
RECEIVED 8 January 2015
REVISED 14 July 2015

ACCEPTED 15 July 2015
PUBLISHED ONLINE FIRST 2 September 2015

Combining billing codes, clinical notes, and
medications from electronic health records
provides superior phenotyping performance

Wei-Qi Wei1, Pedro L Teixeira1, Huan Mo1, Robert M Cronin1,2, Jeremy L Warner1,2, Joshua C Denny1,2

ABSTRACT
....................................................................................................................................................

Objective To evaluate the phenotyping performance of three major electronic health record (EHR) components: International Classification of
Disease (ICD) diagnosis codes, primary notes, and specific medications.
Materials and Methods We conducted the evaluation using de-identified Vanderbilt EHR data. We preselected ten diseases: atrial fibrillation,
Alzheimer’s disease, breast cancer, gout, human immunodeficiency virus infection, multiple sclerosis, Parkinson’s disease, rheumatoid arthritis,
and types 1 and 2 diabetes mellitus. For each disease, patients were classified into seven categories based on the presence of evidence in diagno-
sis codes, primary notes, and specific medications. Twenty-five patients per disease category (a total number of 175 patients for each disease,
1750 patients for all ten diseases) were randomly selected for manual chart review. Review results were used to estimate the positive predictive
value (PPV), sensitivity, and F-score for each EHR component alone and in combination.
Results The PPVs of single components were inconsistent and inadequate for accurately phenotyping (0.06–0.71). Using two or more ICD codes
improved the average PPV to 0.84. We observed a more stable and higher accuracy when using at least two components (mean 6 standard devia-
tion: 0.91 6 0.08). Primary notes offered the best sensitivity (0.77). The sensitivity of ICD codes was 0.67. Again, two or more components pro-
vided a reasonably high and stable sensitivity (0.59 6 0.16). Overall, the best performance (F score: 0.70 6 0.12) was achieved by using two or
more components. Although the overall performance of using ICD codes (0.67 6 0.14) was only slightly lower than using two or more components,
its PPV (0.71 6 0.13) is substantially worse (0.91 6 0.08).
Conclusion Multiple EHR components provide a more consistent and higher performance than a single one for the selected phenotypes. We sug-
gest considering multiple EHR components for future phenotyping design in order to obtain an ideal result.

....................................................................................................................................................
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INTRODUCTION
The dramatic increase in national and international adoption of elec-
tronic health record (EHR) systems is generating enormous amounts of
computable clinical data. These data are emerging as a rich resource
for a variety of secondary research uses, such as research into health-
care processes, comparative effectiveness, and basic biology; the lat-
ter is enabled by linkage of EHR data with bioreposititories.1–3

However, since EHR data is collected primarily for clinical care, chal-
lenges exist in reusing these data for research, including inconsistent
data quality, data fragmentation, missing data, and bias toward sick
individuals.4 To counter some of these challenges, investigators have
deployed algorithms to find specific EHR phenotypes. The process of
EHR phenotyping, or accurately identifying patients with a specific ob-
servable trait from large volumes of imperfect practice-based data, is
one of the crucial challenges to efficient and effective use of EHRs for
secondary analyses.5–8 In this paper, we evaluated the phenotyping
performance of three major EHR components often used in phenotyp-
ing—billing codes, medication exposures, and text diagnoses—over
10 common diseases. The goal was to provide insight into future de-
sign for phenotyping algorithms.

BACKGROUND
The adoption of EHR systems has not only improved patient care, but
also enabled to conduct observational research on large, practice-based

longitudinal data sets.2 However, there are gaps between general prac-
tice and research settings that must be addressed.9

EHR data are collected for patient care, to support the operations
of healthcare, and to serve as a permanent legal record. Diagnosis,
clinical testing, and treatment data are generated for the purpose of
medical care and often represent an evolving understanding of the pa-
tient’s healthcare status, primary problems, and interactions with in-
surance. Inaccuracy or uncertainty remains an important nature of
EHR data due to the fact that barely any medical observation can be
accepted with absolute certainty.4,10 There are many examples of un-
certainty in clinical care, such as a patient with dementia who may not
be able to provide an accurate history or similar initial patient presen-
tations of different diagnoses; for example, Crohn’s disease vs ulcera-
tive colitis.

Another significant barrier to using EHR data for clinical research
arises from their incompleteness.9 We have previously demonstrated
that using a single center’s data for phenotyping leads to missed
cases because of patient data fragmented across multiple sites.11 We
have also shown that patients with a longer history of interaction in
the EHR have more accurate phenotyping results.12 This incomplete-
ness increases for patients who are seen at multiple healthcare cen-
ters that do not share patient data.13

Phenotyping is neither easy nor perfect. Fortunately, EHRs contain
sufficient information to accurately assign clinical phenotypes for
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many diseases.4–6,14,15 Some EMR data are stored in structured com-
ponents and can be effortlessly retrieved (e.g., diagnoses, procedures,
and clinical laboratory results), while others are embedded in unstruc-
tured components and require additional tools (e.g., natural language
processing [NLP] pipelines for extracting structured concepts from
clinical notes).9 International Classification of Diseases, 9th Revision,
Clinical Modification (ICD-9) diagnosis codes have been predominantly
used in many EHR phenotyping exercises,16–20 since most patients
with the disease should be assigned a relevant code for billing pur-
poses. However, due to their inaccuracy21 or incompleteness,11 using
billing codes alone may result in low specificity or sensitivity.22,23

Collaborative phenotyping groups, such as the Electronic Medical
Records and Genomics Network,24 demonstrated that combining bill-
ing codes with other EHR components; for example, medication and
clinical notes, improves phenotyping performance for multiple dis-
eases.25–30 Other studies applied regression models and other ma-
chine learning approaches to identify disease and drug response
phenotypes from EHR data.31 These studies typically leveraged billing
codes, medication exposures, laboratory or radiology data, and NLP
features. Many have also shown that combining multiple classes of
EHR data yields superior results as compared to using a single class
of data.

