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Abstract
The aim of this review is to provide the reader with a synopsis of some of the
emerging ideas and experimental findings in cardiac physiology and
pathophysiology that were published in 2015. To provide context for the
non-specialist, a brief summary of cardiac contraction and calcium (Ca)
regulation in the heart in health and disease is provided. Thereafter, some
recently published articles are introduced that indicate the current thinking on
(1) the Ca regulatory pathways modulated by Ca/calmodulin-dependent protein
kinase II, (2) the potential influences of nitrosylation by nitric oxide or
S-nitrosated proteins, (3) newly observed effects of reactive oxygen species
(ROS) on contraction and Ca regulation following myocardial infarction and a
possible link with changes in mitochondrial Ca, and (4) the effects of some of
these signaling pathways on late Na current and pro-arrhythmic
afterdepolarizations as well as the effects of transverse tubule disturbances.
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Introduction
In the last year or so, which areas of cardiac physiology research 
have seen significant developments? In the following article, I have 
gathered a small selection of articles published last year (2015) that 
illustrate some emerging concepts, challenge existing dogma, and 
perhaps provide food for thought.

I am conscious that some people reading this article may not have 
specialist knowledge of the field, so, to help define various terms 
and provide some context for the slightly disparate collection of 
articles, I start with a short introduction to cardiac contraction in 
health and disease.

Cardiac contraction in the normal heart
In the normal heart, the coupling of electrical excitation (the action 
potential) to the production of contraction (EC coupling) involves 
the interaction of a number of cellular proteins involved in calcium 
(Ca) homeostasis1. Ca influx through mainly L-type Ca channels in 
the surface membrane promotes further release of stored Ca from 
the sarcoplasmic reticulum (SR) via the SR Ca-release channel (the 
ryanodine receptor, RyR) by a process known as Ca-induced Ca 
release2. Both fluxes of Ca combine to initiate contraction.

The SR is a network of interconnecting tubules and cisternae that 
surround the myofibrils. At multiple sites within this network, the 

tubule membranes broaden to form flattened sacs, the junctional 
SR cisternae, which lie adjacent to the surface membrane, and its 
extensions, the transverse (T)-tubules. The surface membrane and 
T-tubules that face the junctional SR membrane contain L-type 
Ca channels, and embedded in the apposing areas of the junc-
tional SR membrane and grouped in clusters are the RyRs3,4. There 
is very close spatial apposition between the Ca channels and the  
underlying clusters of RyRs and so the inner parts of the Ca  
channels and the cytosolic parts of the RyRs exist in a  
microdomain with restricted ionic diffusion. In normal ventricular 
muscle cells, the T-tubule network allows essentially simultaneous 
activation of the Ca channels located on the surface and in deeper 
regions of the cells. This promotes effective EC coupling and 
allows synchronous Ca release throughout the interior of the cell5. 
The small (about 2–5 μm diameter) local Ca releases that occur 
within the microdomains can be observed using confocal imaging 
techniques and Ca-sensitive fluorescent indicators and are termed  
“Ca sparks”6,7. The sparks represent the building blocks of EC  
coupling because the increase in cytosolic Ca in the entire cell that 
initiates contraction is produced by the temporal summation of  
the individual Ca sparks (see Figure 1).

Two main systems are involved in removing Ca from the cytosol 
and so inducing relaxation. Ca is pumped back into the SR by 
the phospholamban (PLB)-regulated Ca ATPase (SERCA) and 

