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ABSTRACT
....................................................................................................................................................

Objective Enormous amounts of healthcare data are becoming increasingly accessible through the large-scale adoption of electronic health
records. In this work, structured and unstructured (textual) data are combined to assign clinical diagnostic and procedural codes (specifically ICD-
9-CM) to patient stays. We investigate whether integrating these heterogeneous data types improves prediction strength compared to using the
data types in isolation.
Methods Two separate data integration approaches were evaluated. Early data integration combines features of several sources within a single
model, and late data integration learns a separate model per data source and combines these predictions with a meta-learner. This is evaluated
on data sources and clinical codes from a broad set of medical specialties.
Results When compared with the best individual prediction source, late data integration leads to improvements in predictive power (eg, overall
F-measure increased from 30.6% to 38.3% for International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic
codes), while early data integration is less consistent. The predictive strength strongly differs between medical specialties, both for ICD-9-CM diag-
nostic and procedural codes.
Discussion Structured data provides complementary information to unstructured data (and vice versa) for predicting ICD-9-CM codes. This can be
captured most effectively by the proposed late data integration approach.
Conclusions We demonstrated that models using multiple electronic health record data sources systematically outperform models using data sour-
ces in isolation in the task of predicting ICD-9-CM codes over a broad range of medical specialties.

....................................................................................................................................................
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INTRODUCTION
In health care, electronic health records (EHRs) are becoming widely ac-
cepted as the de facto standard of storing medical information.1,2 The
information contained within these EHRs not only provides direct health
information about patients, but is also used to monitor hospital activities
for medical billing and population health management. Clinical coding
can be defined as the assignment of procedural and diagnostic codes
specified in a medical classification system (eg, ICD,3 ICPC-24). ICD-9-
CM diagnostic and procedure codes5 are mainly used for reporting and
reimbursement purposes of health care providers, but are also a key
factor for other research applications such as tracking patients with sep-
sis through ICD codes.6,7 Currently, clinical codes are often attributed
and registered manually by a specialized team of medical coders.

The primary objective of this paper is to assess whether the inte-
gration of structured and unstructured EHR data can improve auto-
mated predictions of clinical codes. Additionally, we analyze the
informativeness of several data sources, both in isolation and com-
bined, for multiple medical specialties. This is demonstrated by pre-
dicting procedural and diagnostic ICD-9-CM codes from various input
sources (eg, letters, lab results, radiology reports).

BACKGROUND
Current automated clinical coding approaches for patient discharge files
and radiology reports can be divided into handcrafted,8,9 machine learn-
ing, and hybrid approaches,10,11 with handcrafted and hybrid

approaches being the most successful.12 A literature review conducted
by Stanfill et al13 concluded that, while some systems show excellent
results, most of them are used in controlled settings, often using nor-
malized data and keeping a limited scope (eg, radiology reports).
Secondly, many of the current approaches are not easily portable to
other medical domains and different languages. Extending these
approaches towards real-life EHR data and enabling these approaches
to efficiently deal with high degrees of variability in terms of content,
structure and language typical of clinical data, is an important challenge.

Perotte et al14 exploited the hierarchy present in the ICD-9-CM
classification system to predict diagnosis codes using (English) dis-
charge files. Whereas most approaches focus on a smaller set of diag-
nosis codes, Perotte et al used the MIMIC-II database,15 which
contains a large set of 5030 distinct ICD-9-CM diagnosis codes. They
achieved an F-measure of 39% in this specific setting.