These previous results from various diseases and study groups led
to a reasonable assumption that data from multiple components of
EHR may improve the positive predictive value (PPV), and possibly
sensitivity, of phenotyping. However, to our knowledge, this hypothesis
has not been systematically tested before. In this paper, we evaluated
the phenotyping performance of three major EHR components across
a broad spectrum of pre-selected diseases. We studied three EHR
components: billing codes, clinical notes, and specific medications.
We believe this study provides a deeper understanding of how
leveraging different EHR components for phenotyping affects perfor-
mance and present a useful guideline for future phenotyping design.

METHODS
Study Setting
This study was conducted at Vanderbilt University Medical Center
(VUMC). VUMC is a comprehensive healthcare facility dedicated to pa-
tient care, research, and biomedical education. VUMC reflects the ra-
cial makeup of the surrounding community throughout Tennessee and
the Southeast, and the majority of the records within this database
(85%) are from subjects of European ancestry.32

Data Set
VUMC had previously constructed a de-identified version of its inte-
grated (combined inpatient-outpatient) EHR for epidemiological re-
search in a practice-based setting. This practice-derived resource,
called the synthetic derivative (SD), maintains a de-identified version
of the entire VUMC EHR that contains the records of over two million
unique individuals, including dense longitudinal clinical data for over
one million individuals.33 The SD incorporates clinical data from multi-
ple components, including diagnostic and procedural codes, as well
as provider inpatient and outpatient notes, laboratory data, and medi-
cation histories. The SD is scrubbed of all Health Insurance Portability
Accountability Act identifiers; for example, the name “John Smith” in
the original record is permanently replaced with a tag (e.g., [NAME
AAA, BBB]). The scrub process maintains the semantic integrity of the
text. The scrubbing process efficiency has been assessed, and our
data de-identification process has an error rate of �0.01%. The SD
contains only de-identified data, and all research using this resource
has been determined by Vanderbilt’s Institutional Review Board to

constitute non-human subjects research. This study was approved by
Vanderbilt’s Institutional Review Board.

Data Extraction
We used all EHRs in the SD, which included clinical data for 2 326 150
unique patients. ICD-9 billing codes were retrieved from administrative
claims data. We then extracted text diagnoses from “primary clinical
notes,” defined as problem lists, admission notes, progress reports,
consult notes, discharge summaries, or history and physical examina-
tions. We ignored prescriptions, instructions, and communication let-
ters. We searched primary notes for keywords to determine if a
patient’s notes mentioned the disease. Simple negations were ex-
cluded using regular expressions (e.g., no diabetes). In addition, we
ignored keywords found within family history sections by using a sim-
plified version our prior published algorithm.34

To obtain specific medications associated with diseases, we used
the medications defined by MEDication Indication (MEDI).35 MEDI is a
freely-available, computable medication-indication resource that lists
indications and the estimated prevalence for each based on evaluation
in the SD.36 For example, MEDI lists 37 indications for metformin, in-
cluding type 2 diabetes mellitus (T2DM). T2DM is listed as the primary
indication with a prevalence of 80%, which is significantly higher than
for polycystic ovary syndrome (8%) and others. For each disease, we
used the medications with a prevalence of at least 80%
(Supplementary Appendix A). We set a high prevalence threshold to
ensure selection of medications highly specific to our set of diseases.
We hypothesized that a strict threshold would enable us to infer the
presence of the disease solely from the presence of the medication.

Medication data in the SD are embedded in clinical narratives and
were obtained with the MedEx NLP system in addition to electronic
prescribing records from inpatient and outpatient order entry. MedEx
extracts medication names and other signatures (dose, route, fre-
quency) from clinical narratives.37

Study Design
Ten diseases were selected for this evaluation study: atrial fibrillation,
Alzheimer’s disease, breast cancer, gout, human immunodeficiency
virus infection (HIV), multiple sclerosis, Parkinson’s disease, rheuma-
toid arthritis (RA), type 1 diabetes mellitus (T1DM), and T2DM. Each of
these common diseases poses an enormous public health burden and
several have been the focus of EHR-based research.

For each disease, patients were classified into one of the seven
categories: 1) ICD-9 only (patients have corresponding ICD-9 s but no
positive mention of the disease in primary notes and no specific medi-
cation prescribed), 2) primary clinical notes only (patients with positive
mentions of the disease in their primary notes but no corresponding
ICD-9 s or specific medication prescribed), 3) medications only (pa-
tients with specific medications prescribed but no corresponding ICD-
9 s and no positive mention of the disease in primary notes), 4) ICD-9
and primary notes (patients have corresponding ICD-9 s and positive
mentions of the disease in primary notes but no specific medication
prescribed), 5) ICD-9 and medications (patients have corresponding
ICD-9 s and specific medications prescribed but no positive mention of
the disease in primary notes), 6) primary notes and medications (pa-
tients with positive mentions of the disease in their primary notes and
corresponding medications prescribed but no ICD-9 s), and 7) ICD-9,
primary notes, and medications (patients have corresponding ICD-9 s,
medications, and positive mentions of the disease in primary notes).

A group of 25 patients per disease category (a total number of 175
for each disease, 1750 for the 10 diseases) were randomly selected.
Each was reviewed by at least one of the five authors (P.L.T., H.M.,
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R.M.C., J.W., and W.Q.W.), each of whom has a medical background.
Reviewers went through EHR independently using their clinical knowl-
edge to determine each as a true or not true case (i.e., do or do not
have the given disease). Both negative and uncertain patients were
classified as not true. More than 20% of were reviewed by two re-
viewers and the results were used to calculate a kappa score and esti-
mate inter-rater agreement. Another board-certified internist (J.C.D.)
adjudicated all labeling conflicts.

Review results were used to calculate the PPV of each category.
We also estimated the sensitivity and F-score for each category by us-
ing stratified sampling over the categories. The sensitivity of category
c was estimated using equation (1), where C(c) is the set of categories
for which the component c is positive and represents the number of
found within the category i.