Figure 1. Schematic diagram of the main proteins involved in EC coupling in a ventricular myocyte and the main mechanisms for 
their phosphorylation or nitrosylation. LTCC = L-type Ca channel, Cav1.2; Nav1.5 = cardiac isoform of the Na channel; NCX = Na/Ca 
exchange; Ryr2 = ryanodine receptor; PLB = phospholamban; AC = adenylyl cyclase; sGC = soluble guanylyl cyclase; EPAC = exchange 
protein activated by cAMP; PKA = protein kinase A; PKG = protein kinase G.
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extruded from the cell by the sarcolemmal Na/Ca exchange 
(NCX)1. Though there are species differences, SERCA and NCX 
contribute about 70% and 25%, respectively, towards relaxation8. 
In steady-state conditions, the amount of Ca leaving the cell is 
the same as the amount entering so that precise Ca homeostasis 
is achieved9. The phasic increase and decrease of Ca that gives 
rise to the elements of contraction and relaxation, respectively, is 
generally termed the “Ca transient”. Normally, NCX couples the 
efflux of Ca from the cell to sodium (Na) influx, but the direction 
of ion movement mediated by the exchange is dependent on mem-
brane potential and the extracellular and intracellular concentra-
tions of Na and Ca. The potential at which ion movement switches 
direction is called the reversal potential. A key concept in cardiac 
cell Ca regulation is that, because the reversal potential is readily 
encountered under physiological conditions and can be changed 
by small changes in intracellular Na concentration, the efflux of 
Ca from the cell during the cardiac cycle is very dependent on 
pathways that transport Na and regulate its concentration10. It is 
important to bear in mind that factors that influence intracellular 
Na concentration will ultimately affect the intracellular Ca con-
centration and consequently both active contraction and passive 
(tonic) force production11, determinants of cardiac output and ven-
tricular filling (see Figure 1).

The contractile and electrical processes in the failing heart
Heart failure (HF) is the term generally applied to a continual 
decline in contractile function caused by a variety of conditions but 
mainly following myocardial infarction. The disease is imposing 
progressively larger economic and public health burdens because 
it is becoming more widespread. The prevalence of HF in an  
unselected population >45 years of age is estimated to be 2.2% 
and in a population >65 years of age to be 8.8%12,13. An aging  
population means a greater number of people will suffer from 
the disease, but perhaps of more concern is the poor prognosis 
in this HF population. The median survival following diagnosis 
with HF is <3 years, and 5-year survival is only 32% in patients 
with systolic dysfunction and little better (35%) in patients with 
HF and preserved ejection fraction. The mode of HF-related 
death can be broadly split into two – “pump failure” and sudden 
cardiac death (SCD) – with small numbers ascribable to other 
causes14. SCD is due to rhythm disturbance and there are good rea-
sons to believe that poor cellular Ca regulation and a reduction in  
repolarizing currents associated with HF not only cause weak con-
traction but also initiate triggered arrhythmias15,16. In some circum-
stances, these events might also contribute to re-entrant forms of  
arrhythmia17,18. Arrhythmias can develop (1) as a result of changes 
in the rate of pacemaker impulses at the sino-atrial node, (2) from  
electrical variation occurring in areas of the heart not normally 
associated with impulse generation, or (3) from structural or 
electrical modifications that alter impulse propagation. The conse-
quence is that extra action potentials are produced that disturb the 
normal rhythm. Defective cellular Ca regulation can cause extra 
action potentials to form in two different ways, but both result in 
spontaneous depolarizations that reach a threshold for Na or Ca 
channel activation. Spontaneous depolarizations occurring during 

the repolarization phases of the action potentials are called early 
afterdepolarizations (EADs)19, while those occurring once the 
action potential has finished and the cell is electrically quiescent 
in the diastolic interval are termed delayed afterdepolarizations 
(DADs)16,20.

The reasons for poor contraction and relaxation observed in fail-
ing cardiac tissue21–24 are becoming better understood and involve 
changes to multiple proteins: some involved in Ca regulation25 and 
others in the generation of the ionic currents that form the action 
potential26. Ca uptake into the SR is poorer27–30, there is more Ca 
leak from the SR during the diastolic interval31,32, and there is  
ineffective release of Ca from the SR33–35 (see Figure 2).

