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ABSTRACT
....................................................................................................................................................

Metrics for evaluating interruptive prescribing alerts have many limitations. Additional methods are needed to identify opportunities to improve
alerting systems and prevent alert fatigue. In this study, the authors determined whether alert dwell time—the time elapsed from when an inter-
ruptive alert is generated to when it is dismissed—could be calculated by using historical alert data from log files. Drug–drug interaction (DDI)
alerts from 3 years of electronic health record data were queried. Alert dwell time was calculated for 25,965 alerts, including 777 unique DDIs.
The median alert dwell time was 8 s (range, 1–4913 s). Resident physicians had longer median alert dwell times than other prescribers (P< .001).
The 10 most frequent DDI alerts (n¼ 8759 alerts) had shorter median dwell times than alerts that only occurred once (P< .001). This metric can
be used in future research to evaluate the effectiveness and efficiency of interruptive prescribing alerts.

....................................................................................................................................................
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BACKGROUND
Interruptive prescribing alerts are a common feature of clinical deci-
sion support (CDS)–enabled computerized prescription order entry
(CPOE) systems. These alerts interrupt the prescribing process and re-
quire the user to acknowledge its information by taking one or more
actions. Although these alerts improve healthcare processes and may
improve the quality of patient care, they must be strategically man-
aged to avoid unintended consequences.1–4 Poorly designed interrup-
tive alerting systems unnecessarily distract clinicians from current
thought processes, which may cause other prescribing errors and in-
efficiency.5 Irrelevant or redundant alerts can lead to alert fatigue,
which is defined as “ . . . the mental state that is the result of too
many alerts consuming time and mental energy, which can cause im-
portant alerts to be ignored along with clinically unimportant ones.”6,7

Although alert fatigue affects clinician satisfaction, it can ultimately
cause prescribers to disregard important alerts that are designed to
prevent patient harm.6,8

Previous efforts to assess the quality of interruptive CDS have been
made through prescriber surveys and by calculating alert override
rates.7,9–14 Prescriber surveys, one of which has been psychometrically
validated for assessing drug–drug interaction (DDI) alerts,13 have been
used to evaluate opinions of alert content, design, and frequency.11,14,15

Survey results can provide insights into the perceived usefulness of alert
systems but may lack the detail needed for directed improvements.
Override rates, one of the most reported alert metrics, are determined
by dividing the number of alerts wherein the provider did not carry out
the change in care recommended by the alert (i.e., an override) by the
total number of alerts presented.9,12,13,16,17 Although override rates can
be useful to identify alerts that need additional review for clinical rele-
vance, they are inconsistently defined and have other limitations.18–21

We present preliminary research on a new measure for characteriz-
ing interruptive prescriber alerts. Alert dwell time is the time elapsed

from the generation of an interruptive alert to dismissal of the alert win-
dow by adhering to the instructions of the alert or overriding. The need
to consider clinician alert response time while evaluating interruptive
CDS alert systems has been previously discussed.21 This metric can be
used to describe the time required by clinicians to respond to interrup-
tive alerts. Observed differences in these times across individual alerts,
alert categories, clinician roles, or other healthcare contexts may provide
insights into the possible improvements of alert systems. Calculating
alert dwell times can also emphasize the need to make alerting systems
more efficient by quantifying the time required for clinicians to respond
to interruptive alerts. In this study, we developed data retrieval tech-
niques to compute alert dwell time from stored CPOE DDI alerts and
conducted exploratory analyses of the data. We also discuss future op-
portunities to use this metric to assess and improve interruptive alerts.

METHODS
Setting
Since 2010, St Jude Children’s Research Hospital has fully implemented
an electronic health record (EHR) with CPOE (Millennium system, Cerner
Corporation, Kansas City, MO, USA) for all aspects of inpatient and out-
patient care, including orders, documentation, laboratory, and phar-
macy.22 Proactive efforts were taken throughout CPOE implementation
to prevent CPOE-related adverse safety events and alert fatigue.22 This
study was approved by the study hospital’s institutional review board.