Using both structured and unstructured data has already been
shown valuable for multiple applications in the medical field. Abhyankar
et al16 used structured and unstructured data from the MIMIC-II data-
base to identify a cohort of ICU patients who received dialysis. Their
method, applying off-the-shelf information retrieval methods, not only al-
lows for more effective cohort identification in comparison to using data
sources in isolation, but is also attractive enough to be used by health-
care practitioners. Our research strengthens that conclusion and shows
the value of combining structured and unstructured data for a different
application, namely the assignment of clinical codes to an inpatient stay.
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Pathak et al 17 employed a different approach by mapping structured
and unstructured data from diverse EHR systems onto standardized vo-
cabularies and ontologies to perform high-throughput phenotyping for pa-
tient cohort identification. This unified structured data view is a powerful
resource to support secondary use and exchange of EHR data in general,
and the goals set out by the SHARPn program in particular (ie, enhancing
patient safety and improving patient outcome). From a technical point of
view; however, there is a substantial dependency on standardized vocabu-
laries or ontologies, which are not always available for every language.
The availability of those resources for lesser-resourced languages such as
Dutch remains an issue and mapping the (Dutch) hospital data we used
onto standardized vocabularies or ontologies would require a substantial
research effort. Additionally, some of the used structured data sources in
our dataset (such as lab results) currently do not have a mapping onto a
code system, which causes mapping to be an error-prone and time-inten-
sive process. As a result, any additional mapping was out of the scope for
this paper. The research presented in this paper distinguishes itself from
the current state of the art on three different aspects, namely, portability,
data integration, and use of real-life EHR data. First of all, our approach is
portable towards different medical specialties. This work evaluates experi-
ments on datasets from fourteen different specialties and with a large set
of codes unique to each specialty. Portability is improved by using general-
izable techniques instead of handcrafted rules and symbolic systems.
Secondly, we not only use information found in discharge summaries, but
we also maximize the available information in a specific context by means
of data integration approaches, which yielded excellent results in other
medical tasks.16–19 Our approach can use all available data sources,
and can also work with any subset of these sources, depending on their
local availability. Finally, our approach is able to use real-life, raw EHR
data as its input which greatly increases its practical usability.

METHODS
The very nature of the data used in this study, being real-life data, pre-
sents a number of limitations and specific characteristics. First of all, the
data cannot be considered to be complete. Medication prescriptions, for
instance, are not always registered electronically and do not necessarily
lead to actual medication intake. Secondly, the data used in this re-
search originates from disparate data sources, which were created for
varying purposes (eg, diagnostics, treatment follow-up, nurse handoff,
billing, medical registration, and archiving). This required recreating
some of the relations (eg, inpatient stay relations). Finally, the data con-
tains errors (eg, spelling errors) and has missing values.

Dataset
Our dataset is derived from the clinical data warehouse at the Antwerp
University Hospital (UZA, Belgium) and consists of a randomized subset
of fully anonymized historical data with hospitalized patient stays, cover-
ing 2 years of data. Distinct sources in the dataset consist of both struc-
tured and unstructured (ie, textual) data. The extracted textual data
sources are in Dutch. The dataset is divided into 14 medical specialties,
as seen in Figure 1. Only sufficiently represented medical specialties
are included in the dataset. Assigned procedure and diagnostic codes
are observed to follow a Zipf distribution,20 meaning that a few codes
occur very frequently with a long tail of infrequently assigned codes.

The following types of data sources are used in our study (abbrevi-
ations are indicated with brackets):

Unstructured data sources:
- Surgery reports (Surgery Rpt): describing the details of a performed

surgery.

- Letters (Letter): discharge letters and letters to direct a patient to a
specialist.

- Notes (Note): day-to-day internal notes concerning a patient (eg, a
progress report written by a nurse).

- Protocols (Protocol): textual representation of the results of certain
procedures (eg, the textual interpretation of an Magnetic Resonance
Imaging (MRI) scan).

- Attestations (Attestation): a letter validating a certain claim (eg, a
medical leave of absence).

- Requests (Request): a formal letter asking for a medical appliance or
service (eg, a request to receive an electric wheelchair for care at
home).

Structured data sources:
- Lab results (Lab results): consisting of a test id, a numeric or cate-

gorical value, a unit, and sometimes a conclusion. Lab test naming
uses an in-house naming convention.

- Inpatient medication prescriptions (ATC): set of prescribed medica-
tions in the form of ATC codes (Anatomical Therapeutic Chemical
classification system).21

- Oncological pathology codes (CODAP): in the form of CODAP codes,22 a
code system describing abnormal tissue growth, analyzed after biopsy.

- Medical Specialty (DEPT): describing the associated medical specialties
for a particular stay. (eg, a patient being treated in the cardiology depart-
ment is being followed-up by a doctor from the gastroenterology depart-
ment and is therefore associated with both medical departments).