In HF, the T-tubule network becomes disorganized and disrupted36–38, 
so some RyR clusters lose functional contact with their activating 
Ca channels. These so-called “orphaned” RyR clusters cannot be 
directly activated by surface Ca channels but can be activated later 
in the process by Ca released from neighboring clusters. This lag in 
activating RyRs causes slower and reduced Ca transients and under 
some circumstances dyssynchronous Ca release, which can alter 
action potential duration and drive Ca-dependent pro-arrhythmic 
current formation – EADs and DADs (see Figure 2).

Ca/calmodulin-dependent protein kinase II
Ca/calmodulin-dependent protein kinases (CaMKs) are intracellu-
lar proteins activated by Ca binding to calmodulin. Once activated, 
they can have a myriad of effects. A widely described effect is the 
phosphorylation of important proteins involved in EC coupling 
(Ca channels, RyRs, and PLB). These actions of CaMKII – the  
predominant isoform in the heart – support normal physiologi-
cal processes such as Ca-dependent Ca current facilitation39, RyR 
activation during the cardiac cycle that modulates fractional SR 
Ca release40, and the frequency-dependent acceleration of relaxa-
tion (termed FDAR)41 in which the SR Ca uptake rate increases 
at faster heart rates. More recently, some effects of CaMKII on 
Na and potassium (K) channels have been described that have 
complex consequences on action potential morphology and  
physiological EC coupling. However, for many years it has 
also been appreciated that CaMKII-dependent effects may be 
of pathophysiological importance. Upregulation of CaMKII  
activity and expression can occur in patients with HF42. Indeed, 
mice overexpressing the cytoplasmic delta isoform of CaMKII 
develop dilated cardiomyopathy and die prematurely. Myocytes  
isolated from the hearts of these mice are hypertrophied and display 
a failing behavior43.

It is not difficult to appreciate that action potential prolonga-
tion and enhanced Ca influx (via phosphorylation of the L-type 
Ca channel) may precipitate EAD formation and that slower Na 
channel inactivation (so enhancing Na influx and, in turn, affecting 
NCX forward and reverse operation during the cardiac cycle) and 
alterations to RyR gating may promote more frequent and larger 
spontaneous SR Ca release leading to DAD formation. Given the  
well-known changes to the beta-adrenergic pathway in chronic 
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HF and its therapeutic axis44, it is perhaps not surprising that some 
groups are examining if this pathway has connections with the 
CaMKII pathway. Already we are aware of more indirect linkages 
with the following:

(1) the cAMP/PKA pathway since, for example, Ca current facili-
tation and its response to beta-adrenoceptor stimulation were 
significantly reduced in CaMKIIδ knockout mice45

(2) the parallel Epac (exchange proteins activated by cAMP) 
pathway since, for example, specific acute Epac activation by 
8-CPT reduced Ca transients and SR Ca content while chronic 
treatment had the opposite effect46,47; both acute and chronic 
changes were CaMKII dependent and PKA independent

(3) a pathway involving NO since, for example, NO modulates SR 
Ca release in response to beta-adrenergic activation48.

In the past, the two pathways have been described and tested 
quite independently, but now evidence is emerging for complex  
interactions between beta-adrenergic stimulation and CaMKII – 
the former activating the latter (see Figure 1).

Recent advances
CaMKII
A new study by Grimm et al.49 tries to unravel beta-adrenergic 
effects from those of CaMKII by using CaMKIIδ knockout mice. 
The acute physiological beta-adrenergic responses are preserved 
in these mice and they can develop cardiac hypertrophy following 
trans-aortic constriction (TAC) (though an earlier article showed 
that they progress to HF more slowly compared with wild-type 
mice). In this study, cardiac remodeling was induced with chronic 
beta-adrenoceptor agonist treatment (isoprenaline) and, in the 
absence of CaMKIIδ, the development of cardiac fibrosis and 
the progression to HF were inhibited. There was also a reduction 
in SR Ca leak in the knockout mice that the authors ascribed to 
CaMKIIδ-mediated phosphorylation of RyR at the serine residue 
2814 because mice in which the CaMKII phosphorylation site 
was genetically inactivated had preserved contractile function and 
less cardiac dilation following chronic beta-adrenoceptor agonist 
treatment.