Sensitivityc ¼

X
n2CðcÞ � PPVn

X
all i
� PPVi

(1)

F-score is the harmonic mean of PPV and sensitivity, which is defined
in equation (2).

Fc ¼ 2� PPVc � Recallc
PPVc þ Recallc

(2)

RESULTS
The distributions of patients with ICD-9, primary notes, and specific
medications across the 10 diseases (Figure 1) demonstrated that no
single EHR component dominated others consistently across the differ-
ent diseases studied. Diseases such as Alzheimer’s, Parkinson’s dis-
ease, and RA are mentioned in a substantial proportion of primary
notes in records that do not contain the corresponding ICD-9 codes.
For breast cancer, gout, and both types of diabetes, either ICD-9 or
primary notes are included. For atrial fibrillation, a large number of
possible cases came from specific medications mentions in absense
of other evidence. This observation confirmed our hypothesis that

additional sources beyond diagnosis codes are worth considering
for improving both sensitivity and PPV when phenotyping from EHR
data.

A total of 1750 (175 per disease, 25 per disease category) were
randomly selected and reviewed by at least one author with a clinical
background. Over 20% of patients were reviewed by two. The kappa
scores suggested substantial agreement between reviewers: P.L.T.
and H.M., R.M.C and H.M., R.M.C. and P.L.T., and W.Q.W. and P.L.T.
were 0.68 (95% confidence interval, 0.48–0.89), 0.74 (0.56–0.92),
0.83 (0.67–0.99), and 0.90 (0.85–0.95), respectively. The majority of
the discrepancies between reviewers fell between the true and uncer-
tain cases. For example, should an obese teenager with an insulin-de-
pendent diabetes be classified as T1DM (when not clearly specified by
the treating physicians)? Or, should a patient with multiple HIV codes
but no definitive medications and labs be considered as a true case?
These differences were reviewed and resolved by a third physician
blinded to the original determinations and their raters.

Based on the manual chart review results, the PPVs using single
components without corroborating evidence from another data type
(e.g., ICD-9 without primary notes and medications) were poor: 0.06–
0.37 (Table 1). Mediocre performances (0.55–0.71) were obtained
when using single components regardless of other components; for
example, ICD-9 with or without primary notes and medications. In pa-
tients with two or more corresponding ICD-9 codes regardless of med-
ications or text mentions, the average PPV went up to 0.84 with a
standard deviation 0.12. However, we observed a more stable and
higher accuracy when using at least two components (mean 6 stan-
dard deviation: 0.91 6 0.08). Primary notes offered the best estimated
sensitivity (0.77, Table 2) of the categories. The sensitivity for ICD-9
was 0.67, which dropped to 0.50 when requiring at least 2 ICD-9
codes. Requiring two or more components provided a reasonably high
and stable sensitivity (0.59 6 0.16).

Among the three components, primary notes had the best perfor-
mance with the area under curve (AUC) score 0.73 (Figure 2). ICD-9
was similar but slightly less, with an AUC of 0.68. Medications under-
performed both with an AUC of 0.54, lower than either primary notes

Figure 1: Weighted Venn diagrams of the distributions of patients with ICD-9, primary notes, and specific medications.
Each color represents a resource. Different area colors represent the number of patients that were found within intersecting
resources.
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or ICD-9. Primary notes and ICD-9 showed the similar performance of
positive prediction values, which was significantly higher than medica-
tions (Table 4). Overall, the best phenotyping performance (F score:
0.70 6 0.12) was achieved by using two or more components
(Table 3). Although the F score of using ICD-9 (0.67 6 0.14) was only
slightly lower than using two or more components, its PPV
(0.71 6 0.13) is substantially lower than when using at least two com-
ponents (0.91 6 0.08).

DISCUSSION
The lack of automated methods to convert imperfect EHR data into
quality phenotypes has become a fundamental impediment to leverag-
ing the huge volumes of EHR data now available for clinical and geno-
mic research.4,7 Much of historical EHR research has relied largely
upon administrative codes, but much research has demonstrated the
benefit of additional information to phenotyping sensitivity and PPV.5,24

Our results validate these findings, demonstrating that the use of

Table 1: Positive prediction values of various categories based on chart review results

Disease ICD-9
Only

PN
Only

Meds
Only

ICD-9þ
Meds

ICD-9þ
PN

Medsþ
PN

ICD-9þ
both

ICD-9 Meds PN �2
ICD-9 s

�2
Components

AFIB 0.52 0.72 0.08 0.72 1.00 1.00 1.00 0.72 0.35 0.96 0.88 0.84

Alzheimer’s 0.28 0.20 0.00 0.80 0.88 0.92 0.88 0.69 0.40 0.32 0.74 0.88

Breast CA 0.12 0.72 0.04 0.88 0.96 1.00 1.00 0.45 0.81 0.84 1.00 0.97

Gout 0.56 0.84 0.00 0.92 1.00 1.00 1.00 0.81 0.69 0.91 0.93 1.00

HIV 0.52 0.00 0.00 0.92 0.84 0.88 1.00 0.81 0.69 0.20 0.89 0.95

MS 0.20 0.08 0.12 0.88 0.88 0.88 1.00 0.78 0.93 0.41 0.86 0.94

Parkinson 0.48 0.16 0.04 0.84 1.00 0.88 0.96 0.89 0.87 0.33 0.94 0.98

RA 0.36 0.20 0.00 0.64 0.76 0.88 0.84 0.68 0.73 0.27 0.77 0.78

T1DM 0.28 0.12 0.04 0.16 0.92 0.84 0.76 0.59 0.49 0.45 0.62 0.91

T2DM 0.36 0.68 0.24 0.60 0.80 1.00 0.84 0.65 0.65 0.80 0.73 0.81

Average 0.37 0.37 0.06 0.74 0.90 0.93 0.93 0.71 0.66 0.55 0.84 0.91

Standard
Deviation

0.15 0.32 0.08 0.23 0.09 0.06 0.09 0.13 0.20 0.29 0.12 0.08

PN, Primary Notes.
AFIB, atrial fibrillation; HIV, human immunodeficiency virus infection; MS, multiple sclerosis; RA, rheumatoid arthritis; T1DM, type 1 diabetes mellitus.