- Demographic data (DEM): year of birth and gender.
- Procedure codes (RIZIV): describing a medical procedure or interven-

tion (eg, MRI scan). These are registered automatically or manually.
The specific nomenclature used is the Belgian RIZIV standard,23

which is strongly linked with ICD-9-CM procedure codes.

The prediction space consists of: (1) ICD-9-CM procedure codes (ICD-9-
CM Proc), which describe procedures performed on a patient during his/
her hospital stay and (2) ICD-9-CM diagnosis codes (ICD-9-CM Diag),
which contain the primary and secondary diagnoses of a patient.5 These
codes have been assigned manually by a specialized team of coders,
which is a potentially error-prone process.12,24 Additionally, the Belgian
government only requires a subset of procedural ICD-9-CM codes to be
coded, namely all codes between indices 0 and 87 and a selection of
codes in the 87–99 “Miscellaneous diagnostic and therapeutic proce-
dures” range (ICD-9-CM Volume 3). This leads to 1636 unique required
codes in our dataset. The not required codes are sometimes but not
consistently assigned and were therefore left out of the training data.
For diagnostic ICD-9-CM codes, the entire set of codes was included.

Data representation
Linking specific data elements – both structured and unstructured – to
one or more procedure or diagnosis codes, requires a process of one-
to-many and many-to-one data mapping. This mapping is performed
by projecting the data elements to a single level.

An inpatient stay is reported in multiple data elements, originating
from a disparate set of databases (Figure 2A). These databases were
developed for different purposes, causing them to have different ways
of representing inpatient stays. When a patient is transferred from one
medical specialty to another during an inpatient stay, we refer to both
stays as partial stays. We use this partial stay (linked to a single medi-
cal specialty) as the single level to which we link all data elements.

In Figure 2B, an example structure of an inpatient stay can be seen.
Data elements are linked directly on different levels within the inpatient
stay. An indirect link between a more detailed level in the inpatient stay
and a data element can be made by looking at the given date linked to
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these elements. This allows flattening the data elements to a represen-
tation on the partial stay level, as seen in Figure 2C.

This approach results in a list of partial stays with a mean of 8 dis-
tinct source types and a standard deviation of 2.5 sources. This means
that while most patient files have multiple data sources linked to
them, they seldom have all sources. An overview of the presence of
these sources can be seen in Figure 3.

The classification task this paper focuses on is the assignment of
clinical codes to partial stays, which in turn represent EHR data col-
lected during routine clinical processes within a medical specialty, or
within the time interval of that partial stay. Fifty-six thousand six hun-
dred and forty-one distinct partial stays can be found in the entire
dataset. Figure 1 presents the number of partial stays per specialty.

Partial stays that do not have any codes assigned are not excluded
from the dataset, since this is the result of human error that we do not
expect to cause bias in the results.

Features
Several types of features are derived from data types, separately for
structured and unstructured input. For structured input, we have a
number of codes assigned to a patient (eg, ATC-codes, codes repre-
senting lab results). For lab results, we have a value and unit (eg,
25 mg) or a state (eg, positive, negative, strong reaction) in addition to
the code representing a certain test.

A first set of features is derived by counting the number of occur-
rences of distinct assigned codes. A second set of features is specific

Figure 1: The top graph shows the number of patient records in the available datasets per medical specialty; the bottom
graph shows the number of unique ICD-9-CM codes (procedural: left, diagnostic: right) per specialty.

Figure 2: Visualization of an example set of structured and unstructured data types. (A) The disparate databases. (B) An ex-
ample structure of a patient medical record, with full lines representing connections of data types and their level and
dashed lines to their given date. (C) The mapping on the partial stay level.
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to the source itself. For lab results, this consists of the observed abso-
lute values and deviation from the reference range (as derived from
reference guides within the hospital for specific tests). For RIZIV codes,
we use additional information found in its descriptive thesaurus22 and
make counts of specific types of codes occurring (eg, the number of
codes that involve a general action, such as “attachment of an infu-
sion”). A third set of features consists of multiple meta-features in-
cluding the average amount of assigned codes per day and the total
amount of (unique) codes per stay.