These observations begin to tie in with those of Curran et al.50, 
who used spontaneous Ca waves as an index of arrhythmogenicity. 
They found that beta-adrenoceptor stimulation leads to increased 

Figure 2. Schematic diagram of the main proteins involved in EC coupling in a ventricular myocyte isolated from the failing heart. 
The HF label signifies protein function has changed. T-tubule architecture alters resulting in less effective Ca-induced Ca release from the 
SR, uptake of Ca by SERCA is reduced, late Na current is increased. In addition to other changes in Na regulation this causes an increase 
in cytosolic [Na] that disturbs the function of NCX. Beta-adrenoceptors are down-regulated in heart failure and CaMKII activity is increased. 
Local decreases in protein phosphates results in hyperphosphorylation (chronic phosphorylation) of Ryr2 that destabilises the Ca release 
channel causing opening probability to increase. This results in greater diastolic Ca release from the SR (Ca leak) that, in parallel with reduced 
SERCA efficiency, lowers SR Ca content.
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production of waves that are reduced if nitric oxide synthase 
(NOS) is inhibited and also showed that NO increases CaMKII- 
dependent SR Ca leak.

Interesting work from Fischer et al.51 suggests a link between 
CaMKII and late Na current. When late Na current is increased 
using anemone toxin II (ATX-II), it leads to increased SR Ca 
leak that can be prevented by using a CaMKII inhibitor (AIP) or 
genetically removing the kinase in knockout mice. Surprisingly, the 
increased SR Ca leak does not appear to alter SR Ca load. An inhib-
itor of reverse mode NCX function (used at 0.1 μM) also reduced 
the SR Ca leak mediated by ATX-II. This suggests that CaMKII is 
activated by Ca, which has entered the cell by reverse mode NCX 
following an increase in intracellular Na concentration. CaMKII 
can then subsequently phosphorylate the Na channel (Na

v1.5
)52, 

which feeds forward, increasing Na influx and so driving more Ca 
influx (see Figure 3).

Pursuing earlier work by the Hund group, Glynn et al.53 provide 
evidence that the CaMKII-mediated activation of the late Na cur-
rent occurs via phosphorylation at Ser-571 in Na

v1.5
. They mutated 

the Ser-571 site in two separate ways producing knock in mice 

in which the serine was replaced by either glutamate (S571E), so 
mimicking the phosphorylated protein, or alanine (S571A), so pre-
venting phosphorylation. The S571E mutation increased late Na 
current but did not change the peak Na current (compared with 
current recorded from wild-type myocytes), whereas the S571A 
mutation reduced the late Na current. The results suggested that 
while Ser-571 phosphorylation can regulate late Na current, it does 
not significantly modify other channel properties (e.g. steady-state 
inactivation or recovery from inactivation). An intriguing finding 
in this work was that the S571A mutation slowed the cardiac 
remodeling that occurs following pressure overload and the 
progression towards a failing phenotype.

There is now good evidence for late Na current increasing in HF54 
and so these combinations of results provide us with signposts for 
investigating possible therapeutic interventions aimed at late Na 
current and CaMKII inhibition in an effort to combat the poten-
tially pro-arrhythmic Ca and Na dysregulation that appears in this 
pathology. Exactly which Na channels are involved in late Na 
current flow remains a mystery. Recent work from Mishra et al.55 
suggests that, apart from Na

v1.5
, there appears to be a substantial 

contribution (perhaps as much as 60%) of current flow through a 

Figure 3. An increase in late Na current mediated by flux through the cardiac (Nav1.5) or neuronal (Nav1.1) isoforms of the Na channel 
leads to an increase in sub-sarcolemmal [Na] that reduces the efflux of Ca by NCX during the cardiac cycle. CamKII can phosphorylate 
Nav1.5 which enhances the late Na current.
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neuronal isoform of the Na channel Na
v1.1

