
RECEIVED 23 January 2015
REVISED 16 July 2015

ACCEPTED 17 July 2015
PUBLISHED ONLINE FIRST 15 September 2015

A design of experiments approach to
validation sampling for logistic regression
modeling with error-prone medical records

Liwen Ouyang, Daniel W Apley, Sanjay Mehrotra

ABSTRACT
....................................................................................................................................................

Background and Objective Electronic medical record (EMR) databases offer significant potential for developing clinical hypotheses and identifying
disease risk associations by fitting statistical models that capture the relationship between a binary response variable and a set of predictor vari-
ables that represent clinical, phenotypical, and demographic data for the patient. However, EMR response data may be error prone for a variety of
reasons. Performing a manual chart review to validate data accuracy is time consuming, which limits the number of chart reviews in a large data-
base. The authors’ objective is to develop a new design-of-experiments–based systematic chart validation and review (DSCVR) approach that is
more powerful than the random validation sampling used in existing approaches.
Methods The DSCVR approach judiciously and efficiently selects the cases to validate (i.e., validate whether the response values are correct for
those cases) for maximum information content, based only on their predictor variable values. The final predictive model will be fit using only the
validation sample, ignoring the remainder of the unvalidated and unreliable error-prone data. A Fisher information based D-optimality criterion is
used, and an algorithm for optimizing it is developed.
Results The authors’ method is tested in a simulation comparison that is based on a sudden cardiac arrest case study with 23 041 patients’ re-
cords. This DSCVR approach, using the Fisher information based D-optimality criterion, results in a fitted model with much better predictive perfor-
mance, as measured by the receiver operating characteristic curve and the accuracy in predicting whether a patient will experience the event,
than a model fitted using a random validation sample.
Conclusions The simulation comparisons demonstrate that this DSCVR approach can produce predictive models that are significantly better than
those produced from random validation sampling, especially when the event rate is low.

....................................................................................................................................................
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1 INTRODUCTION
Enormous resources are devoted to compiling and integrating elec-
tronic medical record (EMR) databases. This has the potential for use
in hypothesis generation, automatic identification of disease risk fac-
tors, and comparative effectiveness research.1,2 The hypothesis gen-
eration and identification of disease risk factors involves fitting
statistical models, such as logistic regression, that describe the rela-
tionship between the occurrence of a particular condition in a patient
(represented by a binary response variable Y taking a value of 1 if the
condition occurs in the patient and 0, otherwise) and clinical, pheno-
typical, and demographic data for the patient that are potential risk
factors (represented by a vector x ¼ ½x1; x2; . . . xm � of m predictor
variables, or predictors for short). Development of such models is
more challenging when the events of interest are infrequent for a
number of reasons, not the least of which is that the response values
may be more likely to be miscoded in the administrative data due to
unfamiliarity by less experienced data entry personnel.

Consider the following case study, which is used to illustrate con-
cepts throughout this article. Sudden cardiac arrest (SCA) is an event
that occurs in <0.125% of the population but is typically fatal.3 An es-
timated 400,000 Americans die of SCA each year. A search using
codes from the Ninth/Tenth Revision of the International Classification
of Diseases (ICD-9/ICD-10) of the Northwestern Memorial Hospital
EMR database between January 2006 and December 2010 yields 73
recorded SCA cases indicated by ICD-9 codes: 427.41, ventricular

fibrillation; 427.42, ventricular flutter; and 427.5, cardiac arrest. The
clinical measurements (blood tests, measurements from electro-
cardiograms, physiological tests, etc.) on potential risk factors associ-
ated with SCA were available in medical records for N¼ 23 041
patients.4 In EMR databases, although the predictors are usually
entered quite reliably (since they are clinical measurements used for
clinical decisions), there is often a surprisingly large percentage of er-
rors in the recorded ICD-9/ICD-10 codes. This translates to errors in
the response Y . A recent audit of ICD-10 coding of physicians’ clinical
documentation showed error rates between 37% and 52% in various
areas of specialties.5 In our SCA data, 20 cases were randomly se-
lected for review and validation from the set of cases that had an SCA
event entered using the ICD-9 codes. Of these 20 selected cases, only
5 were true SCA events. If not handled properly, such high error rates
render unreliable any statistical modeling approach.

High error rates are possibly due to the fact that for coding, hospi-
tals often rely on less trained (relative to doctors) personnel and/or au-
tomated natural language processing methods that may be far from
perfect, particularly for conditions that are not commonly encoun-
tered.6–8 Considering that each record may take roughly 5–10 min to
manually review, it is obviously cost prohibitive (virtually impossible)
for doctors to manually review tens or hundreds of thousands of re-
cords to validate the response variables.

