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ABSTRACT We have characterized cDNA clones that
encode a newly discovered collagenous polypeptide. A 4-kilo-
base (kb) cDNA clone was initially isolated by screening a
human fibroblast cDNA library with a probe encoding the
collagenous domain of the human a3(VI) collagen. Subsequent
screening of another fibroblast cDNA library yielded overlap-
ping clones having a total length of 5.4 kb, which contained an
open reading frame of 1603 amino acids including a 21-amino
acid signal peptide. The predicted polypeptide consists of 10
collagenous domains 15-422 amino acids long, which were
interspersed with 11 noncollagenous (NC) domains. Except for
a large N-terminal NC11 domain of 312 residues, most of the
NC domains were short (11-39 residues) and cysteine-rich. The
overall structural arrangement differed significantly from
other known collagen chains. Further analysis indicated that
the deduced polypeptide exhibited several structural features
characteristically seen in members of the fibril-associated
collagen, types IX, XII, and XIV. In addition, the cysteine-rich
motifs in the NC domains resembled those found in the cuticle
collagen of Caenorhabditis elegans. Northern blot analyses
showed hybridization of the cDNA to a 5.5-kb mRNA in human
fibroblasts and keratinocytes. The gene was localized by in situ
hybridization to band p34-35 of human chromosome 1. The
data clearly support the conclusion that the cDNA encodes a
collagen chain that has not been previously described. We
suggest that the cDNA clones encode the al chain of type XVI
collagen.

Collagens, the major constituents of connective tissues,
represent a large family of structurally related proteins with
distinct tissue distributions and functions (see refs. 1 and 2 for
recent reviews). To date, 14 different types of collagen have
been described in vertebrates and have been assigned Roman
numerals. Based on their primary structure and supramolec-
ular assembly, collagens can be divided into two major
classes: the fibril-forming collagens and the non-fibril-
forming collagens. A long central triple-helical domain, with-
out Gly-Xaa-Xaa interruptions, is the hallmark of the former
class. Types 1, I1, 111, V, and XI, which form highly organized
fibrils in a quarter-staggered fashion, are members of this
class. The remaining types belong to the latter class. These
collagens are very heterogeneous in size, but a common
feature is the presence of imperfections in the Gly-Xaa-Xaa
repeating pattern. Within the latter class, types IX, XII, and
XIV collagens form a subgroup named the fibril-associated
collagens with interrupted triple helices (FACIT) (3). These
collagens are associated with type I or II collagen fibrils,
which play a role in interaction of these fibrils with other
matrix components (4-6). Members of the FACIT group
share several common structural features, although their
sizes and primary structures vary greatly. Some of these
characteristic features are also found in the cuticle collagens
of Caenorhabditis elegans (7).
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FiG. 1. Partial restriction map of the composite human al(XVI)
collagen cDNAs. Restriction enzymes used were BamHI (B), EcoRI
(E), Kpn 1 (K), and HindIII (H). Clones were isolated from cDNA
libraries prepared from either fibroblast 3349 (F) or fibroblast 1262
X). A, poly(A) tail.

In this report, we describe the isolation and characteriza-
tion of cDNA clones that encode a newly discovered colla-
genous polypeptide. We suggest that the putative collagenous
polypeptide be named the al chain of type XVI collagen.f

MATERIALS AND METHODS

Cell Strains. Human skin fibroblasts 3348 and 3349 were
obtained from the Human Genetic Mutant Cell Repository,
Camden, NJ. Human fetal skin fibroblasts 1106 and 1262
were obtained from the American Type Culture Collection.
Human epidermal keratinocytes were purchased from
Clonetics, San Diego.