. The relationship between 
neuronal isoforms of the Na channel expressed in the heart and 
arrhythmogenesis has been explored by Radwanski et al.56. They 
generated a mouse with a calsequestrin mutation (R33Q) that can 
occur in humans with catecholaminergic polymorphic ventricu-
lar tachycardia (CPVT), a disorder characterized by abnormal 
heart rhythms induced by catecholamines. At the cellular level, the 
arrhythmias were observed as Ca waves. Nanomolar concentrations 
of tetrodotoxin (TTX) inhibit neuronal Na channels without signifi-
cantly blocking the cardiac version (Na

v1.5
). At such concentrations, 

TTX decreased the frequency of catecholamine-induced Ca waves 
and increased the number of Ca sparks, which suggested a role 
for neuronal Na channels in these disturbances of rhythm. Neither 
CaMKII inhibition with KN-93 in the presence of catecholamine nor 
the complete omission of catecholamine from the superfusate pre-
vented the neuronal Na channel-mediated aberrant Ca release. The 
authors also found evidence of co-localization of the neuronal Na 
channels with RyRs, which could be consistent with their positive 
feedback role in precipitating diastolic Ca release. It would have 
been useful if the authors also had looked for co-localization of the 
neuronal Na channels with NCX (see Figure 3).

NO involvement
While phosphorylation is understood to be an important post-
translational modification in heart cells affecting a variety of pro-
teins, nitrosylation also brings about changes in protein activity,  

localization, and stability. Hitherto, its role in regulating sig-
nal transduction pathways in the heart has not received much  
attention, perhaps because the highly reactive NO molecule was 
thought to lack specificity. However, new work has strongly 
suggested that more specific nitrosylation or S-nitrosylation  
(involving a nitroso group and a sulphur atom) of some Ca-handling 
proteins, in parallel with the phosphorylation routes, is required for 
transduction of beta-adrenoceptor signaling in cardiac cells. Whilst 
NO or S-nitrosated proteins (SNOs) lead to protein nitrosyla-
tion, denitrosylation can be achieved by S-Nitrosoglutathione  
reductase (GSNOR). In a study using PLB and GSNOR 
knockout mice and mice with cardiac-specific GSNOR 
overexpression57, Irie and colleagues showed that beta- 
adrenoceptor stimulation induces phosphorylation and S- 
nitrosylation of PLB. When S-nitrosylation of PLB is inhibited 
by GSNOR overexpression (or by NO scavenging), then beta- 
adrenoceptor stimulation does not produce PLB pentamerization 
and SERCA2a activation even though corresponding phosphoryla-
tion of PLB occurs. These important findings suggest that the two  
parallel processes of phosphorylation and nitrosylation are  
necessary for complete activation of SERCA2a during beta- 
adrenoceptor stimulation (see Figure 4).

Nitrosylation also may be important for CaMKII activation and 
inhibition, thereby conferring subtle regulation on the molecule. 
The action of NO appears to be dependent on whether calmodulin 

Figure 4. Schematic diagram depicting the activation of nitric oxide synthase 1 (NOS1) following beta-adrenoceptor stimulation. 
The NO formed can directly activate CaMKII that, in turn, phosphorylates Ryr2 or nitrosylates Ryr2 and PLB. GSNOR (S-nitrosoglutathione 
reductase) causes denitrosylation.
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has bound Ca. Evidence provided by Erickson et al.58 suggests 
that CaMKIIδ is activated following nitrosylation of the cys-290 
site on the molecule. In contrast, nitrosylation of the cys-273 site 
inhibits CaMKIIδ activity. The authors suggest that Ca binding to 
calmodulin produces conformational changes that alter the acces-
sibility of the two binding sites to NO, thereby shifting, in a 
complex way, the extent to which it can be activated.

