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ABSTRACT
....................................................................................................................................................

Background and objective: There is an increasing desire to share de-identified electronic health records (EHRs) for secondary uses, but there are
concerns that clinical terms can be exploited to compromise patient identities. Anonymization algorithms mitigate such threats while enabling novel
discoveries, but their evaluation has been limited to single institutions. Here, we study how an existing clinical profile anonymization fares at multi-
ple medical centers.
Methods: We apply a state-of-the-art k-anonymization algorithm, with k set to the standard value 5, to the International Classification of Disease,
ninth edition codes for patients in a hypothyroidism association study at three medical centers: Marshfield Clinic, Northwestern University, and
Vanderbilt University. We assess utility when anonymizing at three population levels: all patients in 1) the EHR system; 2) the biorepository; and 3)
a hypothyroidism study. We evaluate utility using 1) changes to the number included in the dataset, 2) number of codes included, and 3) regions
generalization and suppression were required.
Results: Our findings yield several notable results. First, we show that anonymizing in the context of the entire EHR yields a significantly greater
quantity of data by reducing the amount of generalized regions from �15% to �0.5%. Second, �70% of codes that needed generalization only
generalized two or three codes in the largest anonymization.
Conclusions: Sharing large volumes of clinical data in support of phenome-wide association studies is possible while safeguarding privacy to the
underlying individuals.

....................................................................................................................................................
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INTRODUCTION
Lower costs for computing and high-throughput technologies
enable healthcare institutions to amass large volumes of clinical and
genomic data.1 While these data can enable personalized medical sys-
tems and save costs,2 it is increasingly recognized that data can also
be repurposed to support the discovery of novel biomedical associa-
tions and facilitate comparative effectiveness investigations.3–5 Given
that many of these studies are sponsored by federal funding agencies,
various policies, including the recent Genome Sequence Data Sharing
Policy of the National Institutes of Health (NIH),6 require public sharing
of such data for reuse and transparency.6 Concurrently, it is critical
that the privacy of participants is maintained. In support of this goal,
the NIH policies recommend de-identifying data before dissemina-
tion.7–9

Care must be taken when sharing such data from electronic
health record (EHR) systems because it can be exploited to re-identify
the patients from whom the data was derived.10 For instance, it was
shown that the combination of a patient’s billing codes, which are of-
ten invoked in biomedical research, can be leveraged to re-identify
a patient.11 Yet demonstrations of such attacks have also led to
the development of a range of data-based protections that support
secondary research with clinical data.12 In particular, to mitigate
attacks on such codes, several mechanisms have been introduced
to support genome-phenome association studies with rigorous
guarantees of privacy.13,14 These methods are differentiated by how
they account for the knowledge available to the recipient of the data
(e.g., if they know that a targeted patient is in a specific study cohort

as opposed to the general population who received treatment at a
medical institution).

However, the development of such methods is insufficient to dem-
onstrate the extent to which they scale or are useful across medical
centers. Towards this goal, Heatherly and colleagues15 leveraged data
from a single EHR to simulate how the size of the available patient
population at other academic medical institutions across the United
States can preserve privacy while increasing data utility when com-
pared to study-specific data sets. It was hypothesized that the larger
the dataset anonymized, the more accurate the results would be after
anonymization. The findings, however, indicated that while this was
true when the full EHR was anonymized, when the biorepository was
anonymized, there was a net loss in the quantity and specificity of
clinical codes shared vs anonymizing only the study cohort.14 It was
observed that the criteria used for incorporating patients into the sub-
set may have biased the result.

In the present paper, we report on an evaluation of clinical data
anonymization algorithm at three academic medical centers. In partic-
ular, we focus on an existing k-anonymization algorithm, where k¼ 5,
because its scalability has been posited in prior investigations. We
show that each medical institution can leverage all patients in the EHR
system to protect a select group of patients involved in a research pro-
gram (e.g., a study cohort). We further show that even when the pro-
tection is restricted to only the subset of EHR patients in the
biorepository of a medical center, a significantly greater volume of
clinical data can be released than if the organization simply protects a
specific cohort. Most importantly, we observe that as the size of the
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population grows, the amount of data that may be shared in a privacy-
preserving manner grows as well, which validates the original
hypothesis.