The problem considered in this article is now formally described as
follows. Let Y � denote the error-prone binary response variable, as
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recorded. Suppose there is a large database of N cases or records
(which we subsequently refer to as “rows”), for each of which Y * and
x (the latter, without error) have been observed, and a reliable statisti-
cal model relating the true Y to the potential risk factors x must be
constructed. Existing approaches to the problem involve selecting a
small random validation sample of rows from the complete data set
and having an expert review and validate the response Y for each row
in the validation sample. Notice that in this context, validation sam-
pling refers to validating the correct Y values for a set of rows, as op-
posed to model validating. Lyles et al.9 and Edwards et al.10 combined
the validation sample with the unvalidated error-prone data to fit bias-
corrected models that account for the error rate. A drawback of this
approach is that random sampling is inefficient when the event rate is
low and the error rate is high. Moreover, the extreme error rates like
the 75% error rate in our SCA case study may cause one to question
the reliability of any model fit using the unvalidated data. For example,
the approaches of Lyles et al.9 and Edwards et al.10 can correctly ad-
just for error-related biases only if the error mechanisms are correctly
captured in the model. However, the error mechanisms may be too
numerous or complex to do this.

In light of the preceding, this article considers a substantially dif-
ferent approach to fitting predictive models for risk assessment in
large EMR data sets with unreliable response records (false positives
and/or false negatives). Our approach is to collect a validation sample
not randomly, but judiciously, chosen with the goal of giving us
the most information on the relationships of interest. The intent is
that the final predictive models will be fit using only the validation
sample, ignoring the remainder of the unvalidated, error-prone data.
The information in the error-prone data will only be used for judi-
ciously choosing the validation sample, based on only the x values
for each row. Neither the Y nor the Y * values are considered when se-
lecting the validation sample. Selecting the validation sample in this
manner avoids causing a sampling bias in the fitted model, in the
same way that conventional design of experiments (DOE) avoids a
sampling bias. This will be referred as design-of-experiments–based
systematic chart validation and review (DSCVR) with error-prone data
hereafter.

2 METHODS
2.1 Description of DSCVR
Our DSCVR approach is akin to designing a small but powerful experi-
mental study, aided by information extracted from the much larger, er-
ror-prone set of observational data. Figure 1 illustrates the analogies
between DSCVR (judiciously choosing a small sample of rows to vali-
date from among a large error-prone set of data) and the classical
DOE problem. In the machine learning literature, the active learning
paradigm11–15 refers to the situation in which one has a large set of
cases that are unclassified, a subset of which will be selected and
classified by a human expert and used as the training data on which
to fit a model for classifying future cases. The goal is to select the sub-
set of cases to label, usually in a sequential manner, in order to reduce
some measure of uncertainty in the fitted classification model. As
such, our DSCVR approach is related to what can be viewed as a form
of active learning.

In the DOE literature, different methods have been developed to
select the x values to optimize some measure of quality of the result-
ing fitted model, and the most common optimal design criteria when
fitting linear regression models are the so-called “alphabetic” optimal-
ity criteria.16,17 This article focuses on D-optimality—that is, maximiz-
ing the determinant of Fisher information matrix—which is perhaps
the most common and popular criterion.

In our problem, a logistic regression model P Y ¼ 1 jxð Þ ¼
exp bT xð Þ

1þexp bT xð Þ is assumed to represent the true relationship between pre-

dictors x and response Y, where 1 is included as the first element of
x ¼ ½1; x1; . . . ; xm �, and b ¼ b0; b1; . . . ; bm½ � are the parame-
ters to be estimated. Let N denote the number of rows in the original
error-prone data, NV the number of validation rows for which Y is
observed without error, and J � f1; 2; . . . Ng the indices of the NV

validated rows. For the case of a logistic regression model fit to the
NV validated rows with row indices in J, it is straightforward to show
that the log-likelihood is

l ¼
X
i2J

Yi b
Txi �

X
i2J

logð1þ exp bTxi
� �

Þ; (1)

and its Hessian (with respect to b) is

�
X
i2J

expðbT xi Þxi x
T
i

1þ expðbT xi Þ
� �2 : (2)

Because the Hessian does not depend on the response observations, it
equals its expectation, the negative of which is the Fisher information18

F ¼
X
i2J

pi ð1� pi Þxi x
T
i ; (3)

where

pi ¼
expðbT xi Þ

1þ expðbT xi Þ
:

Thus, our DSCVR strategy is to choose the cases to be validated as
the NV rows whose xi values maximize jFj, with F given by Eq. (3),
and the symbol j�j denoting the determinant of a matrix.

