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Abstract
Type 2 diabetes (T2D) is a disease of pandemic proportions, one defined by a
complex aetiological mix of genetic, epigenetic, environmental, and lifestyle risk
factors. Whilst the last decade of T2D genetic research has identified more
than 100 loci showing strong statistical association with disease susceptibility,
our inability to capitalise upon these signals reflects, in part, a lack of
appropriate human cell models for study. This review discusses the impact of
two complementary, state-of-the-art technologies on T2D genetic research: the
generation of stem cell-derived, endocrine pancreas-lineage cells and the
editing of their genomes. Such models facilitate investigation of
diabetes-associated genomic perturbations in a physiologically representative
cell context and allow the role of both developmental and adult islet dysfunction
in T2D pathogenesis to be investigated. Accordingly, we interrogate the role
that patient-derived induced pluripotent stem cell models are playing in
understanding cellular dysfunction in monogenic diabetes, and how
site-specific nucleases such as the clustered regularly interspaced short
palindromic repeats (CRISPR)-Cas9 system are helping to confirm genes
crucial to human endocrine pancreas development. We also highlight the novel
biology gleaned in the absence of patient lines, including an ability to model the
whole phenotypic spectrum of diabetes phenotypes occurring both  andin utero
in adult cells, interrogating the non-coding ‘islet regulome’ for disease-causing
perturbations, and understanding the role of other islet cell types in aberrant
glycaemia. This article aims to reinforce the importance of investigating T2D
signals in cell models reflecting appropriate species, genomic context,
developmental time point, and tissue type.
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Introduction
Main question or problem
Type 2 diabetes (T2D) is a global health burden. Given that more 
than 415 million individuals are currently affected and that the inci-
dence is predicted to rise faster than the adult population growth 
rate1, it could be argued that our current preventative and therapeu-
tic strategies against this disorder are inadequate.

Understanding T2D pathophysiology is inherently difficult because 
of its complex aetiology; an individual’s disease risk is based on 
a combination of genetic, epigenetic, environmental, and lifestyle 
risk factors2,3. However, the last decade or so has seen a transfor-
mation in our understanding of the genetic basis of this disease; 
through large-scale international collaborations and DNA sam-
ples from hundreds of thousands of individuals, common and rare 
variant association studies have identified more than 100 genomic 
loci influencing T2D susceptibility4,5. Also, for T2D, and unlike 
many other complex genetic disorders, we have a good handle 
on the tissue driving pathogenesis; despite perturbations to both 
insulin secretion and sensitivity, multiple studies place pancreatic 
islet dysfunction at centre stage in terms of disease susceptibility 
and progression6–8.

Despite this wealth of information, our ability to go from genetic 
signal to mechanism (and even therapeutic target) has progressed at 
a pace far slower than that of the initial discoveries of these disease 
susceptibility loci. Why?

Specifics about the questions or problem
Multiple factors underlie the difficulties in biological interpreta-
tion of genome-wide association study data. Firstly, we need to 
know which transcript(s) are driving the phenotypic signal. This 
has formed a huge stumbling block for researchers as (i) extensive 
regions of linkage-disequilibrium mean that most associated loci 
harbour many genes and transcripts, (ii) many signals lie within 
poorly annotated, non-coding regions of the genome (although 
efforts to map the ‘islet regulome’ are beginning to bear fruit9–12), 
and (iii) the modest effect sizes of disease-associated variants make 
functional interrogation of risk versus non-risk alleles problematic 
(odds ratios are usually between 1.1 and 1.44,5).