Table 2: Sensitivities of various categories based on chart review results

Disease ICD-9
Only

PN
Only

Meds
Only

ICD-9þ
Meds

ICD-9þ
PN

Medsþ
PN

ICD-9þ
both

ICD-9 Meds PN �2
ICD-9 s

�2
Components

AFIB 0.24 0.03 0.09 0.31 0.08 0.02 0.23 0.85 0.65 0.36 0.64 0.63

Alzheimer’s 0.05 0.47 0.00 0.04 0.11 0.15 0.18 0.38 0.38 0.91 0.24 0.49

Breast CA 0.09 0.42 0.00 0.02 0.29 0.05 0.14 0.53 0.21 0.89 0.55 0.49

Gout 0.18 0.40 0.00 0.01 0.37 0.01 0.03 0.58 0.05 0.82 0.34 0.42

HIV 0.21 0.00 0.00 0.40 0.03 0.04 0.33 0.96 0.76 0.39 0.82 0.79

MS 0.05 0.11 0.00 0.03 0.32 0.03 0.46 0.85 0.52 0.92 0.63 0.83

Parkinson 0.06 0.36 0.00 0.01 0.36 0.03 0.19 0.61 0.23 0.93 0.42 0.58

RA 0.05 0.60 0.00 0.00 0.25 0.01 0.08 0.38 0.10 0.95 0.31 0.35

T1DM 0.21 0.12 0.00 0.00 0.65 0.00 0.01 0.88 0.02 0.79 0.60 0.67

T2DM 0.10 0.21 0.06 0.10 0.12 0.12 0.29 0.61 0.56 0.74 0.42 0.63

Average 0.12 0.27 0.02 0.09 0.26 0.05 0.19 0.67 0.35 0.77 0.50 0.59

Standard deviation 0.08 0.20 0.03 0.14 0.19 0.05 0.14 0.21 0.27 0.22 0.18 0.16

PN, primary notes.
AFIB, atrial fibrillation; HIV, human immunodeficiency virus infection; MS, multiple sclerosis; RA, rheumatoid arthritis; T1DM, type 1 diabetes mellitus.
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multiple components of EHR data significantly improves PPV and
F-score. Taken as a single class of data, ICD-9 had the best PPV and
F-score, and PN mentions had the best sensitivity and slightly higher
AUC than ICD-9 codes. However, no single component of EHR data,
when further support from other data was absent, was adequate for
an accurate identification task in the ten diseases we studied (average
PPV< 0.37).

Overall, the best performing single class of data was arguably
ICD-9 codes, when taken regardless of the presence of other evi-
dence, delivering a decent performance (PPV 0.71 6 0.13, sensitivity
0.67 6 0.21, F-score 0.67 6 0.14). However, we observed poor PPVs

on breast cancer, Alzheimer’s disease, and both types of diabetes.
The identification of patients with Alzheimer’s disease38 or diabe-
tes11,12,28 is especially challenging. Further analysis indicates that a
considerable number of patients with breast cancer ICD-9 s have only
pathology requests from outside facilities but no further information in
our EHR to confirm the presence of disease. Our results confirmed
that using ICD-9 codes without other supportive evidence does not
work well since the ICD-9 codes are often miscoded or used when a
diagnosis was suspected but not actually confirmed.

As seen in prior studies, requiring two or more ICD-9 codes signifi-
cantly improved the PPV (0.71 vs 0.84, P< .02). PPV continued to im-
prove by requiring more codes but with a corresponding decrease in
sensitivity. Particularly, using two or more ICD-9 codes reduces the
false positives caused by outsourcing labs or after a diagnosis is ruled
out. Given their overall strong performance, using multiple ICD-9
codes may be an efficient phenotyping strategy when NLP tools or
other EHR components are not available. Such a strategy is typically
employed in phenome-wide association studies using EHR data to im-
prove PPV, which typically require multiple codes to qualify a case.39 It
was also notable in this study that we saw similar improvements in
PPV by requiring multiple instances of medication mentions or PN text
mentions.

The potential use of clinical notes to improve phenotyping sensitiv-
ity and granularity has been addressed by numerous studies.31,40–42

Therefore, it is not surprising that primary clinic notes provide the best
overall sensitivity. However, many challenges remain to precisely re-
trieve relevant information from EHRs. In our study, NLP-induced er-
rors were largely caused by word sense disambiguation failures (e.g.,
does “RA” represent rheumatoid arthritis, right atrium, or room air).
Although we excluded the family history sections, some illness histo-
ries of family members are found within other part of primary notes;
for example, in social history and in the history of present illness. Use
of more advanced section tagging applications,34 word sense disam-
biguation methods,43,44 and algorithms such as ConTEXT45 might im-
prove the PPV of NLP-derived phenotype mentions.

Figure 2: Receiver operating characteristic (ROC) curve
for ICD-9, primary notes, and specific medications.
ROC was performed using data of 1750 reviewed
cases across 10 diseases. AUC: Area under the curve.

