bacteria, from the respiratory tract.7 NO can elevate
CBF through activation of protein kinase G. It remains unclear why
anthocyanidin-driven NO increases do not increase CBF. Possibilities
include off-target effects, including changes in intracellular pH or
protein kinase C activity75 to “cancel out” stimulatory effects of
protein kinase G, or, perhaps the NO response is somehow uncoupled
from downstream protein kinase G signaling. The lack of CBF in-
creases, lack of inhibition of biofilm or planktonic growth or swarm-
ing, and promotion of bacterial swimming indicated that anthocya-
nidins may have less therapeutic benefit than compounds that
stimulate both NO and CBF together (e.g., agonists that activate
sinonasal T2R isoforms19). Analysis of these data also indicated that
anthocyanidins alone had minimal antibacterial effects against Pseu-
domonas and Staphylococcus biofilm or planktonic growth. Although a
statistically significant reduction in S. aureus biofilm growth was seen
with keracyanin, it is unclear whether this small decrease (�1 log) in
vitro would result in clinically significant biofilm reduction in vivo.
Cranberry proanthocyanidins, another flavonoid class, were previ-
ously shown to have antibiofilm properties76 and block P. aeruginosa
swarming,77 which indicates that they may be more useful as thera-
peutics than anthocyanidins.

Analysis of these results indicates that in vitro screening of com-
pounds under investigation for topical application in CRS, including
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Figure 6. Effects of flavonoid compounds on swarming and swimming
motility of two Pseudomonas aeruginosa strains. (A) Summary of bacterial
swarming results for each condition. For both strains, ATCC 27853 (left)
and PAO1 (right), delphinidin, cyanidin, and keracyanin did not have a
statistically significant effect on relative swarming area. Relative bacterial
swarming area for ATCC 27853 was 1.00 � 0.03 (control), 1.45 � 0.18
(delphinidin), 1.35 � 0.02 (cyanidin), and 1.19 � 0.14 (keracyanin). Rela-
tive bacterial swarming area for PAO1 was 1.00 � 0.20 (control), 1.75 �
0.58 (delphinidin), 1.06 � 0.16 (cyanidin), and 1.11 � 0.11 (keracyanin);
n � 3–4 experiments each, 4–6 plates per experiment. (B) Representative
images of bacterial swimming results for each condition. (C) Summary of
bacterial swimming results. For both strains, the anthocyanidin delphinidin
and the anthocyanin keracyanin demonstrated statistically significant in-
creases in the relative bacterial swimming area (**p � 0.01). Cyanidin and
myricetin did not produce statistically significant differences in the relative
swimming area. The relative bacterial swimming area for ATCC 27853 was
1.00 � 0.06 (control), 4.23 � 0.41 (delphinidin), 2.21 � 0.37 (cyanidin),
8.55 � 2.23 (keracyanin), and 1.06 � 0.13 (myricetin). The relative bacterial
swimming area for PAO1 was 1.00 � 0.04 (control), 2.89 � 0.40 (delphini-
din), 1.79 � 0.39 (cyanidin), 4.88 � 0.85 (keracyanin), and 1.17 � 0.17
(myricetin).
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naturally occurring compounds, e.g., anthocyanidins, against both
human sinonasal cells in vitro and sinonasal bacteria can be useful for
identification and prioritization of which compounds may have the
most therapeutic benefit. Although a lack of effect in vitro (e.g., as with
the lack of effects on ciliary beating observed in this study) does not
necessarily mean a lack of benefit in vivo, the in vitro testing of two of
the most common natural CRS therapeutics, Sinupret (Bionorica SE,
Neumarkt in der Oberpfalz, Germany)78,79 and GeloMyrtol (G. Pohl-
Boskamp GmbH & Co. KG, Hohenlockstedt, Germany),80 demon-
strated significant in vitro enhancement of components of sinonasal
innate immunity. In vitro screening may also be useful to identify
compounds with off-target effects that may increase bacterial viru-
lence.

CONCLUSION
Although analysis of our data indicates that some anthocyanin or

anthocyanidin compounds activate a potentially beneficial NO re-
sponse from sinonasal cells, the same compounds can stimulate acti-
vation of a possibly pathogenicity-enhancing response in P. aerugi-
nosa. Further study is required to determine (1) whether this bacterial
response would offset the potential beneficial responses of anthocya-
nins and/or anthocyanidins in vivo and (2) which specific anthocya-
nidin isoforms might stimulate the most efficacious host NO produc-
tion without modulating bacterial physiology. However, therapeutic
effects of anthocyanins and/or anthocyanidins nonetheless may be
reduced by their lack of a net effect on cilia. Analysis of these data
indicated that in vitro screening of compounds against multiple pa-
rameters of epithelial and bacterial physiology may allow prioritiza-
tion of classes of compounds for in vivo testing by identifying which
compound isoforms activate the most beneficial responses.
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