Secondly, far and away one of the biggest challenges has been the 
lack of appropriate human islet cell models for study. Until very 
recently, this was limited to animal models and rodent insulinoma 
cell lines, which present numerous challenges; there are multiple 
instances in which human diabetic phenotypes are not recapitulated 
in the analogous murine model of gene haploinsufficiency13–24, and 
differences in islet architecture, ion channel composition, nutri-
ent sensitivity, and other physiological parameters25–31 limit the 
functional inferences that can be made from rodent-derived data. 
Human islet isolation programmes and the subsequent availability 
of this tissue for research purposes have gone some way to allevi-
ate this bottleneck, as has the recent generation of human beta-cell 
lines from pancreas explants32,33, although these latter cells are only 
just beginning to be characterised34.

Thirdly, despite increasing access to human islets and cell lines, many 
technical constraints remain: (i) human islets are heterogeneous 

in terms of donor genotype and function/viability after surgi-
cal extraction, (ii) the restriction of islet isolation programmes 
to adult donors limits study to mature cells, (iii) human beta-cell 
lines represent only a single islet cell type, and (iv) low recombina-
tion rates and an inability to expand single clones make genomic 
manipulation via site-specific nucleases challenging.

What is to come in the rest of the review
This article will focus on one of the most exciting emerging 
fields in diabetes research at present: human endocrine pancreas 
derivation in a dish. The utilisation of state-of-the-art in vitro 
differentiation techniques to turn human pluripotent stem cells into 
those of the islet lineage35–41 allows researchers to sequentially gen-
erate definitive endoderm cells (expressing SOX17 and FOXA2) 
through to pancreatic progenitors (PDX1- and NKX6.1-positive), all 
the way to cells expressing insulin, glucagon, and islet transcription 
factors regulating mature cell function (MAFA).

This model system has broad application in many areas of islet 
biology and diabetes research. Firstly, it can be used as a platform 
for drug discovery efforts aimed at increasing functional beta-cell 
mass, and importantly, one which is without many of the ethical, 
legal, and practical considerations surrounding the routine use of 
human tissue (both foetal and adult). Induced pluripotent stem cells 
(iPSCs) specifically bypass the need for embryonic tissue as they 
can be generated by reprogramming any somatic cell42,43. Secondly, 
the ability to further mature these cells in vivo, and to phenotypi-
cally correct diabetes in immunocompromised mice38–40,44–49, also 
shows the translational potential of such cells, with analogous clini-
cal trials beginning to take place in humans50. Both of these areas 
have been reviewed extensively elsewhere51–56. Instead, the rest of 
this article will focus on the potential of stem cell-derived islet- 
lineage cells in disease modelling, in particular how they can be 
manipulated with genome editing tools such as CRISPR-Cas957,58, 
so as to accurately recapitulate the genomic, developmental, and 
mature cell perturbations underlying T2D pathogenesis59 (Figure 1).

Diabetes modelling using patient-derived cells
Recent methodological advances in endocrine pancreas differ-
entiation have promoted formation of mono-hormonal cells with 
function similar to (but not quite yet the same as) that of human 
islets38–41. However, variation in line-to-line differentiation efficien-
cies60–62 coupled with an inability to make fully mature cells63 has 
so far limited disease modelling to monogenic diabetes caused by 
highly penetrant, large-effect mutations.

One of the first proof-of-principle studies64 generated iPSC lines 
from individuals with maturity-onset diabetes of the young 
(MODY) by using a polycistronic lentiviral vector overexpressing  
the so-called ‘Yamanaka factors’ (POU5F1 [OCT4], KLF4, 
SOX2, and MYC), these needed for somatic cell reprogramming 
to pluripotency42. This included lines from patients with muta-
tions in endocrine pancreas developmental transcription factors 
(HNF1B, HNF4A, and HNF1A), as well as those with perturbed 
enzymes governing glucose-stimulated insulin secretion (GSIS) 
in mature cells (GCK), and even exocrine pancreas function 
(CEL). Regardless of mutated gene, all lines were shown to fulfil 
basic iPSC quality control: expression of pluripotency genes via  
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fluorescence-activated cell sorting (OCT4, SOX2, NANOG,  
SSEA-4, and TRA-1-60), spontaneous teratoma formation upon 
transplant into immunocompromised mice (cells capable of gen-
erating all three germ layers), and a diploid ‘stable’ karyotype64. 
Another study aimed at generating iPSCs from patients with  
HNF1A-MODY65 again produced cells passing basic pluripotency 
QC, and which were able to differentiate from embryoid bodies, 
into those expressing insulin and glucagon. Of note here is that 
these hormones were not present at levels comparable to those seen 
in other studies39,40, perhaps reflecting the quite different in vitro  
differentiation strategies employed. Likewise, the inability of 
these cells to form teratomas spontaneously in vivo suggests that  
reprogramming to full pluripotency may not have been achieved.