2.2 DSCVR Design Algorithm for Validation Sample Selection Using
the Fisher Information
In the traditional DOE literature, algorithmic design optimization is
quite well developed8,19–21 and is now standard in many commercial
DOE software packages. However, in spite of the analogies illustrated
in Figure 1, existing optimal DOE algorithms are not directly applicable
to optimal design for DSCVR for a number of reasons. First, the design
space (the set of feasible values for x) is neither a continuous domain
(common in traditional DOE when the input factors are continuous var-
iables), nor a region or subregion of a grid (common in traditional DOE
when the input factors have discrete settings). In DSCVR, the design
space is the set of existing x values in the rows of the error-prone
database. For large data sets there are a great many possible values
to consider (in the SCA example 23 041 data points), and these data
points typically have quite irregular structure due to issues such as
multicollinearity, clusters, outliers, etc. in the x -space. Second, when
considering whether/how to modify an x value in the DSCVR design,
its elements cannot be modified independently, as in the coordinate
exchange algorithm of Meyer and Nachtsheim21 (a popular heuristic
for design optimization), because only the fixed set of x values in the
error-prone data set are permissible. Hence, our problem is first for-
mulated as a binary integer optimization problem, and then a heuristic
approach for finding an (approximate) optimal solution is proposed.
The heuristic is generally necessary, because state-of-art integer pro-
gramming software has difficulty handling problems of a size typical
for DSCVR problems.

Write the Fisher information matrix in Eq. (3) as
F ¼

P
i2J wi w

T
i ¼

PN
i¼1zi wi w

T
i , where wi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi ð1� pi Þ

p
xi

has been introduced, and the 0/1 binary variables z ¼ zi : i ¼ 1;f
2; : : :; Ng have been defined as zi ¼ 1 (if the ith row is included
in the validation sample) or zi ¼ 0 (if the ith row is not included in the
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validation sample). Note that F depends on which set of rows are se-
lected for the validation sample, which are represented by the binary
set z. The binary integer optimization formulation becomes

max
z

���X
N

i¼1

zi wi w
T
i

��� s:t :
XN

i¼1

zi �NV and zi 2 0;1f g; i ¼1; .. . ;N : (4)

In light of the computational difficulty in solving the exact integer
optimization, two heuristic approaches are considered, namely back-
ward stepwise selection and hybrid backward/forward selection. As il-
lustrated in Figure 2, the backward selection algorithm starts with all
N rows and, at each step, removes the single row that least reduces
jFj, where F is the Fisher information matrix for the set of rows se-
lected at the current stage of the algorithm. Because calculating jFj di-
rectly for large N is time-consuming, jFj is updated using the following
result for the determinant of a rank-1 modification F6wi wi

T of a

matrix F, which is also used in the popular exchange algorithms for
constructing D-optimal designs19,21:

jF6wi wi
T j ¼ jFjð16wT

i F�1wi Þ: (5)

In Eq. (5), wi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pi ð1� pi Þ

p
xi for the row (with index denoted by i)

that is deleted (or added in the hybrid backward/forward algorithm) at
the current step. Hence, when updating jFj, only wT

i F�1wi needs to
be calculated for each of the rows in the currently-selected validation
sample. Notice that, from Eq. (5), the row that least reduces jF� wi

wi
Tj is the row with the smallest wT

i F�1wi . This step will be iterated
and terminated when the number of rows selected is reduced to the
desired size NV .

In the hybrid forward/backward approach, at each step one also
considers including rows that have been removed in previous steps. A
number of variants of hybrid approaches have been tried. However,

Figure 1: Analogies between DSCVR (left column) and DOE (right column). (a) Mechanisms for generating an observation of
the true response Y. Little is known of Y for a specific value of x until a case having those x is chosen from the error-prone
data set (left) and validated, or until an experimental run at those x values is designed (right) and conducted. (b) Red circles
represent the x values for the chosen set of cases to be validated (left) or the chosen set of x values at which to conduct
the experimental runs (right) The complete feasible set of x values from which the red circles can be chosen are the set of
all x values in the error-prone data set (blue dots; left) or the feasible experimental region (shaded area; right). (c) After
choosing the x values for one case to be validated (left) or at which to conduct one experimental run (right), we observe the
Y value corresponding to the chosen x values.
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because the pure backward selection algorithm gave very similar re-
sults and is less computationally expensive, that is used for all of the
examples in Section 3.

One complication is that the expression for F is a function of
the fpig, which depend on the unknown parameters b. Consequently,
in order to design the validation sample, a preliminary estimate bb
is needed. The examples in this article use the biased preliminary bb
obtained by fitting the model to the original error-prone data set
with Y * as the response. An alternative is to select the validation
sample in two stages. In the first stage, a small pilot sample of
rows would be selected (using the preceding algorithm with the pre-
ceding initial bb) and validated. From this, an updated estimate bb could
be obtained and used when selecting the final sample of rows to
validate.

