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Tetraspanins are a superfamily of small transmembrane
proteins that are expressed in almost all eukaryotic cells.
Through interacting with one another and with other
membrane and intracellular proteins, tetraspanins regulate a
wide range of proteins such as integrins, cell surface
receptors, and signaling molecules, and thereby engage in
diverse cellular processes ranging from cell adhesion and
migration to proliferation and differentiation. In particular,
tetraspanins modulate the function of proteins involved in all
determining factors of cell migration including cell–cell
adhesion, cell–ECM adhesion, cytoskeletal protrusion/
contraction, and proteolytic ECM remodeling. We herein
provide a brief overview of collective in vitro and in vivo
studies of tetraspanins to illustrate their regulatory functions
in the migration and trafficking of cancer cells, vascular
endothelial cells, skin cells (keratinocytes and fibroblasts), and
leukocytes. We also discuss the involvement of tetraspanins
in various pathologic and remedial processes that rely on cell
migration and their potential value as targets for therapeutic
intervention.

Introduction

Tetraspanins, also called the transmembrane 4 superfamily,
are a family of small transmembrane proteins expressed in all
multicellular eukaryotes. Thirty-four distinct tetraspanin fam-
ily members have been found in mammals, of which 33 exist
in humans. Tetraspanin proteins are structurally characterized
by 4 transmembrane domains, 2 extracellular loops, and short
intracellular N- and C-termini.1 One of the 2 extracellular
loops is short (EC1), and the other is longer (EC2). Some
tetraspanin proteins also have post-translational modifications
including N-linked glycosylation on the EC2 loop and palmi-
toylation at a CXXC motif in their transmembrane region.2

A schematic drawing of the general structure of tetraspanins
is shown in Figure 1.

Although their actions and mechanisms are not fully under-
stood, tetraspanins are known to function as scaffolding proteins
in the plasma membrane of eukaryotic cells. Tetraspanins bind
to one another and to numerous partner proteins, forming a "tet-
raspanin web" or tetraspanin-enriched microdomains (TEMs),
which serve as structural and functional units in plasma mem-
branes.3,4 Through direct protein–protein interactions and the
specific organization of TEMs, tetraspanins modify the function
of a wide variety of proteins including various integrins, immu-
noglobulin superfamily proteins, proteases, growth factor recep-
tors, and intracellular signaling molecules.5-7 Consequently, they
are engaged in a variety of cellular processes such as cell adhesion,
migration, differentiation, and proliferation and are implicated
in numerous pathological conditions including metastasis,
inflammation, and viral infection.8-10 The four transmembrane
domains of tetraspanins are involved in both intramolecular and
intermolecular interactions that are crucial for the biosynthesis
and assembly of TEMs. The EC2 loop is required for interac-
tions between tetraspanins and other proteins. Despite conserved
cysteine motifs, the EC2 loop is the most variable region among
tetraspanin family members and likely plays a significant role in
member-specific molecular recognition and function.11

Tetraspanins are found in nearly all tissues and cell types.
Each member exhibits a distinct expression profile.3,12 For exam-
ple, the tetraspanins CD9, CD63, CD82, and CD151 have a
wide distribution among various cell types, whereas CD37 and
CD53 are mainly found in leukocytes.3 The functions of a given
tetraspanin are likely defined by its protein sequence, post-trans-
lational modifications, and tissue and cellular distribution.
Through regulation of integrins and other adhesion- and motil-
ity-related proteins, a number of tetraspanins have emerged as
key regulators of cell adhesion and migration in both normal and
pathological processes. The present review focuses on research
advances made in this field.