Other diabetes iPSC models have focussed on characterising 
cellular dysfunction apparent within mature islets, making endo-
crine pancreas differentiation essential for phenotyping patient-
derived cells. Individuals with heterozygous GCK mutations 
have a mild phenotype whereby fasting plasma glucose levels are 
marginally elevated (6 to 8 mmol/L) because of a higher threshold 
for GSIS, which is governed by altered beta-cell glucose uptake 
and glycolytic flux66,67. Directed differentiation of iPSCs from 
patients with GCK-MODY down the islet lineage occurred with 
an efficiency comparable to that of control cells, with the only  
observable defects mirroring patient phenotype (elevated GSIS 

set-point), thus validating this as a physiologically representative 
model for studying monogenic GCK mutations68.

iPSC models have also been generated for syndromic diabetes 
disorders, such as Wolfram syndrome. This disorder is caused by 
mutations in WFS169, with patients suffering from multi-organ dys-
function, including diabetes, optic atrophy, and neurodevelopmental 
defects70. Such a broad phenotype reflects the multi-tissue expres-
sion of WFS1, with the encoded Wolframin protein performing vital 
roles in endoplasmic reticulum (ER) Ca2+ homeostasis71–73 as well 
as alleviating ER stress in cells with high translational load74, such 
as those with secretory function75. This is thought to explain the 
childhood-onset diabetes in these individuals, with post-mortem 
study of Wolfram syndrome pancreases suggesting selective beta-
cell loss via apoptosis76. Directed differentiation of iPSCs from 
patients with Wolfram syndrome down the islet lineage showed 
that these cells had elevated levels of chemically induced ER 
stress, which resulted in translational stasis and decreased insulin 
processing and content. Likewise, in vivo maturation of patient cells 
showed that grafts declined in function much more rapidly than 
control cells, perhaps reflecting enhanced apoptosis77.

The need for phenotypic correction of patient stem cells
Importantly, the cellular dysfunction observed in both diabetes  
iPSC-derived models was corrected via genetic (zinc finger 

Figure 1. Expression time points for genes important to endocrine pancreas development and diabetes pathology. Circles 
represent discrete developmental stages, with derivation efficiency estimates also shown59. Genes discussed in this article are listed 
according to the developmental stage at which they are first expressed and any subsequent stages where they perform important 
biological functions or are crucial for cell identity (#except WFS1 which is expressed at all stages; however, the diabetes observed 
in patients with Wolfram syndrome is believed to result from selective beta-cell loss via apoptosis76). CEL is expressed in acinar cells, 
which differentiate from multipotent pancreatic progenitor cells and subsequently exocrine progenitor cells (not depicted in the 
figure). hESC, human embryonic stem cell; hiPSC, human induced pluripotent stem cell.
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nuclease68) or chemical (4-phenylbutyric acid77) means. This 
phenotypic correction is fundamental in assigning causal-
ity to the studied mutation of interest, particularly as large-scale 
sequencing studies are continuing to identify previously reported  
‘disease-causing’ mutations in unaffected individuals within the 
general population, leading to continued revision and reduction of  
penetrance estimates78. Likewise, comparing patient lines to iso-
genic controls removes any differentiation efficiency or phenotypic 
effects driven by factors extrinsic to the particular mutation of  
interest, including reprogramming efficiency and epigenetic or 
sequence variation (or both) in the donor genome60–62.