For unstructured input, we use a combined bag of words (BoW) of
all documents of a certain type (eg, notes) associated to a specific par-
tial stay. These individual BoWs are preprocessed with Frog,25 a mor-
pho-syntactic analyzer and dependency parser for Dutch. This
natural language processing (NLP) tool uses a pretrained model to per-
form sentence detection, tokenization, and part-of-speech tagging.
From this last set of features, words tagged as nouns and verbs were
used as features.

This is a relatively superficial level of NLP, but has the advantage
that easy adaptation to other languages is possible, as opposed to using
deeper text understanding techniques. Experiments with different text
representations based on a BoW (consisting of the words themselves,
the lemmas, or the nouns and verbs for each document) yielded compa-
rable results to the chosen approach (results not shown).

Experimental Setup
For each clinical code, a separate classifier is trained. Training is done
in parallel, so that a single partial stay can have multiple codes as-
signed. Ten-fold cross-validation was applied to generate robust mod-
els. For each fold, the feature selection (see below) was performed to
reduce the feature space.

In the machine learning phase, multiple general classifiers were
evaluated to account for differences in performance among certain
data types. Naive Bayes26 and Random Forests27 were used for pre-
diction and compared afterward using the WEKA software package.28

The Naive Bayes implementation is multinomial with Laplace smooth-
ing. Random Forest was capped at 100 trees generated.

Feature Selection
The exhaustive list of derived features also generates a large amount
of uninformative features. This list is reduced by applying feature se-
lection algorithms.

Feature selection for features originating from unstructured data
was performed by Term Frequency - Inverse Document Frequency
(TF-IDF).29 TF-IDF is a widely used feature selection method, chosen
for its ability to do feature selection in linear time with respect to the
number of features. Features from a structured input source were first
filtered through a weak gain ratio filter and further filtered via mini-
mum Redundancy - Maximum Relevance (mRMR).30 The mRMR algo-
rithm minimizes redundancy and maximizes relevance of the selected
features, but is only computationally feasible for smaller numbers of
features. We have compared mRMR to gain ratio and information gain
feature selectors, with mRMR selecting less features while yielding a
similar F-measure (results not shown). Within a cross-validation fold,
the feature selection thresholds were optimized by performing multiple
evaluations for different threshold choices.

Data Integration
Two methods for data integration were evaluated for this paper: early
and late data integration.31 Early data integration (cf, Figure 4A) con-
sists of integrating the features of different sources before training the
model. Model training is then performed on the entire feature space
(after feature selection).

Late data integration (Figure 4B) is an ensemble method in which
the prediction results from separate models, trained on each distinct
source, are used as input for a second (meta-) classifier or by means
of composite methods such as voting, weighing, stacking, or averag-
ing. We opted for training a meta-classifier that takes the predictions
and class probabilities of the individual models as input for classifica-
tion within the same fold. This second classifier is a Bayesian network,
structured learning is performed with hill climbing.32 This approach
proved to perform consistently better than Random Forests and Naive
Bayes (results not shown).

Metrics
To evaluate the experiments, micro-averaged F-measure is used (av-
eraged over single codes). F-measure is the harmonic mean of preci-
sion and recall and is a good indicator for the overall predictive power
of models. Our models return class probabilities, which allows for fur-
ther tuning between optimizing precision and recall. This tuning was
not carried out in this research, as the models were already optimized
for F-measure. Micro-averaged F-measure was chosen for our interest
in predicting correct codes for as many patients as possible, rather
than ensuring good coverage of the different classes.33

Figure 3: Presence (in %) of the different data types over all datasets. The main bar shows the average presence, the error
bars show the standard deviation between the different medical specialties. Abbreviations are explained in the “dataset”
section.
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Table 1 shows the micro-averaged F-measure for the best per-
forming algorithm for diagnostic ICD-9-CM codes and per combination
of input data and medical specialty. Analogously, Table 2 represents
the results for procedure codes. Complete performance results of both
algorithms can be found in Supplementary Materials.

We compare these results to a frequency baseline, representing the
achieved F-measure when classes present in >50% of the partials stays
are assigned to each partial stay in that specific specialty. Data integra-
tion is evaluated for several interesting combinations of data sources.
These combinations consist of the data types as grouped in the dataset
section, with sometimes a specific input type added or removed.

