
ABSTRACT – Monitoring is the serial evaluation of
time-stamped data, and the volume of such data
in an intensive care unit is huge. Clinical and bio-
chemical data may be available at hourly or more
frequent intervals but physiological data are
‘continuous’ . Although sophisticated monitors
display the physiological data in multiple and
varied combinations, staff are challenged by the
frequency of the false alarms and a lack of knowl-
edge of the patterns from which they could pre-
dict problems. All these data, together with large
amounts of clinical data, lead to information
overload. In this paper, the case is made for the
development of automatic decision-support sys-
tems based on statistical and probabilistic
analysis of data patterns appropriate for the level
of cognition of the user (nurses and juniors at the
bedside rather than consultants). Such decision
support could both reduce the false-positive
alarms that frustrate clinical staff, and improve
the early detection of pathophysiological events.
We have used the development of a pneumoth-
orax as our paradigm. Our data indicate that the
clinical diagnosis of pneumothorax takes a
median of 127 minutes, but using short decision
algorithms based on routinely available moni-
toring data, most can be detected within 10–15
minutes of occurrence.
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Introduction

Monitoring can be defined as the serial evaluation of
time-stamped data. This type of evaluation can be
helpful for both diagnosis and prediction of patho-
physiological events. Such data are particularly
common in the intensive care unit where there are
rich streams of clinical data, eg the hourly volume of
urine; repeated abdominal circumference measure-
ments; biochemical or haematological data such as
the sequential measurements of blood gases or
platelets; and physiological data on monitors at the
patient’s bedside. Physiological monitors may give
data at relatively low rates of transmission, eg with

heart rate, blood pressure, blood carbon dioxide etc
occurring at one-second intervals, or there may be
high rates of transmission at many times a second to
give the electrocardiogram (ECG) or blood pressure
waveform.

Historically, the first monitoring of patients using
medical equipment was almost certainly with the
clinical thermometer. This proved to be highly
successful as certain diseases have specific temporal
temperature patterns – thus relapsing fever presents
in a patient with a high fever for a few days followed
by a crisis when the temperature falls to normal for
three to four days before a further feverish period. In
contrast, patients with malaria may have a tempera-
ture of 102–104°F each evening with a normal
morning temperature. Such fever patterns may be
quite predictive of the underlying pathology. The
first use of monitoring in intensive care was carried
out by the neurosurgeon Harvey Cushing. In a classic
example shown in Fig 1, he monitored blood pres-
sure and heart rate before, during and after an oper-
ation on a ship’s carpenter who had been crushed
between a beam and the ship he was working on1.
The carpenter was admitted to the local hospital in
Boston with high blood pressure and slow pulse and
was comatose. The clinical and neurological picture
was that of an extradural haemorrhage causing
raised intracranial pressure, so he was taken to 
theatre and a craniotomy was performed. The stages
of the operation can be seen on the figure, where
before and during the operation the time points are
at 10-minute intervals. The already high blood 
pressure rises even higher with the introduction of
the ether anaesthetic; the skull is opened and when
the clot is evacuated the blood pressure falls and the
pulse rate rises. As the patient comes round from the
anaesthetic, the pulse rate rises further and the blood
pressure falls further and then both are stable in the
postoperative period.

We now know that this pattern of high blood
pressure and low pulse rate is classical of raised
intracranial pressure. There are other classical
patterns that are taught in medical school – the rising
pulse rate and falling blood pressure associated with
haemorrhage, the fall-off in linear growth after birth
in the pituitary dwarf, or the fall-off in weight or rate
of weight gain with the introduction of gluten in a
child who has coeliac disease. What has never been
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defined is the sensitivity, specificity, positive predictive value and
negative predictive value of these patterns.

If these experiential heuristics taught in medical school are to
be based on evidence, we need to know the reproducibility of
these patterns. And that is where our own work has begun, in
relation to high density time-stamped data in a neonatal inten-
sive care unit.

Why do we monitor in the intensive care unit?

If the digital read-out on a monitor presents us with a value
(such as a mean blood pressure of 60 mmHg), in a full-term
newborn infant we can be reassured that this variable is normal,
and if the monitor has limit or threshold alarms we can also pre-
sume that we will have some warning of abnormality when the
blood pressure exceeds or falls below the set limits. If, on the
other hand, we know from a presentation of trend that the mean
blood pressure is 60 mmHg and is slowly increasing, we have
much more information. First, we know not only that the baby
is normal but also that s/he is stable or even improving. We may
also have the potential for earlier warning by seeing that there is
a steady fall of the blood pressure and we can be alerted well
before it reaches the lower threshold alarm limits. We can also
see the effectiveness of treatment with the dopamine infusion
bringing the low blood pressure up to the upper end of the
normal range.