A methodological advance which has revolutionised the ease at 
which we can generate isogenic control lines is the expansion of site-
directed nuclease, so-called ‘genome editing’ technologies, from 
zinc finger nucleases79,80 to TALENs (transcription activator-like 
effector nucleases)81–85 and more recently to CRISPR-Cas957,58,86–100.  
The most popular of these editing methods, CRISPR-Cas9, exploits 
a bacterial innate immune system response to pathogens, whereby 
the Cas9 endonuclease is targeted to invading phage DNA by a 
sequence-specific guide RNA molecule101. In recent years, manipu-
lation of this system so that it can target eukaryotic (specifically 
mammalian) genomes has allowed its full translational potential to 
be realised57,58,102. The ability to target more or less any sequence 
in the human genome for gene knockout via non-homologous  
end-joining103, nucleotide-level manipulation via homology-
directed repair104,105, or larger recombination events to generate 
reporter lines90,106 or even bring into close proximity mediators of 
gene expression (such as activators or repressors tethered to modi-
fied Cas9 protein)86–88,92,93,107 means that every type of genetic per-
turbation is theoretically possible. Use of this technology has also 
extended into simultaneous targeting of multiple genes57,87,88,98–100  
as well as inducible89 and epigenome-modifying91,108 systems.

Accordingly, CRISPR-Cas9 and other site-specific nucleases are 
a very attractive tool for the generation or correction (or both) of 
diabetes-relevant mutations in human stem cell-derived mod-
els, stem cells being particularly amenable to this technology 
because of their clonal nature and highly recombinogenic genome. 
Both gene knockout via Cas9-induced indels109 and doxycycline- 
inducible gain-of-function transgenes (targeted to the AAVS1 safe 
harbour locus using TALENs110) have been used to definitively 
establish the role of NEUROG3 in human pancreas development. 
Whilst Neurog3 is essential for murine pancreas development and 
derivation of all islet cell types111–113, individuals with homozygous 
NEUROG3 mutations retain some islet function114–116. Complete 
gene knockout showed that NEUROG3−/− cells could not mature 
past pancreatic progenitors into endocrine pancreas; however, with 
graded perturbation to gene dosage via small hairpin RNA (shRNA), 
as little as 10% residual NEUROG3 activity still led to some islet 
hormone-positive cells109. These data are directionally consist-
ent with analogous experiments whereby inducible NEUROG3 
overexpression in human embryonic stem cell (hESC)-derived 
pancreatic progenitors leads to increased numbers of endocrine 
pancreas-like cells expressing INS, NKX2.2, NEUROD1, and 
other relevant islet transcription factors110. Drastically reduced  
NEUROG3 levels are therefore sufficient for the development of 
human islets, an effect not recapitulated in mice.

Although many reports have begun to emerge of mutation introduc-
tion or correction via homology-directed repair in both control and 
patient-derived cell lines, these remain as yet unpublished, perhaps 
reflecting the low efficiency of this technique and repeated cleav-
age of repaired sites117, alongside the additional scrutiny of these 
experimental techniques in terms of off-target effects118,119.

Interrogating diabetes pathology in the absence of 
patient-derived lines
Patient-derived iPSCs facilitate study of the precise mutational 
mechanisms underlying an individual’s diabetes risk and pro-
gression; however, their use so far has been limited to monogenic 
disease. Although we may not yet have phenotypic resolution to 
assay dysfunction underlying more complex disease, the ability to  
generate cellular models of islet development opens up a whole  
new avenue of investigation for T2D pathogenesis59.

T2D pathology may result from dysfunction in both foetal 
and adult islets
We know from studying monogenic diabetes and pancreatic 
agenesis that there is substantial overlap between the genes caus-
ing these phenotypically severe Mendelian disorders and those 
harbouring more common and incompletely penetrant variants 
predisposing to T2D risk4,120. It follows that within these cellular  
pathways, the extent of perturbation dictates when diabetes 
presents: either in utero/early life if severe or much later as T2D 
if more subtle.