Table 3: F-scores of various categories based on chart review results

Disease ICD-9
Only

PN
Only

Meds
Only

ICD-9þ
Meds

ICD-9þ
PN

Medsþ
PN

ICD-9þ
both

ICD-9 Meds PN �2
ICD-9 s

�2
Components

AFIB 0.33 0.07 0.09 0.43 0.14 0.04 0.37 0.78 0.45 0.53 0.74 0.72

Alzheimer’s 0.08 0.28 0.00 0.08 0.20 0.26 0.30 0.49 0.39 0.47 0.36 0.63

Breast CA 0.10 0.53 0.00 0.05 0.44 0.09 0.24 0.49 0.33 0.86 0.71 0.65

Gout 0.27 0.54 0.00 0.01 0.54 0.03 0.05 0.68 0.09 0.86 0.49 0.59

HIV 0.29 0.00 0.00 0.56 0.06 0.07 0.49 0.88 0.72 0.27 0.85 0.86

MS 0.08 0.09 0.01 0.05 0.47 0.06 0.63 0.81 0.67 0.56 0.73 0.89

Parkinson 0.11 0.22 0.00 0.01 0.52 0.06 0.32 0.73 0.36 0.49 0.58 0.73

RA 0.08 0.30 0.00 0.01 0.38 0.03 0.15 0.49 0.17 0.43 0.44 0.48

T1DM 0.24 0.12 0.00 0.00 0.76 0.00 0.03 0.71 0.03 0.58 0.61 0.77

T2DM 0.16 0.32 0.09 0.17 0.21 0.21 0.43 0.63 0.60 0.77 0.53 0.70

Average 0.17 0.25 0.02 0.14 0.37 0.08 0.30 0.67 0.38 0.58 0.60 0.70

Standard deviation 0.10 0.19 0.04 0.20 0.22 0.09 0.19 0.14 0.24 0.19 0.15 0.12

PN, primary note.
AFIB, atrial fibrillation; HIV, human immunodeficiency virus infection; MS, multiple sclerosis; RA, rheumatoid arthritis; T1DM, type 1 diabetes
mellitus.

RESEARCH
AND

APPLICATIONS

Wei W-Q, et al. J Am Med Inform Assoc 2016;23:e20–e27. doi:10.1093/jamia/ocv130, Research and Applications

e24



In summary, the best performance is achieved when evidence can
be found within two or more EHR components. This observation con-
firms our hypothesis that multiple components improve phenotyping
performance. Moreover, our results across various diseases suggest
that the phenotyping performance of using two or more components is
significantly more consistent than simply using ICD-9 codes, or using

multiple ICD-9 codes. This consistent higher performance reveals the
potential value of multiple components for future phenotyping design.

This study has several limitations. First, this study evaluates only
three major EHR components: diagnosis codes, medications, and pri-
mary notes. Laboratory tests, as another important part of EHR, have
not been included into this evaluation because we are not able to find

Table 4: Positive prediction values and sensitivities of requiring 1 to 10 ICD9 codes, primary notes, and medication
mentions

Positive prediction values Sensitivities

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

ICD
codes

AFIB 0.72 0.88 0.96 0.98 0.98 1.00 1.00 1.00 1.00 1.00 0.85 0.64 0.46 0.43 0.39 0.37 0.31 0.27 0.25 0.24

Alzheimer 0.69 0.74 0.78 0.77 0.76 0.74 0.74 0.71 0.69 0.67 0.38 0.24 0.24 0.24 0.20 0.18 0.15 0.11 0.09 0.08

BRCA 0.45 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.53 0.55 0.45 0.43 0.40 0.39 0.34 0.33 0.31 0.29

Gout 0.81 0.93 0.92 0.90 0.94 0.93 0.92 0.95 1.00 1.00 0.58 0.34 0.33 0.27 0.25 0.21 0.17 0.13 0.10 0.09

HIV 0.81 0.89 0.91 0.93 0.96 0.95 0.98 0.97 0.97 0.97 0.96 0.82 0.61 0.55 0.46 0.43 0.41 0.35 0.33 0.30

MS 0.78 0.86 0.89 0.92 0.91 0.93 0.95 0.97 1.00 1.00 0.85 0.63 0.50 0.48 0.43 0.42 0.38 0.33 0.31 0.30

Parkinson 0.89 0.94 0.94 0.98 0.97 0.97 0.97 0.96 0.96 0.96 0.61 0.42 0.42 0.39 0.34 0.32 0.28 0.26 0.26 0.26

RA 0.68 0.77 0.83 0.85 0.87 0.90 0.92 0.91 0.90 0.92 0.38 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31

T1DM 0.59 0.62 0.71 0.75 0.77 0.79 0.79 0.81 0.79 0.79 0.88 0.60 0.60 0.60 0.55 0.51 0.45 0.39 0.36 0.35

T2DM 0.65 0.73 0.81 0.77 0.81 0.81 0.81 0.80 0.84 0.81 0.61 0.42 0.39 0.31 0.28 0.23 0.20 0.18 0.15 0.12

Average 0.71 0.84 0.88 0.89 0.90 0.90 0.91 0.91 0.92 0.91 0.66 0.50 0.43 0.40 0.36 0.34 0.30 0.27 0.25 0.24

SD 0.13 0.12 0.09 0.09 0.09 0.09 0.09 0.10 0.11 0.12 0.21 0.18 0.12 0.12 0.11 0.11 0.10 0.10 0.10 0.10

Primary
notes

AFIB 0.96 0.98 0.97 0.97 0.96 0.96 0.96 0.96 0.98 0.98 0.36 0.36 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.35

Alzheimer 0.32 0.78 0.79 0.84 0.85 0.82 0.85 0.83 0.82 0.84 0.91 0.59 0.53 0.52 0.43 0.33 0.31 0.26 0.24 0.22

BRCA 0.84 0.92 0.93 0.93 0.93 0.94 0.95 0.95 0.94 0.94 0.89 0.72 0.65 0.59 0.57 0.52 0.50 0.47 0.42 0.42

Gout 0.91 0.98 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 0.82 0.71 0.69 0.68 0.66 0.63 0.61 0.57 0.55 0.52

HIV 0.20 0.72 0.72 0.69 0.70 0.69 0.68 0.69 0.70 0.68 0.39 0.35 0.53 0.45 0.40 0.36 0.35 0.34 0.32 0.29

MS 0.41 0.93 0.95 0.98 0.97 0.97 1.00 1.00 1.00 1.00 0.92 0.62 0.51 0.44 0.37 0.37 0.35 0.32 0.29 0.28

Parkinson 0.33 0.88 0.89 0.90 0.91 0.91 0.89 0.88 0.88 0.89 0.93 0.64 0.56 0.52 0.48 0.47 0.41 0.35 0.34 0.33