Trend patterns in physiological data

For 15 years we have been trying to ascertain trend patterns in
physiological data. Thus on the cot-side screen we may have the
heart rate, the mean blood pressure, the transcutaneous oxygen,
the transcutaneous carbon dioxide, and the temperatures. We
have been attempting to identify patterns within this data.
Figure 2a shows the pattern of cold stress2, seen within days of
instituting our trend monitoring system. More difficult, but
fairly consistent, has been the picture of the occurrence of a
pneumothorax where the transcutaneous carbon dioxide level
sharply increases usually at the same time as a sharp decrease in
the transcutaneous oxygen3 (Fig 2b). We believed that our
system helped in management but wish to see whether there was
any difference in outcome. We designed a pragmatic trial, to
assess whether the availability of trends at the cot side improved
patient outcome. We randomly allocated into the trial 600 con-
secutive neonates requiring intensive care over the first seven
days of life, either with a trend monitor display next to the baby
or without one4. We had a number of outcome measures –
short-term, medium-term and long-term – but we were not able
to show any important differences between the groups. In retro-
spect, we believe that because the randomisation only applied
during the first seven days of life, that the many days and some-
times weeks after this that the babies spent in intensive care on
our unit saturated out any differences between the groups.
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Fig 1. Operative record of craniotomy for extradural haematoma by Harvey Cushing (1905).
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However, other reasons why trend monitoring used in this way
does not make a difference to outcome could be data overload,
an inability to ascertain which data are important, or simply that
staff are ignorant of the patterns that exist.

To test the last, we set up a project to explore the cognitive
processes of doctors and nurses in interpreting physiological
monitoring data, testing how junior doctors, senior doctors and
nurses used, viewed and understood data.

Fourteen trend events, each lasting 2 hours, were displayed in
7-minute blocks to each member of staff. An event might be: the
effect of endotracheal suction, the effect of dopamine infusion,
or the occurrence of a pneumothorax etc. Staff were asked to
review the data, to describe them, pointing out on the screen any
abnormality detected. The staff member and the computer
screen were videoed from behind and audiotaped. The tapes
were then transcribed and each comment labelled as: a descrip-
tion, an interpretation, an uncertainty, a hypothesis, a relation-
ship amongst different parameters, or an artefact. Overall, the
junior doctors and nurses gave more descriptions, whereas
senior doctors noted more relationships and generated more
hypotheses. The results are shown in Table 1. The seven senior
doctors generated many more statements and these statements
tended to be hypotheses to explain the data. The senior doctors
were able to make a diagnosis in real time in 68% of cases, the
junior doctors in 58%, and the nurses in only 25%. When the
full 2-hour trace was revealed, senior doctors made correct final
diagnoses in 80% of events, junior doctors 78%, but nurses only
32% – the last being the group of staff permanently with the
babies. Our conclusions were that the patterns in multichannel
trended physiological data (which should give early warning of
impending problem) are poorly recognised even by senior doc-
tors but particularly by nurses at the cot side5. 

How can we then improve trend monitoring? Better visual
display such as the portrayal of toe/core temperature difference
instead of peripheral or central temperature singly is one way
(Fig 2a). Others have described alternative data portrayals that
alert to abnormality such as frequency polygons6 and Metaphor
Graphics7. The involvement of temporal considerations in such
portrayals is more difficult 8,9. 

There is undoubtedly data overload in an intensive care unit
and it is difficult to discriminate the data on the monitors
because different features require different time compressions
for their display. Thus, depending on the time axis, events may
be more or less easy to identify. If an infant is having a number
of apnoeic attacks or bradycardias, these will be revealed if the
time axis has a period of 10 to 20 minutes, whereas if a
dopamine infusion is started the blood pressure may rise slowly
over a period of an hour and a time axis of 10 minutes will reveal
little. Often it will be important to be aware of short-term and
long-term trends at the same time, but the greater the quantity
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Fig 2. Physiological data patterns seen in a neonatal
ICU. (a) Pattern of cold stress in 600 g baby with
diverging peripheral and central temperatures when
incubator doors are opened for necessary care
procedures. (b) The development of a pneumothorax in a
ventilated preterm infant, with successful drainage after 2
hours when the diagnosis is made.
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Table 1. Recognition of recorded events from physiological
monitors. 