At the extreme end of this scale is pancreas hypoplasia or even lack 
of a pancreas completely (agenesis). Haploinsufficiency for GATA6 
is the most common cause of pancreatic agenesis in humans14. 
Individuals with this haploinsufficiency may also experience car-
diac or gastrointestinal abnormalities, reflecting the role of GATA6 
in organogenesis for multiple tissues. As phenotypic presentation 
of GATA6 mutation carriers varies (some individuals experience 
dysfunction in only a subset of these tissues), a potential redun-
dant role for the related transcription factor GATA4 has been pro-
posed in humans. This hypothesis is well established in mouse 
development121,122 but continues to be the subject of debate in 
humans, despite the identification of individuals with neonatal dia-
betes (one with pancreatic agenesis) resulting from heterozygous 
GATA4 mutations20.

Biallelic inactivation of RFX6, a key transcription factor in gut- 
and pancreatic-endoderm specification, causes both neonatal123–125 
and childhood-onset diabetes126, with phenotype severity correlat-
ing with loss of RFX6 gene dosage, and subsequently islet cell 
development/hypoplasia126. An elegant CRISPR-Cas9 hESC 
knockout study showed that loss of RFX6 alters or delays pancre-
atic progenitor formation through perturbed PDX1 induction110, 
thus implicating RFX6 in the regulation of both foetal and adult 
islet cell function (in which it helps maintain mature beta-cell 
identity127,128). Heterozygous mutations in HNF1B129, a gene 
switched on within cells in the primitive gut tube where it is 
responsible for regional gut specification and branching morpho-
genesis as well as later cell fate decisions in multipotent pancreatic  
progenitors130, cause MODY131,132, pancreatic hypoplasia/ 
agenesis133–136, and renal abnormalities137–139.
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GATA6 and HNF1B map to genomic loci implicated in later-onset 
diabetes4,120; therefore, understanding their role in foetal and adult 
human islets is crucial for investigating T2D pathogenesis. Because 
mice haploinsufficient for Gata6, Gata4, and Hnf1b do not have 
diabetes15–17 and with homozygous knockouts causing embryonic 
lethality140–142, dual developmental and adult characterisation would 
not be possible without human cell models representative of both 
time points.

Stem cells can be used to model the whole spectrum of 
diabetes phenotypes
The severity of a diabetes phenotype may be influenced, in part, by 
the temporal expression pattern of a mutated gene. For example, 
one of the downstream targets of HNF1B is GLIS3, a zinc finger 
transcription factor involved in regulating the transient spike in 
NEUROG3 expression important for endocrine fate commitment130. 
Although GLIS3 mutations have been shown to cause neonatal dia-
betes and T2D in humans, these same individuals do not experi-
ence pancreatic agenesis143, and this fits with the later expression 
of GLIS3 (versus HNF1B) in the foetal pancreas. This suggests 
that these individuals are able to make some endocrine pancreas 
tissue and that disease pathology results from insufficient insulin 
secretion from a reduced functional beta-cell mass potentially both 
in utero and in adult life. Analogous observations have been made 
for individuals with mutations in the foetal pancreatic transcription 
factors PAX6144, NEUROD1145, NKX2.2146, and MNX1146,147.