BACKGROUND
Privacy in medical research
In the United States, the exact strategy for achieving de-identification is
based on guidance articulated in the Privacy Rule of the Health Insurance
Portability and Accountability Act.8 Specifically, de-identification under
the Privacy Rule can be achieved through 1) safe harbor or 2) an expert
determination. The former approach states that certain attributes about a
patient must be removed (e.g., personal name and medical record num-
ber) or abstracted (e.g., 5-digit ZIP codes into 3-digit ZIP codes).8 The
latter approach permits institutions to share any data provided that an
expert certifies the risk of re-identification is very small.

Despite advancements in data sanitization algorithms,11 the past
decade has witnessed the development of a variety of linkage-based
re-identification attacks against biomedical data, including genomics,
(with varying degrees of success).10,16–19 These incidents demon-
strate the need to develop alternative models of privacy. For instance,
an increasingly prevalent approach is to adopt data manipulation mod-
els that use randomization (e.g., e-differential privacy) to make it diffi-
cult to ascertain whether a patient’s data was incorporated in a
dataset.20,21 It has also been demonstrated that, in theory, such ran-
domization approaches can be applied to set-based data systems (i.e.,
where an individual is assigned a variable number of values from a
domain, such as a set of diagnosis codes, as we study in this work).22

In recognition that such models cannot sufficiently address all data
sharing situations, it has been suggested that healthcare organizations
approve research participants for a broad range of research topics23

and accept that there are no guarantees made as to their privacy
outcomes.24

Clinical profile anonymization
It has been shown that fewer than 10 International Classification of
Disease, ninth edition (ICD-9) codes could, in many instances,
uniquely identify a patient.11 However, this observation was based on
the assumption that the anticipated recipient of the data would have
knowledge equivalent to that of an insider (i.e., an individual with un-
limited access to the full records of the institution). In a subsequent
study, it was shown that when the anticipated recipient had less
knowledge than an insider might (e.g., a researcher from another in-
stitution), there is a much greater ability to release clinical details.14 In
this case, data sets can be anonymized, using generalization and sup-
pression of codes, such that they enable the discovery of genome-
phenome associations that are virtually identical to those mined from
the original, non-anonymized data.14 Most recently, investigators at
Kaiser Permanente showed that a similar approach to k-anonymization
(further detailed below) yielded safer datasets with greater research
potential than a more naı̈ve approach for approximately 70 000 EHR-
derived records submitted to the Database of Genotypes and
Phenotypes (dbGaP) at the NIH.25 We note that in this work, we focus
on k-anonymization, as opposed to alternative privacy models, such
as e-differential privacy, because their scalability has been theoreti-
cally posited, but not empirically assessed with data from multiple
healthcare institutions.

METHODS
Materials
To perform the analysis, data were collected from three medical cen-
ters: 1) the Marshfield Clinic; 2) Northwestern University; and 3)

Vanderbilt University Medical Center. Data from each institution were
classified into three telescoping populations. The first is the compo-
nent of the EHR that consists of all individuals with clinical codes. For
the purposes of the analysis, we simply refer to this as an institution’s
EHR. The second is the subset of the EHR for which the institution has
available biospecimens or for which they have already completed gen-
otyping (e.g., Marshfield’s Personalized Medicine Research Project
biobank,26 Northwestern’s NUgene,27 and Vanderbilt’s BioVU28).
Henceforth, this group is referred to as the institution’s biorepository.
The third is a specific study cohort taken from each biorepository.
Specifically, each of the three sites collaborated in a genome-wide as-
sociation study for hypothyroidism for the Electronic Medical Records
and Genomics network.29 And, for this evaluation, the records that
each site submitted to the consortium project are referred to as the
study cohort. Summary record counts for each data set are provided
in Table 1.