Interruptive alert design
During the study period, clinicians were presented with DDI alerts in a
window that displays the new order and existing medications interacting
with the new order. The version of the alert window (Enhanced Window)
was the same throughout the study period. To manage alerts and pre-
vent alert fatigue, a team composed of physicians and pharmacists
made proactive decisions in 2005, including limiting DDIs to those with

Correspondence to James M Hoffman, Department of Pharmaceutical Sciences, St Jude Children’s Research Hospital, 262 Danny Thomas Place, MS 150, Memphis,

Tennessee 38105; James.Hoffman@stjude.org; Tel: 901-595-2767. For numbered affiliations see end of article.
VC The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association.

All rights reserved. For Permissions, please email: journals.permissions@oup.com

BRIEF
COM

M
UNICATION

e138

McDaniel RB, et al. J Am Med Inform Assoc 2016;23:e138–e141. doi:10.1093/jamia/ocv144, Brief Communication

]
]
&hellip;
]
]
]
]
]
]
]
]
.
]
]


severity ratings of “major” or “major contraindicated” (based on the
Cerner Multum

TM

drug knowledge database), disabling duplicate therapy
alerts and requiring prescribers to document override reasons via pre-
written or free-text responses. The alert system design presents in-
stances of multiple DDIs to the clinician simultaneously in one window.
Simultaneously presented alerts were excluded from the primary analy-
ses and are presented separately in the supplemental file.

Data retrieval and analysis
All DDI alerts from July 9, 2012 to July 8, 2015, were included, and
the query returned 106,019 alerts. Details of the query are included in
the supplemental file. Several exclusion criteria were applied to the
dataset and are detailed in the supplemental file. Alert dwell time was
calculated as the amount of recorded time elapsed in the database
from when an alert was presented to a clinician to when it was dis-
missed. Summary alert dwell time information was calculated for each
drug–drug pair (i.e., the drugs triggering the alert), by clinician role,
and alerts that were accepted or overridden. Average annual dwell
time was also calculated for the full dataset before excluding certain
cases. Differences in median alert dwell times by clinician role, the
top 10 most frequent alerts and those that only occurred once, and
alerts that were overridden versus those that were accepted were
compared by Mann-Whitney U tests in SPSS (version 22.0, SPSS,
Chicago, IL, USA).

RESULTS
The final dataset included 25,965 alerts. Alert dwell times were
not normally distributed (Kolmogorov–Smirnov statistic P< .001)
(Figure 1). In the sample, 777 unique DDI alerts were represented and
the median alert dwell time was 8 s (range, 1–4913 s; interquartile
range, 8 s). The average annual dwell time of the complete dataset
(i.e., final dataset plus the excluded cases) was 185.21 h (666,753 s).
For the final dataset, the top 10 most frequent alerts represented
130.23 h (7813.6 min), which was 25.9% of the total alert dwell time
of the final dataset (Table 1).

Resident physicians had the longest median alert dwell time (14 s),
and pharmacists had the shortest median dwell time (7 s) (Table 2).
The differences between median alert dwell times for resident physi-
cians and for all other clinician roles were significantly different
(P< .001). Of the 777 unique DDI alerts, 134 occurred only once. The
median dwell time of these infrequent alerts was 11 s vs 7 s for the
top 10 most frequent alerts (n¼ 8759) (P< .001). The median alert
dwell time for overridden alerts was 8 s (n¼ 24,192) and for accepted
alerts was 9 s (n¼ 1773) (P¼ .36). Descriptive statistics of dwell
times for simultaneously occurring alerts and the reasons provided for
overridden alerts are provided in the supplemental file.

DISCUSSION
The importance of interruptive CDS alerts to prevent patient harm and
improve clinical outcomes is widely recognized.3,4 The significance of
including CDS in an EHR has been emphasized by the decision of The
Centers for Medicare & Medicaid Services to include CDS development
as a requirement for achieving Meaningful Use Stage 1.23 However,
excessive and irrelevant alerts can cause alert fatigue, which can
compromise the patient safety benefits of this CPOE feature.