Another advantage of a two-stage design pertains to selecting the
validation sample size NV . As in any experimental design, one must
balance the cost of experimentation with the quality of the fitted
model. Larger NV will result in a better fitted model, although the cost
of chart review may be prohibitive. With a two-stage procedure, one
can reassess the adequacy of NV after the first-stage data are col-
lected and analyzed. For example, the Fisher information matrix
(updated using bb from the first-stage analysis) gives a quantitative as-
sessment of model precision, which can be used as a criterion to de-
cide whether a second stage is needed and, if so, how large should
NV be for the second-stage design.

3 RESULTS AND DISCUSSION
3.1 SCA Example
For our case study, the testbed data described in Section 1 is used.
There were a total of 70 different predictor variables, from which
m¼ 10 variables that were believed to be the most important, based
on the analysis in Mehrotra et al.4 were retained. The 10 variables are
age, average body mass index, history of congestive heart failure, his-
tory of myocardial infarction, maximal ejection fraction, maximal

ventricular rate, minimal corrected QT interval, average P axis, recent
diastolic blood pressure, and maximal low density lipoprotein. Binary
predictors were coded as 0/1, and the continuous predictors were
standardized, so that the rows and columns of F have a common ba-
sis. Although x and Y * exist for the N¼ 23 041 cases in this data set,
the true Y values are missing, other than for the 20 randomly selected
cases mentioned in Section 1 that had already been validated.
Consequently, for the purpose of assessing the performance of the
DSCVR approach, we use a Monte Carlo (MC) simulation in which we
generate test simulation data sets with “true” response values gener-
ated via the approach (based on the actual SCA data) described in
Appendix A.

A validation sample size of Nv¼ 1000 was chosen. For each MC
replicate, our backward selection algorithm of Figure 2 was used to
select the best 1000 rows to validate, out of the full 23 041 rows. For
comparison, a validation sample was also chosen as a random sample
from the 23 041 rows. Across the 100 MC replicates, the average
value of jFj for the validation samples produced by our algorithm was
1.12eþ 12, whereas the average of jFj for the randomly selected vali-
dation samples was only 1.04eþ 4. Because the elements of F�1 are
the variances/covariances of bb, and the dimension of bb is 11, these re-
sults roughly correspond to the variances of the elements of bb being
on average 1:12eþ 12=1:04eþ 4ð Þ 1=11ð Þ ¼ 5:37 times smaller for
the designed validation sample than for the randomly selected valida-
tion sample. This is a substantial improvement over random sampling.

Another somewhat surprising and desirable characteristic of our
DSCVR design strategy is that it tends to give a much higher propor-
tion of true events in the validation sample than in the original data
set. Recall that our true event rate P ðY ¼ 1Þ � 0:003 is quite small,
and in order to produce a reliable estimate of b, obviously a sufficient
number of events in our validation sample is needed. The average
number of true events over the 23 041 rows in each MC replicate is
23 041	 0.003� 70. In a randomly selected 1000-row validation
sample, the average number of true events is only 1000 	
0:003 ¼ 3. In comparison, the average number of true events in our
1000-row DSCVR designed sample was 24, almost an order of magni-
tude larger.

For clinical purposes, an important consideration is how accurately
the predictive model can identify patients’ risk of an event. With more
accurate risk predictions, appropriate medical recommendations for
preventive measures can be instituted, or better hypotheses can be
generated for further testing. For assessing this aspect we compared
the receiver operating characteristic (ROC) performance of our ap-
proach vs using a naive biased model (defined as a logistic regression
model fit to all N rows with the error-prone Y * as the response), and
vs existing validation methods that correct for the bias based on a ran-
dom validation sample. The naive approach can be viewed as involv-
ing zero added cost, because no additional chart reviews or response
validations are needed (hence, Nv is irrelevant). Regarding the existing
validation methods, since the multiple imputation method developed
by Edwards et al.10 and the joint likelihood method developed by Lyles
et al.9 gave quite similar results for this example, only the joint likeli-
hood method is included in the comparisons. Notice that, when fitting
the model, the joint likelihood approach uses the Nv validated Y val-
ues, as well as the N unvalidated Y * values. In contrast, the DSCVR
approach only uses the Nv validated Y values and discards all of the
Y * values.