Data protection model
In this analysis, we assume that the attacker has access to medical
data in the form of clinical codes (e.g., 5-digit ICD-9 codes).
Specifically, the attacker has gained access to an individual’s dis-
charge summary, which includes all of the ICD-9 codes from a single
visit, and is curious to discover any other codes associated with that
person from other visits, a standard assumption applied in prior stud-
ies.13–15

To protect the data, we apply an existing implementation of the k-
anonymization principle,30 where k was set to a best practice of 5, for
clinical codes generated via visits made by a patient to a medical insti-
tution.14 For context, here we provide a high-level overview of the
principle and corresponding algorithm to realize this principle in a
dataset, and direct the reader to the appendix for a detailed descrip-
tion and example. In this setting, each visit is represented as a set of
one or more ICD-9 codes. k-anonymization is applied such that, for
each visit associated with the patient, there exist at least k� 1 other
records with those diagnosis codes across all visits (this process is ex-
plained in further detail below). Primarily, this is accomplished through
the process of generalization. Specifically, we used the hierarchy of
ICD-9 codes developed originally for phenome-wide association stud-
ies (PheWAS) to convert sensitive 5-digit codes into less sensitive
groups of codes.29,33 The PheWAS hierarchy was chosen because it
has been shown to provide greater utility in association studies that
reuse data from EMRs.31,32 We note here that while the hierarchy was
originally used for proof-of-concept for an initial PheWAS of five SNPs,
it was created to be used for arbitrary studies.

RESULTS
Table 1 summarizes the number of records available in the hypothy-
roidism cohort. In each dataset, we see that anonymizing ICD-9 codes
at the study-level suppresses (i.e., they could not be released with a
guarantee of 5-anonymity) more records in comparison to anonymiz-
ing at the full EHR level. However, we find in the Vanderbilt dataset
that biorepository-level anonymization also results in a reduction in the
number of records of about 400 patients. It should be noted that both
Northwestern and Marshfield exhibit the hypothesized behavior alluded
to in the introduction.14 Specifically, the size of the available dataset
directly correlates with better anonymization results. We believe that
the anomaly associated with Vanderbilt transpires because the biore-
pository population is moderately large and, as an artifact, incorpo-
rates a larger number of rare diagnoses that the anonymization aims
to protect. This problem is not exhibited in the smaller cohorts and
biorepositories because they have less rare diagnoses (because they
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have a frequency of zero) or the larger EMR populations (because the
majority of diagnosis codes have sufficient frequency).

Table 1 also reports the total number of (Record, Diagnosis) pairs
in the dataset at each level of anonymization. We again see that ano-
nymization at the EHR level leads to the highest degree of fidelity. For
Northwestern and Marshfield, this implies that every diagnosis code in
the original data is still represented in the anonymized version. For
Vanderbilt, there is some suppression, but the EHR level remains the
closest to the original dataset.

Table 2 provides a summary of the extent to which datasets re-
quired codes to be generalized. Original indicates the number of dis-
tinct 5-digit ICD-9 codes that were originally included in the
demonstration cohort without anonymization. It should be noted that
there is substantial variability in the number of codes generalized val-
ues and regions, which may be due to different business and docu-
mentation processes at each institution. Nonetheless, it was again
found that even though each EHR required some generalization, the
rate was substantially lower than for the biorepository and demonstra-
tion level. In each dataset, fewer than 1% of codes needed to be
generalized.

Phenotypic changes
To provide insight into how anonymization influences the utility of the
data in a more context-specific manner, we report on the regions of
the aforementioned PheWAS vocabulary where generalization tran-
spired for each site at the demonstration- and the EHR-level.