Senior doctors Junior doctors Nurses

Number 7 8 10

Statements 11,921 6,610 9,465

Live diagnoses 68% 58% 25% 

Eventual diagnosis 80% 78% 32%

Statements = total number of comments made about events by staff group.
Live diagnosis = percentage of events diagnosed correctly by that staff
group as event unfolded in simulated real time. Eventual diagnosis =
percentage of events recognised by staff group when all data was displayed.



of data displayed, the more likely it is that the important data
will remain unseen. We believe that, if trended data are going to
be of any value, intelligence must be developed within the mon-
itoring systems themselves. Computer algorithms will be
required to produce intelligent warnings of impending prob-
lems utilising different time bases. These may also prompt 
certain actions if there is high sensitivity and specificity for 
the problem (decision support).

An early example that we attempted was to define pneumo-
thorax by a small computer program (macro) of three lines: 

<start pneumothorax programme
<15 min slope CO2 in range 0.04–0.4 kPa/min
<end pneumothorax programme

This simply looked for a particular slope in the trended
carbon dioxide value. The sensitivity was excellent but the
specificity was poor and related to the time spent monitoring10.

We have used the pneumothorax as our paradigm. This is a
significant problem in the ventilated newborn infant. The inci-
dence is variable and is decreasing with better ventilators and
ventilation techniques. The mortality is historically as high as
40% and the associated morbidity related to pulmonary haem-
orrhage, chronic lung disease and periventricular haemorrhage
is also significant.

In our first pneumothorax study we investigated whether, as
in older patients, pneumothorax might be asymptomatic or
whether rapid clinical deterioration immediately followed the
onset3. If there was a significant preclinical period, diagnosis
before clinical decompensation might reduce the mortality and
morbidity. We examined 909 level 1 intensive care admissions
representing over 90,000 intensive care days and found

42 infants who developed a pneumothorax on our neonatal care
unit so that we had monitoring data before, during and after the
occurrence. We needed gold standards for the time of onset and
the time of diagnosis. We took as the time of diagnosis the time
of the first x-ray confirming a pneumothorax. The gold standard
for the time of onset was determined by the author who
reviewed in detail the monitoring charts. The occurrence of
pneumothorax is accompanied by a sharp rise in the transcuta-
neous carbon dioxide trace accompanied frequently by a rather
shorter but equally rapid fall in the transcutaneous oxygen as
illustrated in Fig 3b. In the 42 cases of pneumothorax, we found
the median time between onset and diagnosis was 127 minutes
with a range of 45 to 660 minutes. Ten percent died within 2
hours of the onset and 45% died before discharge. We concluded
that the clinical diagnosis of pneumothorax was late and mor-
tality is still very high3. 

Our second study asked the question, is early warning of
pneumothorax possible using expert knowledge of the carbon
dioxide slopes? Our aims were to establish reference centiles for
both the transcutaneous carbon dioxide levels but also for the
slopes of carbon dioxide. To develop the normal centiles for
both the levels and the slopes we used very premature infants
who were stable and had low risk of subsequent problems at dis-
charge11. The 97th centiles for the transcutaneous carbon
dioxide slopes vary over the period when the trace is being
examined. Over 5 minutes, the 97th centile is 0.06 kilopascals
per minute; over 10 minutes 0.045; and over 15 minutes 0.037.
Using these slopes, the pneumothorax was diagnosed in 24 cases
within 5 minutes, 23 within 10 minutes and 18 within 15 min-
utes. In most cases, the inability to diagnose the pneumothorax
was a lack of slope when the nurse in charge of the infant
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Fig 3. Transcutaneous carbon dioxide
levels in 42 cases of pneumothorax –
each panel displays one case with 1
hour of data prior to onset and 2
hours following the occurrence.
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removed the probe to recalibrate it, not believing that the rising
slope was a problem of the baby, but rather an equipment
failure. Overall, 29 cases out of the total of 42 would have been
diagnosed within 15 minutes. This indicated that the slope of
the trended transcutaneous carbon dioxide can identify the
onset of pneumothorax in a significant proportion of cases and
thus might give extra warning for orderly intervention.

In a third pneumothorax study, we matched babies with
pneumothorax with controls for the gestation of birth and the
day of life. We used receiver–operator characteristic curves and
found that the area under the curves for carbon dioxide trend
slopes greater than the 90th centile was 82%. If we stipulated
that the slope should be greater than the 90th centile for 5 con-
secutive minutes, the area under the curves was 89% with good
specificity and sensitivity3. 

The broad conclusions of our work up to this point indicated
that medical and nursing staff were unused to the patterns on

the monitors, but that decision support using knowledge of
both centiles of reference physiological data and derivatives of
the data could provide automatic early warning with good pos-
itive predictive and negative predictive capacity.