In general, we notice that the F-measure varies significantly over the
different specialties. Some sources seem to score better on specific spe-
cialties. For instance, both surgery reports and ATC-codes seem to be a
good predictor for surgical specialties. The predictiveness of late data inte-
gration is superior to that of individual sources. For ICD-9-CM procedure
codes, this is not the case, as RIZIV alone often beats late data integration.
This can be explained by both RIZIV and ICD-9-CM procedure codes de-
scribing similar actions, often causing a one-to-one mapping between
those codes. Disregarding the RIZIV data source, the performance increase
by using late data integration is also visible for procedure codes.

Bag of Words text combination
The “all texts” combination is composed of a BoW of all different types
of unstructured input associated with a stay. This can be considered an
early form of data integration, with the difference that features repre-
senting the same word in different texts are merged instead of keeping
them separated. In specialties such as pneumology, this combination
will score better than the individual unstructured types, while for others
(eg, gynecology), it will not quite reach the performance of the best text
category. Overall, a smoothing effect of the individual unstructured types
is seen, with a consistent improvement over the baseline.

Early data integration
For the early data integration approach, a slight decrease in predictiveness
is often seen, compared to the best individual source in a certain combi-
nation. A combination existing of solely structured sources sometimes has
slightly improved results, while a mixed combination with both structured

and unstructured sources often shows a performance decrease. Early
data integration is always outperformed by late data integration.

Late data integration
The results for late data integration with unstructured sources contain the
same data sources as the “all texts” combination, but are based on a
separate model for each individual source. This combination outperforms
the “all texts” combination on all specialties, showing that the information
is better captured when predictions are made individually. Adding predic-
tions made on the “all texts” combination to the unstructured combination
(ie, “unstruc þ all texts”), we see a small increase in F-measure. Late
data integration achieves superior results for other combinations as well.

The “all - RIZIV” combination encompasses all frequently seen
sources in hospitals. The combination significantly improves results
with respect only to the unstructured combination, showing that there
is important and additional information present in structured data that
is not captured by models using only unstructured data.

The “RIZIV” source, which is specific to Belgian hospitals, in-
creases performance when added to the combinations for procedural
ICD-9-CM codes. For diagnostic codes, they have a significantly
smaller impact. An explanation for this is the one-to-one mapping be-
tween most RIZIV and ICD-9-CM procedure codes. Excluding RIZIV
from the structured combination allows us to get a more objective
view for predicting procedure codes.

In Figure 5, extra sources are iteratively added to the predictive
model. In most cases, the average F-measure increases when adding
sources. Each specialty seems to have different sources triggering a
performance improvement.

DISCUSSION
The results shown above provide interesting insights into the combination
of structured and unstructured data sources for automated clinical coding.
First of all, individual data sources lead to major performance differences
for the different specialties. From a perspective of portability towards other
hospitals, countries and languages, the task of finding the most informa-
tive sources for each individual specialty would be arduous. Our proposed
late data integration approach seems to be able to achieve this task in a
scalable manner without the need to select a single best source.

Figure 4: Example of data integration for the ICD-9-CM code “430.” This figure illustrates the difference between early and
late data integration. (A) A pipeline for early data integration. (B) A pipeline for late data integration.
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The results show that integrating multiple data sources improves
the classification of patient files with ICD-9-CM codes across all medi-
cal specialties in a consistent way. This strongly indicates that not all
relevant information for assigning clinical codes is available in un-
structured data and that adding structured data significantly improves
performance. Since we use a relatively basic NLP pipeline, we hypoth-
esize that improving the NLP pipeline will capture additional informa-
tion from unstructured data that we are currently not able to use in

our models. However, the performance impact of using additional
structured information sources might be lower as a result of using im-
proved NLP techniques.