In a similar vein, heterozygous mutations in other genes impor-
tant for islet progenitor function can cause the milder phenotype 
of MODY; this is characterised by onset of non-insulin-dependent  
diabetes before 25 years of age148. Mutations in HNF family mem-
bers HNF4A and HNF1A are the most common cause of MODY 
in Europeans149–153, and these genes also map to genomic regions 
associated with T2D risk4,120. Whilst both disorders could result 
from defective insulin secretion from mature islets (the two tran-
scription factors regulate genes governing GSIS24), they also 
perform distinctive roles in the foetal pancreas, as dictated by  
discrete spatiotemporal expression patterns for each of the multi-
ple HNF4A and HNF1A transcript isoforms154–156. Studying both 
HNFs in foetal versus adult tissue has also shown big differences 
in post-translational regulation; in adult islets these two HNF tran-
scription factors regulate expression of each other and themselves157 
whereas only HNF4A mutations have been shown to cause the 
more severe phenotype of neonatal diabetes, suggesting that this 
gene has a more dominant role in foetal pancreas development155. 
The association of HNF4A variants with macrosomia and hypogly-
caemia in neonates158 also suggests that perturbations to this gene 
transiently increase foetal insulin secretion, a phenomenon not  
observable if studying (i) adult islets alone (as HNF4A muta-
tions cause the opposite phenotype of beta-cell dysfunction and  
hyperglycaemia153) or (ii) rodent pancreas (Hnf4a+/− and Hnf1a+/− 
mice are phenotypically normal13,18,24). Accordingly, understanding 
the temporal relationship between HNF4A gene dosage and insulin 
secretion is fundamental to managing pregnancy as well as neonatal 
and young-onset diabetes and T2D.

Irrespective of a previous implication in Mendelian diabetes, know-
ing the developmental expression pattern of genes mapping to 
T2D-associated regions of the genome can also help refine likely 

effector transcripts at these loci, particularly considering the well-
established role of islet dysfunction in the progression of this  
disease6–8. HHEX, NOTCH2, and PROX1 map to T2D loci con-
taining multiple putative effector transcripts and potentially 
causal variants4,120. Although none of these genes harbour muta-
tions implicated in monogenic diabetes, strong candidacy for their 
role as effector transcript comes from their importance in endo-
crine pancreas development: HHEX regulates ventral pancreas  
organogenesis159, NOTCH2 is involved in fate decisions of pancreatic 
progenitors160, and PROX1 marks pancreatic progenitor cells in the 
endoderm (later becoming specific to NEUROG3-positive cells)161. 
Thus, using human models of endocrine pancreas differentiation to 
understand how subtle perturbations to these genes during develop-
ment may impact upon risk of diabetes in later life is fundamental 
to the functional characterisation, and consequent assignment of 
variant/transcript causality, at these T2D-associated genomic loci59.

This same principle can be applied to disentangling disease- 
associated genetic perturbations mapping to non-coding regions 
of the genome. As many islet enhancers are tissue-specific162, and 
with studies in stem cell-derived endocrine pancreas-lineage cells 
also showing these and other regulatory marks to be developmental 
stage specific too163, it follows that characterisation of non-coding 
regions harbouring disease-associated genetic variations is pos-
sible only if developmental pancreas cell models are employed. 
A good example of this approach comes from a recent study of 
multiple consanguineous families with recessive pancreatic agen-
esis of unknown aetiology164. All affected individuals were absent 
of coding mutations in previously established pancreatic agenesis 
genes (GATA614, PTF1A165, and PDX1166,167) and accordingly were 
subjected to whole genome sequencing. Homozygosity mapping 
showed that no biallelic coding changes co-segregated with disease. 
Extended analysis into non-coding regions of the genome showed 
that multiple affected individuals harboured biallelic mutations in 
a 400-base pair sequence about 25 kB downstream of PTF1A, a 
transcription factor mediating early pancreas specification from 
the foregut168. ChIP-seq in hESC-derived pancreatic progenitors 
showed that this region overlapped binding sites for the foetal 
pancreas transcription factors FOXA2 and PDX1 as well as an 
H3K4me1 active enhancer site. Enhancer activity was shown to be 
tissue- and developmental stage-specific and was abolished upon 
introduction of the agenesis mutations164. As PTF1A maps to a 
locus associated with T2D4,120, it follows that similar developmental 
enhancers may also be important in adult-onset disease.