Isolation and Sequencing of cDNA Clones. Two human
fibroblast cDNA libraries were used to screen for overlapping
clones. One library was constructed by using the poly(A)*
RNA from fibroblast 3349 and the oligo(dT) primer as de-
scribed (8). The other library was prepared from poly(A)*
RNA isolated from fibroblast 1262, a patient with a perinatal
lethal osteogenesis imperfecta (9). The library was prepared
from 5 ug of poly(A)* RNA using a cDNA synthesis kit with
mixed hexanucleotides as primers (Pharmacia), and the re-
sultant cDNAs were ligated and packaged into the vector A
ZAP II (Stratagene). The unamplified cDNA libraries were
screened with cDNA fragments labeled with 32P by nick-
translation (10) in a hybridization mixture containing 5X SSC
(1x SSC is 0.15 M NaCl/0.015 M sodium citrate, pH 7.0) at
60°C. The filters were washed at 60°C in 0.5x SSC.

cDNA inserts were sequenced by the dideoxynucleotide
chain-termination method (11) using adenosine 5'-[y-
[35S]thio]triphosphate (New England Nuclear) and the mod-

Abbreviations: COL domain, collagenous domain; NC domain,
noncollagenous domain; FACIT, fibril-associated collagens with
interrupted triple helices.
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FiG. 2. Nucleotide and deduced amino acid sequence of human a1(XVI) cDNA. Boxes, collagenous (COL) domains. Cysteines are circled.

Imperfections in the Gly-Xaa-Xaa repetitive pattern, polyadenylylation signals (AATAAA),

Arg-Gly-Asp tripeptides are underlined. Arrow, potential cleavage site for signal peptidase.

N-glycosylation sites (Asn-Xaa-Thr/Ser), and
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ified T7 polymerase (Sequenase kit, United States Biochem-
ical). The sequences were analyzed by the PC/GENE com-
puter program (IntelliGenetics). GenBank searches and the
alignment of amino acid sequences were performed by using
the FASTA program (12).

Isolation of RNA and Northern Blot Analysis. Total RNAs
were isolated from cultured cells by acid guanidine thiocy-
anate/phenol/chloroform extraction (13). Poly(A)* RNAs
were selected on an oligo(dT)-cellulose column (Collabora-
tive Research). RNA samples were electrophoresed on a 1%
agarose gel containing 6% formaldehyde, transferred to ni-
trocellulose (14), and hybridized to 32P-labeled cDNAs as
described (15). The cDNA probes for the al(I), «1(III), and
al(VI) collagen chains were Hf677 (16), Hf934 (17), and P18
(18), respectively.

Chromosomal Localization. Human metaphase chromo-
somes prepared from phytohemagglutinin-stimulated lym-
phocytes of a normal male individual were used for chromo-
somal in situ hybridization as described (19). The cDNA
probe used, F352, was labeled with [PH]dCTP and [*H]dT TP
by nick-translation (10).

RESULTS

Isolation of cDNA Clones. A 4-kb cDNA clone, F352, was
isolated from the human fibroblast 3349 cDNA library by
screening 5 X 10° clones with a 1.5-kilobase (kb) cDNA, P24,
which encodes the a3 chain of human type VI collagen (20).
Partial DNA sequence analysis of the cDNA indicated that it
encoded a collagenous polypeptide that had not been previ-
ously described. Rescreening of the cDNA library with F352
yielded only two shorter clones, F302 and F304 (Fig. 1). To
obtain cDNA clones corresponding to the full-length mRNA,
a random-primed cDNA library was constructed by using
poly(A)* RNAs from fibroblast 1262. Screening of 5 X 10°
independent plaques yielded 9 clones. DNA sequencing
revealed that these clones overlapped and together covered
=5.4 kb of the mRNA.

Nucleotide and Amino Acid Sequences. Nucleotide se-
quence analysis indicated that one of the clones (X5) began
in the 5’ untranslated region of the mRNA, which was
followed by the sequence encoding a putative 21-amino acid
signal peptide. Two of the clones, X14 and X104, ended in a
poly(A) tail. Therefore, these overlapping clones cover es-
sentially the full-length mRNA. The cDNA clones encode an
open reading frame of 1603 amino acids, which starts with an
ATG codon at nucleotide 154 and ends with a TGA stop
codon at nucleotide 4963 (Fig. 2). Following the stop codon

Table 1. Sizes (amino acids) of COL and NC domains of
al(XVI) collagen

No. of amino acids
1 2 3 4 5 6 7 8 9 10 11

NC 26 39 23 34 11 15 21 17 15 14 312
COL 106 422 15 52 138 71 59 34 131 27 —

there are 425 base pairs of the 3’ noncoding sequence, which
contains 4 consensus polyadenylylation signals (AATAAA).