Reactive oxygen species
Reactive oxygen species (ROS) is the collective name for reactive 
molecules and free radicals derived from molecular oxygen. Most 
ROS are generated as by-products during mitochondrial electron 
transport. Reduced nicotinamide adenine dinucleotide phosphate 
(NADPH) oxidase (Nox) proteins generate ROS used in cellu-
lar redox signaling and, in the heart, a large number of proteins 
involved in Ca regulation are modulated by such redox reactions. 
The main forms of Nox identified in cardiac myocytes are Nox2 
and Nox4. Prosser et al.59 have shown that stretching cardiac 
myocytes activates Nox2 in discrete locations in the cell to sensi-
tize RyRs to Ca and increase Ca spark activity. In normal circum-
stances, the stretch-dependent increase in sensitivity is part of the  
physiological response to stretch, but in disease states it is conceived 
as triggering arrhythmogenic Ca waves as a result of the increased 
frequency of Ca sparks. To examine the effects of increasing  
Nox2 levels on myocyte function, Zhang et al.60 used a transgenic 
mouse with specific cardiac overexpression of Nox2. They simu-
lated two hypertrophic pathologies in vivo by angiotensin II infu-
sions (doses adjusted not to change blood pressure) and, separately, 
TAC. Angiotensin II treatment and pressure overload caused by 
TAC both activated Nox2 and induced greater hypertrophy in the  
transgenic hearts but also improved in vivo cardiac function. The 

cardiac myocytes isolated from mice receiving chronic angiotensin 
II infusions had increased SR Ca uptake, increased Ca transients 
and contractile amplitudes, and improved contraction and relaxa-
tion. This and other evidence pointed to the enhanced Nox2  
activity increasing PLB phosphorylation due to ROS-mediated 
inhibition of protein phosphatase 1 (see Figure 5).

To explore the physiological and pathophysiological roles of ROS 
signaling, Limbu et al.61 built an in silico model of EC coupling 
and Ca signaling in the heart that took into account stretch-induced 
ROS signaling. The model was able to simulate the experimen-
tally observed stretch-induced ROS production and bursts of Ca 
sparks. The model suggested that ROS are produced locally near 
the RyR complexes, that there is an activation of ROS that corre-
sponds with ventricular filling, and that this leads to enhanced Ca 
release. If the stretch is prolonged or chronic, the RyR sensitization 
is not maintained and the increase in Ca spark rate is transient. If 
the redox environment of the cells is unbalanced and ROS signaling 
increases, the enhanced SR Ca leak contributes to the formation 
of a pro-arrhythmic substrate. In this work, much of the empha-
sis is placed on Nox2 as being an important element in the trans-
duction process. It contrasts with an important article published 
the previous year in which it was suggested that myocyte stretch  
activates neuronal NOS (nNOS) and CaMKII independently from 
Nox262.

Jian et al.62 found that inhibiting nNOS and CaMKII, but not 
Nox2, eliminated the stretch-induced burst of Ca sparks in cardiac 
myocytes with mechanical load controlled by a “cell-in-gel” sys-
tem. A subtle difference in method, and a potential source of the 
controversy, is that the cells were stretched in different ways. 

Figure 5. Stretching cardiac myocytes activates NOX2 in discrete locations in the cell to sensitise Ryr2 and increase Ca spark activity. 
Phospholamban (PLB) phosphorylation that enhances SR Ca uptake occurs by ROS-mediated (O2.) inhibition of protein phosphatase-1 
activity.
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The nature, amount, and direction of the mechanical load could 
be important, and this aspect awaits resolution (see Figure 5). 
However, these articles serve to illustrate the complexity of the 
signal transduction systems and highlight that mechanical stress 
influences Ca regulation and cycling. We need to understand how 
increased afterload experienced in a variety of pathological con-
ditions (for example, elevated blood pressure) leads to cardiac 
remodeling, and these types of experimental approach allow us 
to simulate the in vivo state and work on identifying the mecha-
nisms involved. The idea of doing patch clamp studies on cells  
undergoing stretch may not appeal to cell electrophysiologists, but 
unloaded myocytes clearly yield only part of a very complicated 
picture.