In this proof-of-concept study, we successfully developed data re-
trieval techniques and analyzed data on a new CDS alert metric.
By using alert dwell time, we quantified the effects of interruptive
alerts on clinician time and identified differences among clinician roles
and between frequent and infrequent alerts. We also demonstrated
that more frequently occurring alerts are acted on faster than

infrequent alerts, suggesting that alert frequency may have implica-
tions for cognitive processing of alert information and alert fatigue.
Although we recognize that no single alert metric can accurately help
decide the appropriateness of interruptive alerts, alert dwell time could
be included in a comprehensive analysis of alerts, such as that de-
scribed by McCoy and colleagues.21

Even though we customized our CDS system to minimize the num-
ber of alerts at the study hospital, our results revealed that a substan-
tial amount of time was required by clinicians to respond to alerts.
Moreover, querying our historical data of DDI alerts showed that more
than 1 million alerts would have been presented to clinicians for each
study year if no modifications had been made to our alert system set-
tings. Therefore, for healthcare organizations that do not extensively
customize the interruptive CDS system settings, the time burden on
clinicians to respond to alerts may be much higher than that reported
in this study. By calculating alert dwell time, the 10 most frequent DDI
alerts in our sample of 777 DDIs accounted for �26% of the total time
prescribers spent on reviewing alerts. The unique demand placed by
these alerts on prescribers warrants a detailed review of these alerts
(e.g., through focus groups or prescriber surveys).

The introduction of alert dwell time as a metric may prompt re-
searchers and practitioners to further explore its utility. Our results in-
dicate that differences in median alert dwell times by prescriber role
may represent knowledge gaps in the familiarity with the CDS alert
system or the clinical content expressed within the alert. Usability and
design are important aspects of CPOE systems and may influence
dwell times, such as simultaneously presented alerts.24,25 Dwell time
calculated at the individual prescriber level may help identify clinicians
who need assistance to appropriately respond to interruptive alerts.

Figure 1: Distribution of alert dwell times in the study sam-
ple (n¼ 25,965).
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Median dwell times for overridden alerts and accepted alerts were
not significantly different. Since this was an exploratory analysis to
illustrate the potential use of the dwell time measure, no discrete hy-
potheses were proposed before data analysis. Longer dwell times
observed for overridden alerts might suggest a more in-depth level of
critical evaluation. If a clinician is going to bypass a safety alert, reach-
ing this conclusion may demand more time than that needed to decide
to accept an alert (i.e., remove the DDI initiating order). However, we
found that median dwell times for accepted and overridden alerts
were similar, which suggests that equal consideration was given to
the contents of both types of alerts. Because the study hospital has
made considerable efforts to suppress less clinically relevant alerts,
the similar dwell times for overridden and accepted alerts may indi-
cate progress in managing alert fatigue. Differences in the alert dwell
times between accepted and overridden alerts can provide additional
insights into the efficiency of alerts and need to be explored in future
studies.

Examining the temporal trends in dwell time may increase the un-
derstanding of clinician responses to alerts. For example, dwell time
for specific alerts occurring frequently may decrease throughout the
workday or workweek, suggesting a learning effect. Alert dwell time

could also be compared to other metrics used to evaluate the quality
of alert systems. For example, integration of results from calculating
override rates and prescriber surveys with calculated dwell times may
increase the validity of these metrics to identify opportunities for
improvement.

Although our methods allowed us to calculate the time it took for
clinicians to respond to alerts, we were not able to verify that all of
that time was spent considering the content of the alert messages.
For example, clinicians may have been distracted by an unrelated task
as the alert window was presented. Distractions from the cognitive
processing of the alert might explain the non-normal distribution of
data, which is skewed by long dwell times. Future prospective studies
can evaluate how cognitive tasks relate to dwell time and differentiate
the time spent processing alert content from the time spent on
distractions.

Given that our hospital specializes in treating catastrophic pediatric
illnesses, the generalizability of our summary statistics for dwell times
is limited. This is also reflected in the efforts we have made to limit
the amount of alerts by customizing our alert CDS settings. However,
given that the CPOE vendor (Cerner Corporation) for our hospital is
common in US healthcare settings, it may be possible to calculate alert
dwell time in other settings.

In conclusion, we demonstrated that it is possible to measure the
length of time for which an alert is present before being dismissed by
a provider, and there are differences in alert dwell times among clini-
cian roles and frequent versus infrequent alerts. Further research is
needed to understand the implications of this metric and validate its
use for improving the utility of interruptive prescriber alerts.
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