RA 0.27 0.82 0.81 0.82 0.83 0.86 0.85 0.85 0.84 0.82 0.95 0.56 0.50 0.45 0.43 0.41 0.40 0.38 0.35 0.32

T1DM 0.45 0.78 0.84 0.84 0.87 0.85 0.87 0.88 0.88 0.90 0.79 0.73 0.69 0.64 0.62 0.53 0.53 0.51 0.50 0.49

T2DM 0.80 0.89 0.90 0.88 0.86 0.84 0.80 0.83 0.83 0.82 0.74 0.31 0.26 0.19 0.17 0.15 0.11 0.09 0.09 0.08

Average 0.55 0.87 0.88 0.88 0.89 0.88 0.88 0.89 0.89 0.89 0.77 0.56 0.52 0.48 0.44 0.41 0.39 0.36 0.34 0.33

Standard
deviation

0.29 0.09 0.09 0.09 0.08 0.09 0.10 0.09 0.09 0.10 0.22 0.16 0.15 0.15 0.15 0.14 0.14 0.14 0.13 0.13

Medication
mentions

AFIB 0.35 0.73 0.72 0.73 0.75 0.72 0.73 0.78 0.79 0.82 0.65 0.51 0.46 0.44 0.39 0.33 0.30 0.29 0.29 0.26

Alzheimer 0.40 0.66 0.68 0.65 0.64 0.66 0.65 0.65 0.66 0.68 0.38 0.38 0.38 0.38 0.38 0.38 0.35 0.35 0.33 0.29

BRCA 0.81 0.74 0.74 0.78 0.80 0.87 0.86 0.88 0.86 0.88 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.18

Gout 0.69 0.75 0.76 0.77 0.80 0.84 0.86 0.85 0.83 0.88 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

HIV 0.69 0.82 0.83 0.85 0.91 0.90 0.90 0.96 0.96 0.96 0.76 0.51 0.42 0.36 0.31 0.29 0.27 0.24 0.23 0.23

MS 0.93 0.88 0.90 0.94 0.94 0.96 0.95 0.97 0.97 0.96 0.52 0.62 0.55 0.50 0.46 0.43 0.40 0.32 0.29 0.27

Parkinson 0.87 0.73 0.76 0.78 0.75 0.74 0.76 0.75 0.75 0.72 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.21

RA 0.73 0.60 0.62 0.65 0.65 0.72 0.74 0.71 0.71 0.71 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10

T1DM 0.49 0.43 0.34 0.31 0.29 0.30 0.26 0.33 0.33 0.29 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

T2DM 0.65 0.73 0.73 0.71 0.70 0.67 0.65 0.63 0.63 0.62 0.56 0.56 0.50 0.45 0.42 0.37 0.33 0.29 0.28 0.27

Average 0.66 0.71 0.71 0.72 0.72 0.74 0.74 0.75 0.75 0.75 0.35 0.32 0.29 0.27 0.26 0.24 0.23 0.21 0.20 0.19

Standard
deviation

0.19 0.12 0.15 0.17 0.18 0.18 0.20 0.19 0.19 0.20 0.26 0.23 0.20 0.18 0.16 0.14 0.13 0.12 0.11 0.10

AFIB, atrial fibrillation; BRCA, breast cancer; HIV, human immunodeficiency virus infection; MS, multiple sclerosis; RA, rheumatoid arthritis; T1DM,
type 1 diabetes mellitus; T2DM, type 2 diabetes mellitus.
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a knowledge base that identifies specific laboratory tests for diseases
that easily incorporates into our approach. Some diseases have highly
specific laboratory tests; for example, low-density lipoprotein for hy-
perlipidemia and troponin for myocardial infarction, while others do
not. The results of our study and our previous work imply that addi-
tional sources such as specific laboratory tests may be beneficial.46

Computational approaches to statistically associate laboratory data
with diagnoses, or parsing of diagnoses from expert systems such as
Quick Medical Reference47 or DXplain,48 could accelerate creation of
such a resource.

Secondly, the medication prevalence threshold (which operates as
a PPV of the medicine for the disease) we chose was so rigorous (0.8)
that some commonly prescribed medications may be neglected; for ex-
ample, allopurinol for gout (prevalence: 0.5, which may be artificially
low due to the automated method by which prevalence was calcu-
lated36). We chose this high threshold under the hypothesis that per-
haps highly specific medications would provide a sufficient PPV that
they may be able to qualify an individual as a case without other sub-
stantiating evidence. However, even for HIV infections, in which spe-
cific medication prevalence were>0.90, the PPV of the medication for
the disease in the absence of other confirming data sources was low
(0%). Thus, our data suggest that medication exposures alone are not
sufficient for inferring the presence of a diagnosis in most cases, even
with highly specific medications. The performance of medications may
improve if more sensitive medications or combinations of medications
are involved. Thirdly, this study is also limited by the selection of ICD-9
codes. We only consider the most commonly used ones; for example,
250.00 for T2DM. An inclusion of more focused codes (e.g., 250.62)
may improve our results. For example, more specific codes for types 1
and 2 diabetes (e.g., T2DM with complications) demonstrate stronger
odds ratios for known genetic associations than more general codes,
suggesting a higher PPV for the more specific codes (e.g., rs2647044
with type 1 diabetes with complications had odds ratios >2.2 while
the generic type 1 diabetes code had an odds ratio of 1.42; similar re-
sults are found for type 2 diabetes and TCF7L2 variants).39

Finally, this evaluation is conducted on 10 preselected chronic dis-
eases using EHR data at a single medical center. For a more thorough
evaluation, this study needs to be repeated at different locations on
more phenotypes. Acute diseases may also perform differently, as
sensitivity may fall quickly with requirements for multiple codes.

CONCLUSION
This study, to our knowledge, is one of the first attempt to systemati-
cally evaluate the phenotyping performance of major EHR components
used in phenotyping. Our results demonstrated that multiple EHR com-
ponents provide more consistent and higher performance than single
elements. We suggest that multiple EHR components should be con-
sidered in future phenotyping design for the best performance.