Analysis of the predicted protein product revealed the
presence of 10 collagenous (COL) domains separated by 11
noncollagenous (NC) regions (Figs. 2 and 3). The COL
domains range in size from 15 to 422 amino acids; most of
them contain Gly-Xaa-Xaa imperfections (Table 1). The NC
domains are all relatively short (11-39 amino acids), except
for the large N-terminal NC11 domain of 312 amino acids.
The most notable feature is the presence of numerous cys-
teines (a total of 32) in the molecule, almost all of which are
found in the NC domains. A majority of the NC domains
contain two cysteines separated by two other amino acids,
which are often located at the end of the previous COL
domains. Of particular interest is the sequence at the end of
the COL1 domain, in which two cysteines are spaced 4 amino
acids apart with the first cysteine being the last amino acid of
the COL1 domain. Such an arrangement is characteristic of
the FACIT group of collagens (21-25). The size of the COL1
domain (106 amino acids) is also very similar to that of the
COL1 domains of the FACIT members. For example, the
COL1 domains of the al(IX) and a1(XII) collagens are 115
and 103 amino acids long, respectively. In addition, each of
these COL1 domains contains two Gly-Xaa-Xaa imperfec-
tions that are present at similar positions. Furthermore,
sequence comparisons reveal that the N-terminal NC11 do-
main exhibits sequence similarities to the NC domains of two
FACIT members—i.e., a1(IX) and a1(XII) collagens—and of
the fibrillar «1(XI) collagen chain (Fig. 4). Specifically, a
250-amino acid segment of the NC11 domain shares 27.2%
identity with the NC4 domain of the human a1(IX) collagen
(25), 17.6% identity with a segment in the C terminus of the
NC3 domain from the chicken a1(XII) collagen (23, 24), and
19.2% identity with the amino propeptide of the human

COL16Al ANTGAQCPPSQQOEGLKLEHSSSLPANVTGFNLIHRLSLM-KKSATKKIRN
COL9A1 RPRFPVNSNSNGGNELCPKIRIGQDDLPGFDLISQFQV-DKAASRRAIQR
COL11Al T-FLALTFLFQAREVR-GAAPVDVLKALDFHNSPEGIS~--KTTGFCTNRK
COL12A1 IQDNLVTFVCETATSTCPLIYLEGYTSPGFKMLESYNLTERHFASVQGVS

COL16A1 P-KGPLIL----RLGA-APVTQPTRRVFPRG-LPEEFALVLTLLLKKHTH
COLSA1 VV-GSATLQVAYKLGNNVDFRIPTRNLYPSG-LPEEYSFLTPFRMTGSTL
COL11Al NSKGSDT---AYRVSKQAQLSAPTKQLFPGGTFPEDFSILFTVKPRKGIQ
COL12A1 LESGSFPSYVAYRLHRKNAFVSQPIREIHPEG-LPOAYTIIMLFRLLPESP

COL16A1 QKTWYLFQVTDANGYPQISLEVNSQERSLELRAQGQD-GDFVSCIEP--~
COL9A1 KENWNIWQIQDSSGKEQVGIKINGQTQSVVFSYKGLD-GSLQTAAFSN~-~
COL11Al S--FLL-SIYNEHGIQQIGVEVGRSPVFL-FEDHTGKPAPEDYPLFRT-~
COL12A1 SEPFAIWQITDRDYKPQVGVVLDPGSKVLSFFNKDTR-GEVQTVTEDNDE