The ROC and the area under the ROC curve (AUC) were calculated
for 1) our DSCVR approach, 2) a model using btrue (which is a hypo-
thetical benchmark, since btrue is unknown in practice), 3) the naive
biased model, and 4) the joint likelihood model. The ROCs were

Figure 2: Flow chart for backward stepwise selection.
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calculated for a very large test set of data (independent of the training
sets on which the models were fit) that consisted of many copies of
the x values for the original 23 041 cases, but with a different set of Y
values generated for each copy. Figure 3 shows the benchmark ROC
using btrue and the average (averaged across the 100 MC replicates)
ROCs for the other three approaches (DSCVR, the naive biased model,
and the joint likelihood approach), along with standard error bars for
the average, and Table 1 shows the corresponding average AUCs and
the standard errors of the averages. Note that a perfect classifier
would have an AUC of 1.0, and a random classifier would have an
AUC of 0.5 and an ROC that is a 45
 diagonal line extending from the
lower-left to the upper-right in Figure 3. From Figure 3, the DSCVR
ROC is very close to the benchmark ROC curve using btrue, and it is
substantially better than the ROCs for either the naive model or the
joint likelihood approach. Moreover, the DSCVR ROC has the smallest
standard error bands (so narrow that they are barely visible in
Figure 3), which means that it was the most consistent across the dif-
ferent MC replicates. It should be noted that the standard error bands
reflect training variability, as opposed to test variability, because the
training data to which the models were fit varied from replicate to rep-
licate, and the set of test data was extremely large and did not change
from replicate to replicate. It should also be noted that the standard er-
ror bands reflect uncertainty resulting from the random sampling vari-
ability introduced in the simulation for this particular set of data. This
does not include other sources of uncertainty such as model biases
(e.g., from neglecting important quadratic or interaction terms) or de-
pendencies that can change over time, which may be present in prac-
tice. Error bands that reflect all possible sources of uncertainty would
no doubt be wider than those shown in Figure 3. Table 1 quantifies
the differences via the AUC. The benchmark AUC using btrue is 0.866.
Remarkably, the DSCVR ROC has an average AUC of 0.850, which is
nearly as good as the benchmark. Somewhat surprisingly, the joint

likelihood had worse AUC than the naive method, which we discuss
below.

3.2 The Effects of Event Rate, Sample Size and Number of
Predictors
The preceding is for a true event rate of 0.3%, which was based on
the actual clinical data. The same MC simulation procedure was also
used to investigate the performance of the DSCVR approach for true
event rates of 1% and 3%. The true event rates were increased by ad-
justing the intercept parameter b0;true, while leaving the other ele-
ments of btrue unchanged. The AUC results for the other true event
rates are listed in Table 1. When the event rate increases, all of the
approaches clearly perform better (closer to benchmark AUC), but the
DSCVR approach still comes out on top and has smallest standard er-
rors for all three true event rates.

At the event rate of 3%, the differences between the three
approaches are smaller. This is perhaps because the ROC and AUC
only depend on the relative scoring, which only depends on the direc-
tion of the vector bb (as opposed to its magnitude), excluding b0. In
other words, as long as the estimated direction of the vector
b1; b2; . . . ; bm½ � is accurate, regardless of how poorly b0 and the

magnitude of b1; b2; . . . ; bm½ � are estimated, the ROC curve and
AUC will still be good. However, accurate estimation of b0 and the
magnitude of b1; b2; . . . ; bm½ �, which impacts the absolute risk
scores (as opposed to the relative scoring across patients), may still
be of interest. To investigate this aspect, the root mean square error
(RMSE) in estimating P ðY ¼ 1jxÞ was considered for the three differ-
ent event rates in Table 1 when m ¼ 10 and NV ¼ 1000. Table 2
shows the RMSE results, which were averaged over the 23 041 rows
first and then averaged over the 100 replicates. Again, for all three
event rates, the DSCVR approach did a better job at predicting the ab-
solute risk probabilities than the other approaches. Notice that at the
event rate of 3%, although the AUCs for three models are quite similar
in Table 1, the RMSEs in Table 2 are much smaller for the DSCVR ap-
proach than for the other approaches.

One interesting observation is that although the joint likelihood ap-
proach had similar or better performance than the naive approach in
the instances with higher true event rates, it performed substantially
worse than the naive model when the true event rate was 0.3% and

Table 1: Monte Carlo average AUCs for the four differ-
ent approaches for various event rates sample sizes,
and number of predictors. Standard errors of the aver-
age AUCs are in parentheses

Using
btrue

Naive DSCVR JL

Event
rate¼ 0.3%

m ¼ 10
NV ¼ 1000

0.866 0.798
(0.0055)

0.850
(0.0012)

0.704
(0.0161)

Event
rate¼ 1%

m ¼ 10
NV ¼ 1000

0.862 0.834
(0.0014)

0.858
(0.0002)

0.826
(0.0055)

Event
rate¼ 3%

m ¼ 10
NV ¼ 1000

0.852 0.837
(0.0007)