Tetraspanins in cell migration
Cell migration is a fundamental process in both normal devel-

opment and pathological conditions such as cancer metastasis
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and inflammation. Nearly all cell migrations are driven by an
extracellular signal and involve an assemblage of protein–protein
interactions. The proteins that play a key role in this process
include cadherins (cell–cell adhesion), integrins (cell–extracellu-
lar matrix [ECM] adhesion), Rac/Rho (cytoskeletal protrusion/
contraction), and matrix metalloproteinases (MMPs) (pericellu-
lar proteolysis/proteolytic ECM remodeling).13 Numerous stud-
ies have demonstrated that tetraspanins directly interact with
various integrins and modulate their membrane compartmentali-
zation, intracellular trafficking and recycling, and subsequent
downstream signaling in response to migratory signals.14,15 Tet-
raspanins also directly interact with MMPs and regulate their cell
surface localization, trafficking, lysosomal degradation, and pro-
teolytic activity.16-18 Interestingly, several recent studies have
indicated that tetraspanin CD9 regulates the protein expression
of MMP-9 via the JNK pathway.19,20 Tetraspanins also play a
role in E-cadherin–based cell–cell junctions.21-23 Although the
underlying mechanisms are not fully understood, direct interac-
tion between the tetraspanin CO-029 (TSPAN8) and E-cadherin
has been documented by chemical cross-linking and immunohis-
tologic analysis in human colon carcinoma cells.24 Furthermore,
augmentation or suppression of tetraspanins can alter cell motil-
ity by deregulating Rac/Rho activity. For example, CD151
silencing in epidermal carcinoma cells leads to excessive RhoA
activation and loss of actin organization, resulting in destabilized
cell–cell contacts and enhanced migration of tumor cell sheets.23

Likewise, the tetraspanin CD82 inhibits cancer cell retraction
and motility via deregulation of the Rac1/RhoA signaling net-
work.25,26 Interestingly, a recent study has shown evidence that
CD81 directly binds to Rac in T-lymphoblast cells,27 indicating
that direct protein–protein interaction may be a possible mecha-
nism by which tetraspanins regulate the Rac/Rho signaling

pathway. Taken together, these findings indicate that tetraspanins
regulate the function of key proteins involved in all aspects of cell
migration.

Increasing evidence also shows that tetraspanins play impor-
tant roles in the migration of many different cell types, including
but not limited to cancer cells, endothelial cells, keratinocytes,
fibroblasts, and leukocytes, and are implicated in various normal
and pathological conditions that rely on cell migration. These
roles are discussed in more detail in the following sections.

Tetraspanins in cancer cell migration and metastasis
Aberrant expression of tetraspanins, especially CD151, CD9,

CD82, CO-029, and CD63, is frequently detected in metastatic
tumors and has been linked to cancer progression.12,28 In addition
to their potential value as prognostic markers in patients with can-
cer, many studies have suggested that these tetraspanins also play
active roles in cancer metastasis by promoting or inhibiting cancer
cell migration and invasion. CD151 is the first member of the tet-
raspanin family to be identified as a promoter of metastasis.29 The
promigratory effects of CD151 on cancer cells are mainly medi-
ated by its association with laminin-binding integrins including
a3b1, a6b4, and a6b1.30 In particular, CD151 forms a highly
stoichiometric and stable association with integrin a3b1, which is
linked to PI4K activation in many different cell lines.31 A consid-
erable number of studies have shown that CD151 plays a role in
metastasis of specific types of cancer; epidermoid carcinoma and
breast cancer are the 2 most thoroughly investigated types of such
cancers. CD151 promotes the in vitro migration and in vivo
metastasis of epidermoid carcinoma cells by regulating a3b1 and
a6b4 integrin-dependent cell adhesion and migration as well as
the formation of Rho A-dependent cell–cell junctions.23,29,32-34

Meanwhile, the promigratory and prometastatic effects of CD151
on breast cancer cells in vitro and in vivo are associated with regu-
lation of glycosylation of a3b1 integrin as well as growth factor-
induced activation of FAK, Rac1, lck, and p38.35-39 Additionally,
CD151 drives migration and metastasis of hepatocellular carci-
noma (HCC) cells by enhancing b1 integrin-dependent Rac and
cdc42 activation.40,41 CD151 also promotes cancer cell migration
and metastasis in colon cancer, fibrosarcoma, and several other
cancer types (Table 1). Interestingly, CD151-null mice exhibit
reduced lung metastasis of injected cancer cells and diminished
cancer cell transendothelial migration and adhesion to CD151-
null lung endothelial cells, suggesting that endothelial CD151
plays a role in fostering a tumor microenvironment that facilitates
cancer cell invasion.42