Using an ensemble method makes data integration perform more
consistently. This mostly shows that in order to get predictive informa-
tion out of different data sources, deriving similar features and per-
forming feature selection is not an effective approach. This suggests
that more tailoring is needed towards selecting (and generalizing) the

Table 1: Micro-averaged F-measure for ICD-9-CM diagnostic codes
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2450 1750 4520 8700 4280 9550 4320 1950 4240 4150 3540 2200 1990 2950 4042

Frequency baseline 6.8 6.0 3.9 25.8 29.5 22.0 6.0 16.0 11.0 9.0 26.5 14.6 10.4 9.4 14.1

Single Source
ATC 13.7 17.0 12.8 46.4 42.9 32.3 14.9 41.0 37.8 24.6 46.3 32.3 21.5 18.7 28.7

CODAP 12.9* 1.6 8.5 33.0* 5.6 24.1 14.4 24.9 14.0 13.5 25.7 22.2* 18.3 13.8* 16.6

LAB RESULT 13.6 14.5 10.3 47.2 36.2* 30.8 11.7 39.1 36.7 18.6 36.3 25.5 17.4 14.3 25.2

RIZIV 15.3 17.0 13.6 52.4 45.1 33.8 16.7 43.5 36.3 29.4 50.3 32.0 20.6 22.3 30.6

ATTESTATION 12.2* 10.0* 10.1 34.6* 47.6* 31.1* 9.9* 23.2* 18.4* 1.2* 39.7* 25.0* 16.4* 8.4* 20.6

LETTER 15.4* 25.6* 20.2* 43.8* 48.1 31.2* 19.5* 37.7* 29.6* 30.3* 43.3* 31.2* 29.2* 17.6* 30.2

NOTE 13.8 12.1 16.1* 42.0 44.5* 33.8* 14.0* 37.0* 29.9* 32.5* 36.0* 27.6* 18.8 13.1 26.5

PROTOCOL 15.1* 20.6* 11.7* 34.5* 43.5* 34.2 18.6* 26.4* 18.1* 20.4* 35.8* 25.8* 22.7* 15.6* 24.5

OTHER TEXTS 3.3* 13.1* 1.3* 33.0* 47.5 10.5* 1.5* 0.0* 15.6* 1.6* 0.6 23.4* 3.6* 3.7 11.3

REQUEST 11.0 1.9 9.4 32.2* 4.0 30.3* 10.8* 6.8 12.7 19.6* 38.6* 8.8* 16.9* 2.8 14.7

SURGERY REPORT 16.9* 16.0* 19.3* 34.6* 47.7* 28.6* 1.8* 27.8* 16.6* 29.5* 17.1* 4.3* 21.3* 16.6* 21.3

Bag of Words text combination
ALL TEXTS 24.3* 25.9* 20.8* 46.6 46.3 35.1 20.7* 41.5 31.2 29.6 39.9 29.5 25.3 26.9* 31.7

Early data integration
STRUCT – RIZIV 14.3 17.0 10.2 41.0 43.1 33.1 17.0 45.4 36.1 25.5 46.4 30.7 20.1 20.6 28.6

UNSTR 18.4 20.0 15.9 35.0 45.6 34.3 16.8 41.9 29.8 27.6 41.4 27.4 26.2 19.6 28.6

UNSTR + ALL 
TEXTS 20.8* 22.4 17.3 36.1* 46.6 35.2 19.2 41.6 35.1 29.6* 41.1 29.4 26.7* 21.8 30.2

ALL – RIZIV 20.8* 20.5 16.0 42.1 46.6 35.1 17.0 44.1 35.4 29.7* 45.7 32.5 26.7* 24.1 31.2

ALL 20.8* 22.2 17.9 44.5 46.9 36.3 19.3 43.0 35.0 29.8* 45.8 36.2 26.7* 26.0 32.2

Late data integration
STRUCT – RIZIV 16.8 19.6 14.0 53.4 46.1 36.2 19.5 44.7 43.9 27.8* 47.3 34.4 23.6 22.2 32.1

UNSTR 21.5* 26.5* 23.1* 48.0* 49.3* 37.7* 24.9* 44.6* 35.0* 34.6* 46.1* 33.7* 29.9* 25.1* 34.3

UNSTR + ALL 
TEXTS

25.2* 27.4* 23.7* 51.1 49.1 37.0 24.9* 44.9* 35.3* 35.3* 45.6* 31.6 29.6 28.9* 35.0

ALL – RIZIV 25.7* 27.7* 23.7* 59.5 49.2 38.4 25.6* 48.4 47.2 35.6* 48.7 36.8 29.5 29.8* 37.6

ALL 25.6* 27.5* 24.1* 62.0 49.7 38.5 25.3* 49.6 48.9 35.9 51.4 38.9 29.7 29.3* 38.3

Columns show different medical specialties, rows show the various input data sources and combinations. The best results for each
group (namely, single source, data integration without meta-learning, data integration with meta-learning) are marked in bold. Only
results for the best performing classifier are shown. A trailing asterisk indicates multinomial Naive Bayes, no mark indicates Random
Forests. A darker background indicates better results.
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individual features of different sources to improve early data
integration.