ROS are suggested also to be central to signaling events between 
SR Ca and mitochondria in some pathophysiological circum-
stances. Santulli et al.63 provide evidence that the mitochondria 
in cardiac myocytes gain Ca and produce more ROS following  
myocardial infarction. They propose that the increased total mito-
chondrial Ca concentration could result directly from an enhanced 
SR Ca leak through RyR in diseased myocytes. To test this idea, 
they used transgenic mice carrying a serine/aspartate mutation of 
the RyR – S2808D – that increases RyR opening probability to 
make the SR release channels leaky. They compared the effects of  
various interventions with other transgenic mice in which serine  
2808 has been replaced with alanine (S2808A), making the RyR 
non-phosphorylatable, which reduces opening probability. Car-
diac myocytes isolated from mice with enhanced SR Ca leak 
had increased mitochondrial Ca concentration and ROS produc-
tion in turn affecting the function of the mitochondria and their 
size. Cardiac myocytes from the mouse hearts with reduced leak 
did not show these mitochondrial changes. Another transgenic  
mouse model that had greatly reduced IP3 receptor expression 
did not change the cardiac mitochondrial abnormalities caused 
by myocardial infarction, suggesting the link between SR Ca leak 
and mitochondrial dysfunction is the RyR. The final connection 
was made by crossing MCat mice and the mice with the leaky SR 
mutation. MCat mice overexpress the human catalase gene in their  
mitochondria and generate fewer ROS and do not show age- 
associated reductions in mitochondrial function. Following myo-
cardial infarction, the cross-bred mice had less mitochondrial  
Ca accumulation than their RyR2-S2808D counterparts and their 
progression towards HF was markedly slowed.

This work has raised some questions64 that need to be answered 
to clarify aspects of the mechanisms involved: notably, how is 
the enhanced Ca leak from the SR translated into increased mito-
chondrial Ca concentration? However, the work emphasizes 
evermore-complex interplay of Ca signaling in the heart and the 
role of Ca stores in those signaling processes. A good review 
article explaining how mitochondrial calcium influences cardiac 
metabolism65 was published in 2015 together with an excellent 
series of articles on Ca and mitochondria in a special issue of the 
Journal of  Molecular and Cellular Cardiology.

To understand these pathways fully requires much interdiscipli-
nary collaboration and more initiatives like the National Institutes 
of Health’s National Heart, Lung, and Blood Institute topic of 
integrative mitochondrial biology in cardiovascular diseases. The 

concluding comments of this group of workers have been 
published66 and illustrates the information that can be gained by 
harnessing the talents of individuals across a number of 
disciplines.

T-tubule disturbances
As mentioned above, in HF the T-tubule network becomes disor-
ganized and disrupted so RyR clusters can lose functional contact 
with their activating Ca channels. It is not known if the T-tubule 
disruption causes a reduction in the number of Ca channels, but, 
if so, this could worsen the disturbed EC coupling. Bryant et al.67 
examined the changes to Ca current following coronary artery  
ligation (to induce a HF phenotype) and differentiated the relative 
densities of Ca current in the T-tubule and surface membranes using 
osmotic detubulation. They found that whilst there was no change 
in total Ca current density between cells isolated from hearts  
of sham-operated animals and those with coronary artery ligation, 
the cells from ligated hearts showed a redistribution of their Ca 
channels. In these cells, there were more Ca channels in the surface 
membrane and fewer in the T-tubules compared with the cells from 
sham-operated hearts and these changes correlated with increased 
spatiotemporal inhomogeneity of local Ca release. The work shows 
another route for disruption of Ca release from the SR in HF.