COL16Al1 VPQLFDLRWHRKLMLSVAGRVASVHVDCSSASSQPLG--PRRPMRPVGHVF
COL9A1 LSSLFDSQWHKIMIGVERSSATLFVDCNRIESLPIK--PRGPIDIDGFAV
COL11A1 VN-IADGKWHRVAISVEKKTVTMIVDCKKKTTKPLDRSERAIVDTNGITV
COL12A1 VKKIFYGSFHKVHIVV¥TSSNVKIYIDCSEILEKPIK--EAGNITTDGYEI

COL16A1 LG-LDAEQGKPVSFDLOQVHIYCDPELVLEEGCCEILPAG-CPPETSKAR
COLSA1 LGKLADNPQVSVPFELOWNLIHCDPLRPRRETCHE-LPARITPSQTTDER
COL11Al FGTRILDEEVFEG-DIQQFLITGDPKAAY-DYC-EHYSPD-CDSSAPKAA
COoL12a1 LGKLLKGDRRSATLEIQNFDIVCSPVWTSRDRCCD-LPSMRDEAKCPALP

FiG. 4. Alignment of amino acid sequences of the NC11 domain
from the a1(XVI) collagen (position 1) with the NC4 domain of the
human al(IX) collagen, amino propeptide of the human al(XI)
collagen, and the NC3 domain of the chicken al(XII) collagen.
Shaded regions reflect sequences conserved between the al(XVI)
collagen and the other collagens. Gaps (-) are introduced to increase
identity.
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Fi1G. 5. Northern blot hybridizations of RNAs from cultured
human cells with the 4.0-kb cDNA probe F352 (A) and comparison
of hybridizations using fibroblast mRNA with cDNA probes for
al(D), al(II), al(VI), and a1(XVI) (B). (A) Each lane contained 2 ug
of the poly(A)* RNA from skin fibroblast 3348 (lane 1), lung
fibroblast WI-38 (lane 2), skin fibroblast 3349 (lane 3), fetal skin
fibroblast 1106 (lane 4), fetal skin fibroblast 1262 (lane 5), and 20 ug
of total RNA from epidermal keratinocytes (lane 6). Positions of 28S
and 18S rRNAs are indicated. (B) One microgram each of poly(A)*
RNA from skin fibroblast 3349 was hybridized with cDNA probes for
collagen al(l) (lane 1), al(III) (lane 2), a1(VI) (lane 3), and al(XVI)
(lane 4). Autoradiography of lane 4 was =5 times longer than that of
lanes 1-3. The al(I) collagen transcripts are 5.8 and 4.8 kb.

al1(XI) collagen (26). However, only 2 of the 7 cysteines of the
NC11 segment are invariant in the other NC domains,
indicating that all these NC domains are different in their
folding patterns. The predicted amino acid sequence contains
three potential N-glycosylation sites (Asn-Xaa-Thr/Ser) and
three Arg-Gly-Asp sequences.

A

Proc. Natl. Acad. Sci. USA 89 (1992)

Analysis of mRNA Expression. By Northern blot analyses,
the cDNA hybridized to a 5.5-kb mRNA species (Fig. 5A).
The mRNA was expressed at approximately the same level
in all dermal and lung fibroblast cell strains examined. It was
also readily detectable in epidermal keratinocytes. However,
in fibroblasts the hybridization signal was considerably lower
than that obtained by using cDNA probes for types I, I11, and
VI collagens (Fig. 5B).

Chromosomal Assignment. A total of 100 human metaphase
cells were analyzed after in situ hybridization of these cells
to [*H]cDNA F352 (specific activity, 4 X 107 dpm/ug). Of the
246 silver grains associated with chromosomes, 101 grains
(41%) were located on chromosome 1. Two representative
partial human metaphases with silver grains on G-banded
chromosome 1 are shown in Fig. 6A. The chromosomes were
subsequently identified by R-banding (Fig. 6A Lower). Ap-
proximately 80% of labeled sites on chromosome 1 were
found in band p34-35 (Fig. 6B). No other chromosome
showed significant labeling in these experiments.