When interpreting these results, we need to consider the concerns
raised by Lawthers et al 34 and Romano et al 35 about the clinical va-
lidity of claims codes. Lawthers et al have shown that ICD-9-CM codes
have limited value for the identification of medical complications be-
cause of the disconnect between discharge abstracts, which are col-
lected for the sake of clinical processes, and ICD-9-CM codes, which

are registered for billing and reimbursement purposes. While the dis-
connect cannot be denied, we designed a classification task that
bears close resemblance to the actual task of clinical coders. When
assigning clinical codes, coders are legally obliged to use the patient’s
medical record as the only source of information. A clinical coding ap-
plication would use the same type of information. The implementation
of ICD-10 coding systems only increases the need for solutions for the
clinical coding task. The use of other measures with proven clinical

Table 2: Micro-averaged F-measure for ICD-9-CM procedure codes
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Sample size 2450 1750 4520 8700 4280 9550 4320 1950 4240 4150 3540 2200 1990 2950 4042

Frequency baseline 5.0 6.0 3.6 62.1 60.4 44.6 14.1 31.3 27.1 60.5 31.5 25.9 10.1 11.5 28.1

Single Source

ATC 30.0 35.0 27.3 79.8 83.0 70.5 33.7 66.5 62.4 53.5 66.3 62.4 44.9 45.1 54.3

CODAP 14.9* 6.6* 2.5 71.5 49.0* 39.6 37.8 38.7* 25.1 8.3 36.9 20.2* 7.1* 19.2* 27.0

LAB RESULT 21.2 21.4 10.1 75.1 41.3 63.5 26.7 62.4 65.6 6.9 32.9* 57.3 27.3 20.5 38.0

RIZIV 44.2 58.0 47.6 83.4 89.4 80.9 69.1 71.2 83.7 71.4 70.4 77.2 60.3 67.6 69.6

ATTESTATION 10.8* 11.9* 19.3* 72.1 72.6 50.8* 17.5* 40.1* 32.0* 12.2* 33.4* 35.2* 14.4* 17.0* 31.4

LETTER 19.5* 39.0* 31.7 70.2* 80.9* 51.6* 28.2* 67.3* 41.7* 53.4 64.7* 52.9* 42.7* 26.8* 47.9

NOTE 20.0 21.3* 25.1* 73.0 78.7* 59.4* 20.8* 54.2 49.7 52.1 35.6* 51.7* 27.8* 18.1* 42.0

PROTOCOL 22.0* 32.5* 21.0* 68.9 71.0* 70.9 50.7 40.4* 35.5 26.9 33.4 51.6 38.2* 29.0* 42.3

OTHER TEXTS 12.9 12.8 4.2* 71.4 75.6 44.7* 7.5* 0.0* 32.3* 4.0* 0.0* 32.5* 11.3 10.9* 22.9

REQUEST 8.4* 11.6 15.8* 73.2* 73.5* 31.9* 37.7* 41.6* 24.5* 20.7* 34.8* 15.3* 12.8* 11.6* 29.5

SURGERY REPORT 34.7* 51.1* 41.8* 73.1* 85.8 52.8* 20.1* 40.9* 32.5* 63.0* 33.8* 13.4* 37.0* 48.0* 44.9

Bag of Words text combination

ALL TEXTS 33.9 41.2 32.7 72.9 80.6 67.5 45.3 62.1 52.9 58.1 57.6 60.2 44.5 45.7 53.9

Early data integration

STRUCT – RIZIV 28.1* 30.1 24.3 76.2 81.3 71.2 27.7 62.5 70.2 50.4 66.1 60.6 39.2* 30.8 51.3

UNSTR 33.1* 39.4 28.8 73.4 80.6 70.8 43.4 63.8 51.0 54.2 56.0 59.0 41.5 41.6 52.6

UNSTR + ALL 
TEXTS

33.1 41.0 30.9 73.6 79.6 70.2 43.2 62.5 53.0 56.6 52.2 59.5 43.5 45.9 53.2

ALL – RIZIV 33.0* 38.6 29.1 74.2 82.2 73.7 42.8 66.0 61.9 57.0 58.9 60.2 43.7 46.8 54.9

ALL 33.5 42.4 31.7 74.8 81.8 74.9 45.2 64.7 65.3 59.6 57.6 63.5 46.3 48.2 56.4

Late data integration

STRUCT – RIZIV 35.3 38.9 28.6 79.3 83.1 71.2 45.1 68.3 73.6 54.7 65.7 65.9 46.2 49.4 57.5

UNSTR 39.1* 49.5* 43.8 72.0* 85.6* 69.8 53.5* 67.1* 48.7* 64.2 63.9* 61.6* 51.0 57.6* 59.1

UNSTR + ALL 
TEXTS

40.0 50.8 44.9 70.4* 85.1 70.3 56.4 66.5* 54.6 64.3* 62.8* 61.7* 52.4 57.2* 59.8

ALL – RIZIV 42.3 53.7 45.7 77.5 85.5 74.0 57.1 70.8 71.3 67.5 68.9 69.5 55.6 61.1 64.3

ALL 46.7 59.2 50.0 81.0 87.9 79.5 66.3 72.5 80.0 70.4 71.9 75.7 60.0 67.8 69.2