FUNDING
The project was supported by the following grants: National Library of
Medicine R01 LM010685, National Institute of General Medical
Sciences P50 GM115305 and R01 GM103859, American Heart
Association 13POST16470018, and National Human Genome
Research Institute U01 HG006378.

CONFLICT OF INTEREST
All authors have declared that no competing interest exists.

AUTHORS’ CONTRIBUTIONS
Study initialization: W-Q.W. and J.C.D.
Study design: W.-Q.W. and J.C.D.
Acquisition of data: W.-Q.W.

Analysis and interpretation of data: W.-Q.W., P.L.T., H.M., R.M.C.,
J.L.W., J.C.D.

Drafting of the manuscript: W.-Q.W., P.L.T., H.M., R.M.C., J.L.W.,
J.C.D.; all authors contributed to refinement of the manuscript and ap-
proved the final manuscript.

Grant holder: J.C.D. and W.-Q.W.

REFERENCES
1. Shea S, Hripcsak G. Accelerating the use of electronic health records in phy-

sician practices. New Engl J Med. 2010;362(3):192–195.
2. Wilke RA, Xu H, Denny JC, et al. The emerging role of electronic medical re-

cords in pharmacogenomics. Clin Pharmacol Therap. 2011;89(3):379–386.
3. Roden DM, Xu H, Denny JC, Wilke RA. Electronic medical records as a tool

in clinical pharmacology: opportunities and challenges. Clin Pharmacol
Therap. 2012;91(6):1083–1086.

4. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health re-
cords. JAMIA. 2013;20(1):117–121.

5. Kho AN, Pacheco JA, Peissig PL, et al. Electronic medical records for genetic
research: results of the eMERGE consortium. Sci Trans Med. 2011;3(79):
79re71.

6. Newton KM, Peissig PL, Kho AN, et al. Validation of electronic medical re-
cord-based phenotyping algorithms: results and lessons learned from the
eMERGE network. JAMIA. 2013;20(e1):e147–e154.

7. Robinson PN. Deep phenotyping for precision medicine. Hum Mutat.
2012;33(5):777–780.

8. Tracy RP. ‘Deep phenotyping’: characterizing populations in the era of geno-
mics and systems biology. Curr Opin Lipidol. 2008;19(2):151–157.

9. Wei WQ, Denny JC. Extracting research-quality phenotypes from
electronic health records to support precision medicine. Genome Med.
2015;7(1):41.

10. Shortliffe EH, Cimino JJ. Biomedical Informatics: Computer Applications in
Health Care and Biomedicine. 3rd ed. New York: Springer; 2006.

11. Wei WQ, Leibson CL, Ransom JE, et al. Impact of data fragmentation across
healthcare centers on the accuracy of a high-throughput clinical phenotyp-
ing algorithm for specifying subjects with type 2 diabetes mellitus. JAMIA.
2012;19(2):219–224.

12. Wei WQ, Leibson CL, Ransom JE, Kho AN, Chute CG. The absence of longi-
tudinal data limits the accuracy of high-throughput clinical phenotyping for
identifying type 2 diabetes mellitus subjects. Int J Med Inform.
2013;82(4):239–247.

13. Bourgeois FC, Olson KL, Mandl KD. Patients treated at multiple acute health
care facilities: quantifying information fragmentation. Arch Intern Med.
2010;170(22):1989–1995.

14. Shivade C, Raghavan P, Fosler-Lussier E, et al. A review of approaches to
identifying patient phenotype cohorts using electronic health records.
JAMIA. 2014;21(2):221–230.

15. Richesson RL, Horvath MM, Rusincovitch SA. Clinical research informatics
and electronic health record data. Yearbook Med Inform. 2014;9(1):
215–223.

16. Goldberg DS, Lewis JD, Halpern SD, Weiner MG, Lo Re V, 3rd. Validation of a
coding algorithm to identify patients with hepatocellular carcinoma in an ad-
ministrative database. Pharmacoepidemiol Drug Safety. 2013;22(1):103–107.

17. Goldberg D, Lewis J, Halpern S, Weiner M, Lo Re V, 3rd. Validation of
three coding algorithms to identify patients with end-stage liver disease in
an administrative database. Pharmacoepidemiol Drug Safety. 2012;21(7):
765–769.

18. Tu K, Mitiku T, Guo H, Lee DS, Tu JV. Myocardial infarction and the valida-
tion of physician billing and hospitalization data using electronic medical re-
cords. Chronic Dis Can. 2010;30(4):141–146.

19. Tu K, Mitiku T, Lee DS, Guo H, Tu JV. Validation of physician billing and hos-
pitalization data to identify patients with ischemic heart disease using data

RESEARCH
AND

APPLICATIONS

Wei W-Q, et al. J Am Med Inform Assoc 2016;23:e20–e27. doi:10.1093/jamia/ocv130, Research and Applications

e26



from the Electronic Medical Record Administrative data Linked Database
(EMRALD). Can J Cardiol. 2010;26(7):e225–e228.

20. Tu K, Wang M, Jaakkimainen RL, et al. Assessing the validity of using ad-
ministrative data to identify patients with epilepsy. Epilepsia. 2014;55(2):
335–343.

21. O’Malley KJ, Cook KF, Price MD, Wildes KR, Hurdle JF, Ashton CM.
Measuring diagnoses: ICD code accuracy. Health Services Res. 2005;40(5
Pt 2):1620–1639.

22. Kern EF, Maney M, Miller DR, et al. Failure of ICD-9-CM codes to identify pa-
tients with comorbid chronic kidney disease in diabetes. Health Services
Res. 2006;41(2):564–580.

23. Grams ME, Waikar SS, Macmahon B, Whelton S, Ballew SH, Coresh J.
Performance and limitations of administrative data in the identification of
AKI. CJASN. 2014;9(4):682–689.