0.850
(0.0001)

0.841
(0.0006)

Event
rate¼ 0.3%

m ¼ 10
NV ¼ 200

0.866 0.798
(0.0055)

0.815
(0.0049)

NA
(NA)

Event
rate¼ 0.3%

m ¼ 5
NV ¼ 1000

0.847 0.815
(0.0033)

0.837
(0.0011)

0.741
(0.0153)

Figure 3: Benchmark ROC using btrue and average
ROCs for the three methods: “true” is the hypothetical
benchmark using btrue; “dscvr” is the method of this
article; “jl” is the joint likelihood approach; “naive”
uses the model fit to the entire data with Y � as the
response.
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was also quite variable across the MC replicates. The most likely ex-
planation is that when the event is rare, the random validation sample
used in the joint likelihood approach will include very few true events.
With too few true events, the bias correction inherent to the joint likeli-
hood approach will clearly be unreliable. Moreover, the Hessian matrix
of the joint log-likelihood function is poorly conditioned when there are
too few true events, which makes optimization of the likelihood func-
tion a more erratic and poorly behaved problem with multiple local op-
tima. This problem is exacerbated when the number of predictor
variables is large, which is often the case in practical applications. In
contrast to random validation sampling, our DSCVR approach resulted
in almost an order of magnitude more true events in the validation
sample. This, in turn, resulted in more reliable and stable estimation,
as evident from Tables 1 and 2.

A validation sample size of NV ¼ 200 was also considered. Again,
our DSCVR designed samples tend to include far more true events than
random samples of the same size. The average number of true events
in our DSCVR designed sample with NV ¼ 200 was approximately 8,
whereas the average number of true events in a random validation sam-
ple with NV ¼ 200 is less than 1 (200 	 0:003 ¼ 0:6). Since the ran-
dom sample often included not a single true event, the logistic
regression model could not even be fit for the joint likelihood approach
(hence the “NA” in Table 1). The DSCVR approach for NV ¼ 200 re-
sulted in an average AUC of 0.815, which is not drastically below the
benchmark AUC of 0.866 using btrue. Moreover, for the 0.3% event rate,
the AUC for the DSCVR approach with NV ¼ 200 is still far better than
the AUC for the joint likelihood approach with NV ¼ 1000.

A model with only the 5 most important variables was also consid-
ered, the results of which are shown in Table 1 (m ¼ 5, NV ¼ 1000,
event rate¼ 0.3%). The DSCVR designed sample again performs the
best and has an average AUC that is the closest to the AUC of bench-
mark (0.837 vs of 0.847 for the benchmark AUC using btrue).
Moreover, the standard error for the DSCVR AUC was substantially
smaller than for the other methods, indicating that its performance
was more consistent than the naive approach and joint likelihood
approach.

3.3 Safeguarding Against Sampling Bias: DSCVR vs Oversampling
Y �51 Rows
Part of the reason behind the effectiveness of our DSCVR approach (in
addition to selecting rows having advantageous x values) is that it
tends to select far more Y ¼ 1 rows for the validation sample than
does random sampling. In light of this, as an alternative to selecting
the validation sample via DSCVR, one might consider oversampling
the rows having Y *¼ 1 and undersampling the rows having Y � ¼ 0.
We will refer to this approach as oversampling observed positives
(OOP). For example, with low event rates, one could select all of the
rows having Y *¼ 1 and then randomly sample from the rows having
Y *¼ 0 to complete the validation sample. For our SCA example

(NV ¼ 1000 and a true event rate of 0.3%), when the probability that
Y � 6¼ Y depends only on the true response Y, we found that the OOP
approach resulted in an average of 21 true events in the validation
sample. Although the DSCVR approach resulted in even more true
events (24 on average), the two approaches are quite close, and the
average AUC for the OOP approach is only slightly worse than for the
DSCVR approach (see the first row of Table 3).

However, the OOP approach should be used with caution. Unlike
our DSCVR approach, the OOP approach can introduce a bias, and it is
difficult to know whether the bias is present. To illustrate how the OOP
approach can introduce a bias, reconsider the SCA example with
m ¼ 10, NV ¼ 1000, and an event rate of 0.3%, but suppose the
probability that Y *¼ 1 depends on both x and Y via the model

P Y � ¼ 1 j Y ; xð Þ ¼
exp 31:4þ 7:68bT

truexþ 92:4Y
� �

1þ exp 31:4þ 7:68bT
truexþ 92:4Y

� � ;

where btrue are the same parameters used in the logistic regression
model for P ðY ¼ 1 j xÞ. This results in P Y � ¼ 1 j Y ; xð Þ ffi 1 when
either (i ) Y ¼ 1 or (ii ) Y ¼ 0 and P Y ¼ 1 j xð Þ is relatively large.