Figure 2 illustrates the distribution of codes within generalized re-
gions of the vocabulary. That is, it shows how many codes are com-
bined to ensure the required number of appearances allow it to meet
the privacy requirement. As the figure illustrates, when codes are gen-
eralized, most are joined with only a few codes to achieve protection.
However, at each site there is at least one group that requires at least
30 individual codes to be grouped in order to be generalized safely.
Examples of these groups can be found in the annotated points in
Figure 2. We also find that, at each level, the EHR anonymization

requires fewer codes to be generalized, both overall and in each indi-
vidual category.

Next, we illustrate which phenotypic regions required generaliza-
tion. In Figure 2a and b, we show the results for the Marshfield ano-
nymization. Here, it can be seen that approximately 55 codes relating
to PheWAS topic 940 (Burn confined to eye and adnexa) were general-
ized. Note that this does not necessarily mean that they were general-
ized into a single code. Rather, it indicates the overall number of
codes in that area that required generalization.

Figures 2c–f reveal similar trends for the other institutions. At
Vanderbilt, the EHR anonymization has 31 regions of generalized
codes to satisfy 5-anonymization, but the study cohort-level anonym-
ization required 447 of these regions requiring generalization. This
implies that there are fewer than five instances of each of many of the
specific 5-digit ICD-9 representation, but that when considered slightly
less specifically (i.e., 3-digit code) there are enough instances to allow
the data to be released. Also in Table 2, we provide the counts of the
PheWAS regions that require generalization for each site. Here, we
find that each site has the same general trend that we described for
Vanderbilt.

Table 3 provides general insight into the distributions of the gener-
alizations in each dataset. For example, the mean cell in Marshfield’s
Study-level statistics indicates that, for codes which were grouped,
the average length of this grouping (i.e., number of codes placed to-
gether) was 3.5. As a condition, we ignore groupings of size 1 due to
the fact that no grouping is necessary). It can be seen that the overall
trend is highly dependent upon the specific dataset anonymized.
Specifically, Marshfield and Northwestern follow a similar pattern of
an increasing mean with the dataset size, but a drastically dropping
max value. Vanderbilt, however, follows an opposite pattern, where
the study-level has the highest mean value, but the difference be-
tween the study-level max and the EMR-level max is minimal.

DISCUSSION
The results indicate that a greater quantity of data sharing is possible
if an institution leverages the entire population in its EHR as a protect-
ing population when data on a specific cohort is shared. This is similar

Table 1: Number of patients with records and assigned
codes in the various datasets of this study pre- and
post-anonymization

Dataset Number of Patients and Code Occurrences

Marshfield Northwestern Vanderbilt

Original 1684 742 5994

1 298 732 29 161 272 080

After anonymization according to:

Study Cohort, n (%) 1681 (99.8) 737 (99.3) 5971 (99.6)

1 291 294 (99.4) 28 922 (99.2) 270 867 (99.6)

Biorepository, n (%) 1684 (100) 742 (100) 5595 (93.3)

1 297 723 (99.9) 29 154 (99.98) 248 925 (91.5)

EHR, n (%) 1684 (100) 742 (100) 5994 (100)

1 298 732 (100%) 29 161 (100) 272 043 (99.99)

Original corresponds to original study (i.e., no anonymization); Study
Cohort corresponds to anonymization over the hypothyroidism re-
search set; Biorepository corresponds to anonymization over all re-
cords for which genetic information is available; and EHR corresponds
to anonymization over all patient records available at the study site.