CD82, also known as KAI1, is a tetraspanin family member
that functions as a metastasis suppressor.43 In addition to its asso-
ciation with various integrins,14,15 CD82 directly interacts with
the epidermal growth factor (EGF) receptor (EGFR) and attenu-
ates EGF-induced signaling by promoting EGFR desensitiza-
tion.44 CD82 was first identified as a metastasis suppressor in
prostate cancer.45 Subsequent studies have suggested that the
antimetastatic effects of CD82 are mediated by inhibition of
integrin-dependent activation of c-Met and Src kinases as well as
suppression of fibronectin expression and b1 integrin activa-
tion.46-48 Other studies have shown that CD82 inhibits

Figure 1. Schematic drawing of the general structure of tetraspanins.
Tetraspanins are composed of 4 transmembrane domains (pink), a small
(EC1) and a large extracellular domain (EC2), a very small intracellular
domain, and short cytoplasmic N- and C-terminal tails. The EC2 contains
a variable region presenting a conserved Cys-Cys-Gly (CCG) motif and 2–
6 additional cysteine residues, which form intramolecular disulfide bonds
(red dotted lines).
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Table 1. Tetrapansins in cancer cell migration and metastasis

Tetraspanin Cancer type Cell line; animal model
Promoter (") or
suppressor (#) References

CD151 (TSPAN24) Epidermoid carcinoma HEp-3; in vitromigration/in vivometastasis " 29