The usefulness of a model capable of recapitulating all islet 
cell types
Although as diabetes researchers we can put a large emphasis on 
understanding insulin secretory defects, aberrant glycaemia can 
also result from dysfunction in other islet cell types.

Because differentiated stem cells make cells positive for all islet 
hormones39,40, one can use the same systems to study aberrant 
glycaemia resulting from perturbations in non-beta cell types. Dif-
fuse congenital hyperinsulinism in infancy (CHI) is characterised 
by insulin over-secretion despite hypoglycaemia169. Mutations in 
the ATP-sensitive islet potassium channel subunit genes ABCC8 
and KCNJ11 are the most common cause of CHI; the unregulated 
closure of this channel is thought to result in sustained insulin 
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release170,171. However, study of pancreas tissue from 10 individuals 
with KCNJ11-mediated CHI showed that functional beta-cell mass 
was maintained as constant since, despite increased proliferation, 
a concomitant elevation in cell type-specific apoptosis was also 
observed172. Intriguingly, and consistent with the disorganised islet 
architecture observed in Kcnj11 knockout mice21, the human CHI 
islets had downregulated PAX4 and ARX levels (the latter transcrip-
tion factor specific to alpha cells173) as well as elevated NKX2.2 
expression (particularly in delta cells, 10% of which also demon-
strated nucleomegaly)172,174,175. Consistent with the use of somato-
statin analogues in the treatment of some CHI cases169, these data 
suggest that alteration of multiple endocrine pancreas cell lineages 
(not just beta cells) is driving phenotype172. Despite disorganised 
islets, Kcnj11 and Abcc8 knockout mice do not exactly recapitulate 
the phenotype of human CHI21,22, making the further investigation 
of this disorder in stem cell-derived endocrine pancreas models 
attractive.

Summary
This review highlights the need for human, physiologically relevant 
cell models which accurately recapitulate both foetal and adult 
islet function for interrogation of diabetes pathogenesis. Although 
a lot of our knowledge regarding pancreas development has come 
from studying the mouse, there are many cases in which murine 
models fall phenotypically short and so translating genetic sig-
nals into disease mechanisms is limited. The huge advances that 
have been made in differentiating human stem cells (both embry-
onic and induced pluripotent) into all cell types of the developing 
endocrine pancreas have transformed how we are able to char-
acterise disease-causing and -associated genetic perturbations.  
However, although we are now able to make endocrine pancreas-
like cells with some islet function, it is important to temper expec-
tations and remember that we are still some way from making the 
perfect beta cell. Although the most recent studies from leading 
labs report glucose-responsive insulin secretion and Ca2+ chan-
nel activity39,40, this function does not fully recapitulate that of 

human islets. Accordingly, we as a field must make an effort to  
standardise phenotyping assays and subject them to the same  
scrutiny as that used to interrogate primary tissue. Efforts to deposit 
functional176 and omics-level59 data for both primary tissue and  
stem cell-derived endocrine pancreas-like cells are helping research-
ers generating their own pancreas-in-a-dish to compare, contrast, 
and truly evaluate their model systems. Once this methodologi-
cal standardisation is achieved, we can collectively increase the 
complexity of our routine phenotyping of parameters such as hor-
mone secretion and ion currents and move towards physiologically  
relevant doses of mixed nutrient stimuli, amongst other assays.

Regardless of these current functional bottlenecks, coupling stem 
cell-derived endocrine pancreas-like cells with the excitement of 
genome editing technologies places diabetes researchers in an 
extremely powerful position of novel biology discovery and genetic 
signal validation. Armed with these new experimental tools, one 
can start probing more complex forms of the disease such as T2D59 
and, with a pluripotent cell type, model the complex multi-organ 
dysfunction occurring in cells derived from the same patient. The 
dream of a true ‘personalised medicine’ approach to diabetes is in 
our midst.
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