24. eMERGE. The Electronic Medical Records and Genomics (eMERGE)
Network. 2014. http://www.gwas.net. Accessed 3 March 2014.

25. Cooke CR, Joo MJ, Anderson SM, et al. The validity of using ICD-9 codes
and pharmacy records to identify patients with chronic obstructive pulmo-
nary disease. BMC Health Services Res. 2011;11:37.

26. Tian TY, Zlateva I, Anderson DR. Using electronic health records data to
identify patients with chronic pain in a primary care setting. JAMIA.
2013;20(e2):e275–e280.

27. Goetz MB, Hoang T, Kan V, Rimland D, Rodriguez-Barradas M. Development
and validation of an algorithm to identify patients newly diagnosed with
HIV infection from electronic health records. AIDS Res Hum Retroviruses.
2014;30(7):626–633.

28. Kho AN, Hayes MG, Rasmussen-Torvik L, et al. Use of diverse electronic
medical record systems to identify genetic risk for type 2 diabetes within a
genome-wide association study. JAMIA. 2012;19(2):212–218.

29. Carroll RJ, Thompson WK, Eyler AE, et al. Portability of an algorithm to iden-
tify rheumatoid arthritis in electronic health records. JAMIA. 2012;19(e1):
e162–e169.

30. Wei WQ, Feng Q, Weeke P, et al. Creation and validation of an EMR-
based algorithm for identifying major adverse cardiac events while on statins.
Joint Summits on Translational Science, AMIA. San Francisco; 2014.

31. Wei WQ, Tao C, Jiang G, Chute CG. A high throughput semantic concept fre-
quency based approach for patient identification: a case study using type 2
diabetes mellitus clinical notes. AMIA . . . Annual Symposium Proceedings/
AMIA Symposium. AMIA Symposium. 2010;2010:857–861.

32. Dumitrescu L, Ritchie MD, Brown-Gentry K, et al. Assessing the accuracy of
observer-reported ancestry in a biorepository linked to electronic medical
records. Genetics Med. 2010;12(10):648–650.

33. Roden DM, Pulley JM, Basford MA, et al. Development of a large-scale de-
identified DNA biobank to enable personalized medicine. Clin Pharmacol
Therap. 2008;84(3):362–369.

34. Denny JC, Spickard A, 3rd, Johnson KB, Peterson NB, Peterson JF, Miller
RA. Evaluation of a method to identify and categorize section headers in
clinical documents. JAMIA. 2009;16(6):806–815.

35. Wei WQ, Cronin RM, Xu H, Lasko TA, Bastarache L, Denny JC. Development
of an ensemble resource linking MEDications to their Indications (MEDI).
AMIA Summits Transl Sci. 2013;2013:172.

36. Wei WQ, Mosley JD, Bastarache L, Denny JC. Validation and Enhancement
of a Computable Medication Indication Resource (MEDI) Using a Large
Practice-based Dataset. AMIA . . . Annual Symposium Proceedings/AMIA
Symposium. 2013:1448–1456.

37. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a
medication information extraction system for clinical narratives. JAMIA.
2010;17(1):19–24.

38. Pippenger M, Holloway RG, Vickrey BG. Neurologists’ use of ICD-9CM codes
for dementia. Neurology. 2001;56(9):1206–1209.

39. Denny JC, Bastarache L, Ritchie MD, et al. Systematic comparison of phe-
nome-wide association study of electronic medical record data and
genome-wide association study data. Nat Biotechnol. 2013;31(12):
1102–1110.

40. Rosenbloom ST, Denny JC, Xu H, Lorenzi N, Stead WW, Johnson KB. Data
from clinical notes: a perspective on the tension between structure and flex-
ible documentation. JAMIA. 2011;18(2):181–186.

41. Tange HJ, Schouten HC, Kester AD, Hasman A. The granularity of medical
narratives and its effect on the speed and completeness of information re-
trieval. JAMIA. 1998;5(6):571–582.

42. Wei WQ, Feng Q, Jiang L, et al. Characterization of statin dose
response in electronic medical records. Clin Pharmacol Therap. 2014;95(3):
331–338.

43. Andreopoulos B, Alexopoulou D, Schroeder M. Word Sense Disambiguation
in biomedical ontologies with term co-occurrence analysis and document
clustering. Int J Data Min Bioinform. 2008;2(3):193–215.

44. Xu H, Markatou M, Dimova R, Liu H, Friedman C. Machine learning and
word sense disambiguation in the biomedical domain: design and evalua-
tion issues. BMC Bioinformatics. 2006;7:334.

45. Chapman BE, Lee S, Kang HP, Chapman WW. Document-level classification
of CT pulmonary angiography reports based on an extension of the ConText
algorithm. J BiomedI Inform. 2011;44(5):728–737.

46. Warner JL, Alterovitz G. Phenome based analysis as a means for
discovering context dependent clinical reference ranges. AMIA . . . Annual
Symposium Proceedings/AMIA Symposium. AMIA Symposium. 2012;2012:
1441–1449.

47. Quick Medical Reference. http://www.openclinical.org/aisp_qmr.html, 2014
Accessed March 3, 2015.

48. Barnett GO, Cimino JJ, Hupp JA, Hoffer EP. DXplain. An evolving diagnostic
decision-support system. JAMA. 1987;258(1):67–74.

AUTHOR AFFILIATIONS
....................................................................................................................................................
1Department of Biomedical Informatics, Vanderbilt University, Nashville, TN,
USA

2Department of Medicine, Vanderbilt University, Nashville, TN, USA

RESEARCH
AND

APPLICATIONS
Wei W-Q, et al. J Am Med Inform Assoc 2016;23:e20–e27. doi:10.1093/jamia/ocv130, Research and Applications

e27

http://www.gwas.net
http://www.openclinical.org/aisp_qmr.html

	ocv130-TF1
	ocv130-TF2
	ocv130-TF3
	ocv130-TF4
	ocv130-TF6
	ocv130-TF7
	ocv130-TF5