Using the preceding as the simulation model, the MC simulation
was repeated, and the results are shown in the second row of
Table 3. The performance of the OOP method has degraded dramati-
cally, and its AUC is an abysmal 0.186 (an AUC of 0.5 can be achieved
by pure random guessing). The reason for the degradation in OOP per-
formance is that the specific manner in which P Y � ¼ 1 j Y ; xð Þ de-
pends on both x and Y results in a substantial bias, with bb usually
estimated in the opposite direction as btrue (hence, an AUC that is even
worse than random guessing). In contrast, the DSCVR approach was
not adversely affected, and its AUC remained unchanged (0.850)
when P Y � ¼ 1 j Y ; xð Þ was allowed to depend on x. The reason is
that the DSCVR approach selects the validation sample based only on
their x values, without considering their Y � or Y . Hence, it will not
cause a sampling bias in the estimated coefficients, for the same rea-
son that traditional DOE does not cause a bias.

It should be noted that, in the preceding example in which
P Y � ¼ 1 j Y ; xð Þ depends on x, the OOP approach resulted in virtu-
ally all true Y ¼ 1 events being selected in the validation sample. This
is because P Y � ¼ 1 j Y ¼ 1; xð Þ ffi 1. In spite of this, the AUC for
the OOP approach was degraded entirely because of the bias in bb.

4 CONCLUSIONS
With the objective of fitting reliable statistical models with highly error
prone EMR data, this article presents a method that uses concepts
from DOE to judiciously and effectively select the set of validation

Table 3: Monte Carlo average AUCs (with their stan-
dard errors in parentheses) for DSCVR and OOP illus-
trating the performance degradation and bias for the
OOP approach that can result when P
Y � ¼ 1 j Y ; xð Þ depends on x. The DSCVR approach

is unaffected by this.

Case Using
btrue

DSCVR OOP

P Y � ¼ 1 j Y ; xð Þ
depends on only Y

0.866 0.850 (0.0012) 0.842 (0.0016)

P Y � ¼ 1 j Y ; xð Þ
depends on Y and x

0.866 0.850 (0.0012) 0.186 (0.0042)

Table 2: Average Root Mean Square Error (RMSE) in
estimating P ðY ¼ 1jxÞ for the 3 event rates in Table
1 with m ¼ 10 and NV ¼ 1000.

Event rate DSCVR JL Naive

0.3% 0.006 0.027 0.008

1% 0.009 0.021 0.022

3% 0.012 0.027 0.052
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cases to have maximum information content. This is in stark contrast
to existing methods based on random validation sampling.
Furthermore, our DSCVR approach selects the validation sample based
only on the x values for each row without consideration of the Y or the
Y * values, which need not be available at all when the validation sam-
ple is selected. It has been shown that our DSCVR approach has better
ROC performance than existing methods in our cardiac event case
study. Moreover, in the situations in which ROC performance was
comparable, the DSCVR approach had better RMSE in estimating the
response probabilities. It should be noted that our comparison results
were from MC simulations based on the cardiac event case study. The
predictor values were from the real data, but the response values
were simulated. As such, there is no guarantee that the conclusions
regarding ROC and RMSE performance will hold for actual future pa-
tients that are scored for cardiac risk.

In typical logistic regression applications with observational data, a
common rule-of-thumb is that the number of true events in the sample
required for the fitted model to have acceptable statistical precision
should be roughly 10–20 per parameter. For our SCA data with m ¼ 10
parameters, this translates to a requirement of 100–200 true events in
the validation sample. However, although we had on average only 24
true events in our validation samples with NV ¼ 1000, the fitted models
were still of high quality (the average AUC was 0.850, vs the hypotheti-
cal benchmark AUC of 0.866 using btrue). This underscores an inherent
strength of DOE and using experimental, vs observational, data. Using
experimental data from a well-designed experiment, the same statistical
precision can be achieved with far smaller sample sizes. Our DSCVR ap-
proach inherits this strength, because of the manner in which the valida-
tion rows are chosen judiciously, based on their x values, similar to how
experimental runs are chosen in DOE.

It is worth emphasizing that although our DSCVR approach produ-
ces a designed (as opposed to random) validation sample, it does not
introduce a sampling bias in the estimated parameters. In general,
choosing samples using methods other than random sampling may in-
troduce substantial biases. For example, with highly imbalanced data,
oversampling one response group and undersampling the other to
give a more balanced training sample will introduce bias in the esti-
mated parameters. It is straightforward to correct this bias (using
Bayes rule), if the data were balanced based on the true response val-
ues Y by randomly sampling within each class. However, as demon-
strated in Section 3.3, this is far more nuanced when the Y values are
unknown and the data are balanced based on the error-prone Y * val-
ues. In this case, depending on the relationship between Y, Y *, and x,
substantial biases can be introduced that are difficult, or impossible,
to correct. In contrast, our DSCVR approach avoids introducing a bias
because the validation rows are chosen based solely on their x values,
without consideration of their response values.