DISCUSSION

The cDNA clones reported here encode a collagenous poly-
peptide beginning with a hydrophobic signal peptide, sug-
gesting that the predicted protein is secreted into the extra-
cellular space. Approximately 65% of the entire molecule is
composed of repeating Gly-Xaa-Xaa sequences, which are
represented by 10 separate COL domains. The NC domains
contain numerous cysteines, which are often found in the
sequence motif of Cys-Xaa-Xaa-Cys (where Xaa is any amino
acid). The estimated molecular weight of the unmodified
chainis 157,692. The structural characteristics of the putative
protein are significantly different from those of the 14 distinct

0000000000000 0000000000000C0F0O0CF
0000000000000 000000000000
0000000000000

FI1G. 6. In situ chromosomal mapping of the a1(XVI) gene to human chromosome 1p34-35. (A) Two partial human metaphase spreads
showing the site of hybridization to chromosome 1. (Upper) Presence of silver grains on Giemsa-stained chromosomes after autoradiography
is shown. (Lower) Subsequent identification of the chromosome by R-banding. (B) Distribution of silver grains on G-banded chromosome 1.
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collagen types described to date and other collagenous se-
quences reported recently (27, 28). In addition, the cDNA is
not homologous to the newly isolated cDNA for type XV
collagen (J. C. Myers, personal communication). Since the
entire coding region of the mRNA has been characterized, it
is highly unlikely that the cDNA clones reported here encode
an «a chain of a previously described collagen type. Taken
together, the data support the conclusion that the cDNA
encodes an a chain of a newly discovered collagen type, and
we therefore suggest that the cDNA encodes the al chain of
type XVI collagen.

Many characteristic features of the FACIT group are found
in the al(XVI) collagen, suggesting that this is a member of
the FACIT group. It is noteworthy that the Cys-Xaa-Xaa-Cys
motifs in the short NC domains of the al(XVI) collagen are
not present in other members of the FACIT group. Interest-
ingly, these motifs are found in the short NC domains of
several cuticle collagens from C. elegans, which resemble the
vertebrate FACIT group in having similar COL1 domains (7).
It is therefore possible that the al(XVI) collagen and the
cuticle collagens are evolutionarily related.

In situ chromosomal hybridization demonstrates that the
gene encoding the a1(XVI) collagen is located in the p34-35
region of human chromosome 1. It is of some interest that the
al(XI) collagen, which shares significant sequence identity
with the al(XVI) chain, is mapped to the p21 region of
chromosome 1 (29).

The cDNA hybridizes to a mRNA of 5.5 kb by Northern
blot hybridization analyses. The size is in good agreement
with that estimated from the near full-length cDNA. The
mRNA is expressed in both dermal and lung fibroblasts but
represents only a minor mRNA species in these cells. The
message is also present in epidermal keratinocytes, suggest-
ing that type XVI collagen may have a function in the
epidermis. In this regard, it is noteworthy that cuticle colla-
gens are expressed in epithelial cells of C. elegans. Whether
or not these two collagens share similar functions remains to
be elucidated.

It has been shown that the FACIT members are localized
on the surface of major collagen fibrils and may serve as
molecular bridges that are responsible for maintaining the
structural integrity of the extracellular matrix. The structural
similarities between the al(XVI) collagen and the FACIT
group raise the intriguing possibility that the a1(XVI) colla-
gen may serve similar functions. The NC4 domains of both
chicken and human «1(IX) collagen have a basic isoelectric
point of =10 and are thought to be involved in interactions
with polyanions in the extracellular matrix (3). The homol-
ogous NC11 domain of al(XVI) collagen, however, has a
neutral isoelectric point of =7; therefore, the functional
implication of the sequence identity, if any, remains to be
studied. The cloning and characterization of the cDNA
presented here will be an important step toward elucidating
the biological functions of type XVI collagen.

We thank Dr. Charlene Williams for her critical reading of the
manuscript. This research was supported by National Institutes of
Health Grants AR38912 and AR38923.
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