Multidimensional space

When considering a number of different variables together, each
can be viewed as one dimension of a multidimensional space12.
I would like to consider multidimensional space by comparing
our normal data on carbon dioxide in the hour prior to a pneu-
mothorax with the data in the one hour following a pneumoth-
orax (Fig 3). One-dimensional space simply considers the values
of carbon dioxide in the hour before and the hour after the
occurrence of the pneumothorax (Fig 4a). Secondly, two-
dimensional space considers either the carbon dioxide level
together with the carbon dioxide variability (measured by stan-
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Fig 4. Multidimensional space. (a) One dimension: the trancutaneous carbon dioxide level in the hour before and after onset of a
pneumothorax. (b) Two dimensions: y axis the level, and x axis the slope, of the carbon dioxide. (c) Two dimensions: y axis the level, and
x axis the variability, of the carbon dioxide. (d) Three dimensions: y axis the level, x axis the slope, and z axis the variability, of the
carbon dioxide.
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dard deviation) (Fig 4b), or alternatively the carbon dioxide
level and the trend slope of the carbon dioxide level (Fig 4c),
again comparing the hour before with the hour after the onset
of the pneumothorax. Three-dimensional space portrays the
carbon dioxide level, the slope and the standard deviation
(Fig 4d). In the figures you can see how the overlap of carbon
dioxide levels in one-dimensional space can be spread by
viewing in two-dimensional space and completely separated by
viewing in three-dimensional space. As the dimensions increase,
the data from before and after the pneumothorax separate more
clearly. Multidimensional space is a mathematical concept that
can be applied when considering a large number of variables. In

five-dimensional space, one might consider the carbon dioxide
level, the carbon dioxide slope, the carbon dioxide variability,
the oxygen level and the oxygen slope. 

Five-dimensional space can only be viewed in two dimen-
sions. One can envisage that the coordinates from five separate
variables will meet in a subspace of this five-dimensional space.
When the individual is unwell this subspace will differ in a par-
ticular way depending on the underlying problem (Fig 5). By
viewing this dynamically, it is possible to identify the develop-
ment of the clinical problem at a point when the data from the
well patient moves away from the ‘well subspace’ as he becomes
unwell, to a subspace indicating a particular illness. In this way,
we are able to see the development of pneumothorax very clearly
within 5 minutes of its occurrence.

Conclusions

The practice of medicine is largely a matter of pattern recogni-
tion. The signs and symptoms of a disease are presented in our
classical teaching as patterns, eg the occurrence of a coryzal ill-
ness with white spots in the mouth (Koplik spots) indicates
clearly that measles is the diagnosis. The recognition of
symptom complexes is pattern recognition and similarly the
responses to therapy should take a particular pattern. These pat-
terns are usually not visual data patterns – we have had no
training in these and are uncertain even when we see them as to
how specific they are. However, pattern recognition in time
series is what monitoring is all about. Can it be left to clinical
staff to recognise these patterns? Clinicians have difficulty inter-
preting data for many reasons. For example, the vast amounts of
data to be assimilated in an intensive care unit lead to data over-
load. Also, the distractions from the clinical environment lead to
clinical overload. A multitude of alarms occur in intensive care
unit usually indicating minor technical problems: the ‘crying
wolf’ situation13. There are different levels of both nursing and
medical expertise in the unit and overall it is the most junior
staff who are at the bedside with the greatest diagnostic respon-
sibility. There is also tiredness and human error in this highly
fraught environment. 

So pattern recognition in time series is what monitoring is all
about, but since we cannot leave it to the clinical staff we can use
pattern recognition techniques from the fields of artificial
intelligence and computer science to build intelligent decision
support into future monitors. A plan of action might be:

1 Patterns need to be recognised – this can be done with
machine learning techniques14,15 or by dedicated clinicians
in the field going over many traces by eye3.

2 Patterns need to be described with artificial intelligence
techniques10.

3 These descriptions need to be tested on large databases of
such time series data3.

4 The monitors need to be programmed to recognise these
patterns by artificial intelligence techniques. 

5 Real-time testing then needs to be used to ensure that
specificity and sensitivity is adequate for clinical usage.
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Fig 5. ‘Five-dimensional space’  in two dimensions, with a
normal subspace and a subspace referrable to a particular
pathology. Displayed in real time, the movement of data towards
the pathological subspace indicates development of that
particular problem.
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Key Points

In intensive care units:

The most junior nursing and medical staff manage the
patients at the bedside where detailed physiological data
is displayed on multichannel monitors

Lack of experience in pattern recognition and data overload
lead to poor data discrimination and late diagnosis

Artificial intelligence techniques can identify important data
patterns

Automatic decision aids utilising routinely collected data can
support staff by giving early warning of key conditions

Building decision aids needs knowledge of where support is
required and the consistency of data patterns associated
with pathophysiological conditions and events
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