One situation in which the DSCVR approach may perform poorly is
when the wrong model is used. However, the naive biased approach
and the joint likelihood approach suffer from the same deficiency. Our
designed validation sample is optimal (heuristically) for a specific as-
sumed model. If the actual model is different (say, with fewer vari-
ables, quadratic terms, etc.) the designed validation sample may no
longer be optimal. In other words, our validation sample design may
be sensitive to the assumed model structure. Using a two-stage de-
sign procedure, a more model-robust validation sample can be
achieved. The first stage could be designed on the conservative side,
including all relevant predictors. Then, variable selection can be done
by analyzing the first-stage data and selecting the most important var-
iables, based on which the second-stage design would be subse-
quently optimized (with the understanding that it will be combined

with the first-stage data). We are currently investigating model-robust
designs to be used in the first stage.

Missing data are commonly encountered in EMRs, and our DSCVR
approach can automatically handle this, by design. In particular, when
the DSCVR approach selects which subset of rows to validate, it does
this based entirely on the x values for the rows. Hence, if some of the
predictors are missing for a row, the DSCVR approach would simply
not select that row for the validation sample. Moreover, all of the re-
sponse values are treated as missing, since the DSCVR algorithm
does not consider the Y or Y * values when selecting the validation
sample; and when fitting the model, it only uses the validated cases,
for which the outcome Y is determined by chart review.

The article has focused on the case of a binary categorical response
variable. However, in empirical health risk modeling studies, it is also
common to have a categorical response with more than two categories
(e.g., indicating one of many subcategories of a particular disease expe-
rienced by the patient), a numerical count response (e.g., how many
medical events did the patient experience), or a continuous numerical
response (e.g., the ejection fraction). The DSCVR approach can be ex-
tended to these response modeling scenarios, perhaps to a broader
class of generalized linear models,22,23 which is currently under investi-
gation. Finally, the DSCVR approach applies to the situation in which the
only significant data errors are in the response variable. However, al-
though the predictor variables are typically recorded more accurately
(e.g., as clinical measurements), there are situations in which they may
have significant errors as well (e.g., when patient records are mis-
matched). In these situations, the DSCVR approach is not applicable.
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APPENDIX A: DESCRIPTION OF THE MONTE CARLO
SIMULATION AND SCA MODEL
In order to assess the performance of the DSCVR approach, “true”
response values have been generated via simulation. First, the param-
eters of a logistic regression model were estimated treating the actual
x and Y � values from our SCA data as the predictors and response. In
the simulation, these estimates were then treated as the “true”
parameters, denoted by btrue. Then, 100 MC replicates were
conducted, and on each replicate a bootstrap sample of N rows of
x values was drawn with replacement from the original set of N
rows. For each row of the bootstrap sample, the corresponding
Y value was generated from a Bernoulli distribution with probability P
Y ¼ 1 jxð Þ ¼ exp bT

truex
� �

= 1þ exp bT
truex

� �� �
: We let the error proba-

bility depend on Y via a Bernoulli model with P Y � ¼ 1jYð Þ estimated
from our original data set with the 20 validated cases as follows. The
actual marginalized event probabilities and error rate (marginalized
across x) were roughly P ðY ¼ 1jY � ¼ 1Þ � 0:25,
and P ðY ¼ 1Þ � P ðY � ¼ 1Þ � 0:003. From Bayes rule, P ðY � ¼ 1j
Y ¼ 1Þ ¼ P Y ¼ð 1 jY � ¼ 1Þ 	 P ðY � ¼ 1Þ=P ðY ¼ 1Þ ¼ P
Y ¼ 1 jð Y � ¼ 1Þ ¼ 0:25 and P Y � ¼ 1 jY ¼ 0ð Þ ¼ P
Y ¼ 0 jY � ¼ 1ð Þ 	 P Y � ¼ 1ð Þ=P Y ¼ 0ð Þ ¼ 0:75	 0:003=0:997
¼ 0:002, which then were used as the Bernoulli probabilities
when generating a Y � value for each row of the bootstrap
sample, based on the Y value generated for that row. We note that
the values for P Y � ¼ 1jYð Þ and P Y ¼ 1jY �ð Þ were only used to
generate the simulation data sets, and they were not used in any
way by our DSCVR algorithm when selecting the validation sample or
subsequently fitting a logistic regression model to the validation
sample.
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