The effects of T-tubule disruption have been mathematically mod-
eled by the Weiss group68. The group’s results suggest that the 
underlying mechanism of alternans (a form of cardiac arrhythmia 
where the amplitude of the Ca transient alternates out of phase in 
different regions of the same cell) changes during the evolution of 
HF. In the early stages of the disease, T-tubule disruption plays an 
important role producing orphaned RyR clusters that, with a steeper 
SR Ca release-load relationship, lead to cluster-mediated release. 
These isolated clusters spontaneously release Ca that helps create  
the alternans. In the later stages of HF when SERCA protein is 
decreased, cytosolic Ca concentration is increased and this appears 
to be the more important factor in the genesis of alternans. In sup-
port of the findings of Bryant et al., the in silico modeling provided 
the opportunity to vary the Ca channel and RyR coupling efficiency 
by changing the amount of T-tubule disruption. The amount of  
disruption – and therefore the spatial distribution of the Ca channels –  
was fundamental to determining the development of alternans.

The very readable review by Wagner et al.69 discusses the devel-
opment of alternans and afterdepolarizations and emphasizes the 
very close relationship between the control of intracellular levels of 
Na and Ca ions and the electrical and mechanical properties of the 
heart. The authors stress that many cell-based arrhythmias result 
from a breakdown of this close relationship.

Pro-arrhythmic EADs and DADs are often considered in isolation 
since they have different mechanisms underlying their genesis. 
A new article from Song et al.70 shows some in silico predictions 
and complementary in vitro experiments of interactions between 
these two forms of afterdepolarization. The conclusions are that 
there is close interplay between them. The occurrence of EADs 
enhances Ca loading because of more L-type Ca channel open-
ings during the cardiac cycle. The cellular Ca loading promotes 
DADs. There are also complex feedback mechanisms whereby 
DADs can suppress EAD occurrences by shortening Ca current 
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inactivation time and there are circumstances when spontaneous 
Ca release causes EADs through depolarization by NCX that 
allows reactivation of L-type Ca current. Some of these in silico 
observations remain to be tested in vitro, but nevertheless they 
illustrate the ever-increasing potential interplay between these 
cellular arrhythmogenic mechanisms.

Conclusion
In order to keep the article short, I have not included articles 
from the burgeoning field of work using induced pluripotent stem 
cell-derived cardiac myocytes. Although this work should prove 
immensely valuable in investigations of genetic cardiac disease 
and for pharmacological screening, there are still some hurdles to 
overcome in projecting the results obtained using such cells with 
limited maturity to adult cardiac myocytes. Nor have I included a 
summary of the information delivered in the past year on sarcom-
eric cardiomyopathies. Central to these are mutations in sarcomeric 
proteins and although these are important signaling loci in cardiac 
myocytes and contribute to sarcomeric structure and the regulation 
of contraction and relaxation, the inclusion of such work would 
not allow me to concentrate on the more physiological aspects of  
cardiac contraction.

More detailed examination of, for example, the interactions 
between the cardiac arrhythmogenic mechanisms or the interplay  
of various phosphorylation pathways illustrates that nature is 
extremely complex. The reductionist approach increases our 
understanding of the mechanism under examination but often 
causes us to lose sight of how that specific mechanism influences 
upstream, downstream, or parallel processes. The above small 
sample of 2015 articles demonstrates the need to maintain also a 
holistic view because, without some balance, we will struggle to 
understand nature’s complexities. These days, we use the term 
“networking” usually in the context of developing social or profes-
sional interactions. To get to grips with nature’s cardiac complexi-
ties, we will need to develop working arrangements of networks 
that are responsible for the function of the heart and realize that 
these networks are not independent.
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