Table 2: Number of generalized and suppressed codes
per study site with the number of PheWAS regions
which required generalization

Anonymization
Operation

Marshfield Northwestern Vanderbilt

Original – 8052 8734 2910

Study Cohort,
n (%)

Generalized 522 (6.4) 1663 (19.0) 381 (13.0)

Regions 341 (33.0) 271 (26.2) 447 (43.2)

Suppressed 1 3 2

Biorepository,
n (%)

Generalized 206 (2.5) 258 (2.9) 216 (7.4)

Regions 149 (14.4) 165 (13.1) 174 (16.8)

Suppressed 0 0 1

her, n (%) Generalized 18 (0.2) 66 (0.7) 10 (0.3)

Regions 14 (1.4) 9 (0.9) 31 (3.0)

Suppressed 0 0 0

Original shows the number of ICD9 codes originally in the study cohort.
For each site, the top value corresponds to the number of generalized
codes and the bottom value is the number of suppressed codes.
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Figure 1: Distribution of generalizations required for each a) Marshfield, b) Northwestern, and c) Vanderbilt dataset. Note
the y-axis is depicted in a log scale.
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to the findings first observed in the simulated analysis using data from
the Vanderbilt EHR.15 The results lend credence to the possibility of
sharing large volumes of clinical information when a dataset must be
distributed. We believe the finding is notable because many groups of
attackers will not know whether a specific targeted individual is actu-
ally in a released dataset. Thus, even if a specific matching record is

found within the dataset, there is at most a 1/k chance that the corre-
sponding patient is, in fact, the correct re-identification.

We also note that the bias originally shown in the Vanderbilt biore-
pository (i.e., higher rates of generalization required) did not reproduce
within the other sites’ biorepositories. This suggests that the original
observation noted in14 may be an artifact of an investigation with a

Figure 2: Generalization in the datasets by PheWAS code. Each row corresponds to one of the three sites in the study.
Notice that anonymizing at the EHR-level leads to fewer merged codes than anonymizing at the study-level.
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single institution and is not necessarily an inherent property of all
biorepositories.

It is also worth noting that, in this study, we conducted the analysis
using three sites with very different data models. At the Marshfield
Clinic, there is a high average number of diagnoses per patient, while
at Northwestern there are fewer patients and diagnoses. However,
each site sees benefit to our strategy of anonymization, which sug-
gests that it does not rely upon a specific data model in order to func-
tion effectively.

We acknowledge that there are several limitations to this study.
Foremost is that the study was performed using a greedy selection al-
gorithm. It is entirely possible that heuristics could be developed to al-
low anonymization with greater utility in the end. Further, this was a
study using only three sites. However, since the study began, Kaiser
Permanente performed a similar analysis on their data in preparation
for submission to dbGaP and found similar results.25 While it can be
seen that one specific data model is not a requirement for success
through this algorithm, it is possible that there are certain data models
for which it will not work at all. That is, collections which have been
selected to represent a certain set of conditions may have significantly
different ICD9 statistics than we observe through the institutions rep-
resented here. In these cases, we have no evidence to suggest how
an anonymize-large strategy would fare. We also note that this study
involves clinical profile anonymization only. When data is fully re-
leased, it generally also includes demographic information. Further in-
quiry needs to be performed in order to determine the best way to
privately share this information as well.

Additionally, there is no clear trend in the summary statistics pre-
sented in Table 3. There are two possible reasons for this phenome-
non. First, as noted in prior studies,14,15 there may be a systematic
bias present in the selection of participants in the Vanderbilt bioreposi-
tory, although it dramatically subsides through selection of either a co-
hort or the entire EMR. The finding in this work may be an additional
manifestation of this behavior. Second, we note that the anonymiza-
tion algorithm is a heuristic and does not seek to provide any guaran-
tee of optimality. It is possible that some underlying trend could
emerge, if the anonymization algorithm aimed to provide optimal
groupings or an approximation of such a solution.

CONCLUSIONS
This work shows that it is possible to share considerably more clinical
information about research participants than may have been consid-
ered feasible while still protecting their privacy. This finding has nota-
ble implications for the submission of data to third-party-controlled
repositories (e.g., dbGaP), namely that an institution may be able to
contribute larger quantities of data (i.e., more clinical codes for a study
cohort) for general research usage than they may previously have real-
ized. Although this analysis does not consider the demographic

attributes of the patient population, we believe that this is a significant
advance toward the more-detailed release of data with large-scale ge-
nome-phenome associations.
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