Columns show different medical specialties, rows show the various input data sources and combinations. The best results for each
group (namely, Single source, data integration without meta-learning, data integration with meta-learning) are marked in bold. Only
results for the best performing classifier are shown. A trailing asterisk indicates multinomial naive Bayes, no mark indicates Random
Forests. A darker background indicates better results.
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validity – such as outcome measures, process measures, or SNOMED
codes – is a solution to the concerns raised, but they make for a dif-
ferent task.

A limitation of our study lies in the fact that the approaches have
not been tested for portability to different hospitals, since the data
originated from a single hospital. The factors missed here include local
factors, such as hospital-specific aspects, country-specific regula-
tions, goal-specific aspects (eg, clinical or administrative), and the dif-
ference between third-line and general hospitals. While using a
relatively simple NLP-pipeline is beneficial to show portability across
languages, a NLP-pipeline with more complex modules (eg, negation
detection) has been shown to have superior performance.12 Finally,
the sole use of ICD-9-CM codes as the output space limits the porta-
bility to other coding systems.

When applying the algorithms to a computer-assisted clinical coding
environment, the most important factor is improving the throughput time
while maintaining the coding quality. When suggesting a code to a clini-
cal coder, a model should return codes with a high recall, while limiting
the amount of codes returned. When completely automating (a part of)
the clinical code assignment, precision is a more important factor, as
automatically assigned codes need to be completely correct.

CONCLUSIONS
Current state-of-the-art algorithms for prediction of ICD-9-CM codes are
typically built on discharge summaries or radiology reports and are often
tailored towards specific medical specialties. We evaluated the effect of
integrating additional information sources, both structured and unstruc-
tured, and compared early and late data integration approaches for

different machine learning algorithms (naive Bayes, Random Forests)
and across a wide range of medical specialties. We show that the late
data integration approach significantly improves the performance of
these algorithms across all investigated medical specialties. All available
data sources, independent of their (un) structured origin, can be added
to the model without loss of predictive power for each of the different
medical specialties. Evaluations have been performed on (Dutch-lan-
guage) EHR data of a single hospital, but our approach was specifically
designed to be portable to different contexts such as medical specialties,
hospitals, specific coding systems, and languages.
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Figure 5: Micro-averaged F-measure for increasing number of data sources. From left to right on the X axis, additional
data sources are added (using late data integration). (A) ICD-9-CM diagnostic codes, (B) ICD-9-CM procedural codes.
Results for specific specialties are in gray, averaged results in black.
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