HEp3; in vitromigration/in vivometastasis " 33

A431; in vitromigration " 32

A431; in vitromigration " 23

A431; in vitromigration " 34

Breast cancer MDA-MB-231; in vitromigration " 35

MDA-MB-231; in vitromigration/in vivo progression " 39

MDA-MB-231; in vitromigration/in vivometastasis " 36

MDA-MB-231; in vitromigration " 37

In vivo ErbB2Cmammary tumor metastasis " 38

Prostate cancer PC3; in vitromigration " 69

LNCap, PC3; in vitromigration " 70

Hepatocellular carcinoma HCCLM3, HepG2; in vitromigration/in vivometastasis " 40

HepG2; in vitromigration " 41

Colon cancer RPMI4788; in vitromigration/in vivometastasis " 71

Tongue squamous carcinoma Tca8113; in vitromigration " 72

Lung adenocarcinoma A549 " 73

Fibrosarcoma HT1080; in vitromigration/in vivometastasis " 71

Glioblastoma A172; in vitromigration " 71

Gastric cancer SGC7901; in vitromigration " 74

Cervical cancer HeLa; in vitromigration " 29

Epithelial ovarian cancer SKOV3, OVCAR5; in vitromigration " 75

CD82 (KAI1, TSPAN27) Prostate cancer AT6.1; in vivometastasis # 45

PC3; in vitromigration # 46

DU145; in vitromigration # 47

DU145, LNCaP; in vitromigration # 48

Melanoma B16-BL6; in vitromigration/in vivometastasis # 49

MMRU; MMLU; in vitromigration # 50

UACC903M, A375M; in vitromigration/in vivometastasis # 22

Non-small cell lung cancer H1299; in vitromigration # 25

H1299; in vitromigration # 76

Pancreatic cancer PANC1, Miapaca-2; in vitromigration # 77

Hepatocellular carcinoma SMMC-7721; in vitromigration # 52

Hepa1-6; in vitromigration # 51

HCC-LM3; in vitromigration/in vivometastasis # 53

Ovarian cancer OV-MZ-6; in vitromigration # 78

Fibroblastoma HT1080; in vitromigration/in vivometastasis # 47

CD9 (TSPAN29) Small-cell lung cancer OS3-R5; in vitromigration # 59

OS3-R5; in vitromigration/in vivometastasis # 58

Melanoma A375; in vitro transendothelial invasion " 61

Early-stage VGP WM793; in vitromigration # 60

Breast cancer MDA-MB-231; in vitromigration " 62

MDA-MB-231; in vitromigration # 63

B02; in vivometastasis " 64

Fibrosarcoma HT1080; in vitromigration # 56

Multiple myeloma U266; in vitromigration # 65

Prostate cancer PC-3M-LN4; in vitromigration (but not in vivometastasis) " 66

TSPAN1 Colon cancer HCT-8; in vitromigration " 79

Cervical cancer SiHa, HeLa; in vitromigration " 80

Non-small cell lung cancer A549, SK-MES-1; in vitromigration " 81

Hepatocellular carcinoma SMMC-7721; in vitromigration " 82

Squamous cell skin carcinoma A431; in vitromigration " 83

TSPAN8 (CO-029) Pancreatic adenocarcinoma BSp73AS; in vivometastasis " 84

Colon cancer Isreco1; in vitromigration " 24

HT29; in vitromigration " 85

Esophageal cancer KYSE150, EC9706; in vitromigration/in vivometastasis " 86

CD63 (TSPAN30) Melanoma KM3; in vitromigration # 87

MelJuso; in vitromigration # 88

Colon cancer Lovo; in vitromigration # 89

CD81 (TSPAN28) Hepatocellular carcinoma HepG2, SW480, Huh7; in vitromigration/in vivometastasis # 90

HepG2, Huh-7.5; in vitromigration " 91

Melanoma MelJuSo; in vitromigration/in vivometastasis " 92
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melanoma cell migration and metastasis in vitro and in vivo
through suppression of Rho-associated kinase-mediated forma-
tion of stress fibers, inhibition of MMP-2, and regulation of
inhibitor of growth 4.22,49,50 Further, CD82 suppresses HCC
cell migration in vitro via upregulation of Sprouty2 with subse-
quent downregulation of sphingosine kinase 1, as well as via inhi-
bition of EGFR and c-Met signaling.51,52 Intriguingly, CD82 is a
direct target of miR-197, a metastasis promoter of HCC, and
mediates the effects of miR-197 on HCC migration via regula-
tion of Rac1 and ROCK activity.53 CD82 also suppresses migra-
tion and metastasis in several other cancer types including non-
small cell lung carcinoma, pancreatic cancer, ovarian cancer, and
fibroblastoma (Table 1).

CD9 is a tetraspanin family member that exhibits both promi-
gratory and antimigratory properties. CD9 is associated with
a1b1, a2b1, a3b1, a4b1, a5b1, a6b1, a7b1, aIIbb3, and
a6b4 integrins.14,15 The regulatory effects of CD9 on cell migra-
tion are mediated by integrin-dependent signaling such as phos-
phorylation of FAK54 and activation of PI3K, Akt, and p38
kinases.55,56 CD9 also directly interacts with EGFR in gastric
cancer cells, and further expression of CD9 in EGFR/CD9-trans-
fected HepG2 cells attenuates EGFR signaling, likely by downre-
gulation of EGFR surface expression.57 CD9 can either promote
or suppress cancer cell migration and metastasis depending on
the type of cancer, the type of cells involved, and the migratory
signal. CD9 inhibits both in vitro migration and in vivo metasta-
sis of OS3-R5 cells, a small-cell lung cancer cell line.58,59 How-
ever, the effects of CD9 on melanoma migration and invasion
are somewhat controversial. CD9 antagonizes osteopontin-
induced migration and invasion of early-stage VGP WM793
melanoma cells,60 but supports transendothelial migration of
A375 melanoma cells by strengthening interactions between
tumor cells and the endothelial cell monolayer.61 Similar contro-
versy surrounds the effects of CD9 on the migration of breast
cancer cells. CD9 supports native type IV collagen-induced
migration of MDA-MB-231 breast cancer cells in vitro,62 but
suppresses the migration of these cells in response to fibronec-
tin.63 An in vivo study showed that CD9 overexpression pro-
motes bone metastasis of BO2 breast cancer cells, an osteotropic
cell line derived from aggressive MDA-MB-231.64 Other studies
have demonstrated that CD9 suppresses the migration of fibro-
sarcoma cells56 and multiple myeloma cells,65 but enhances the
migration of prostate cancer cells66 (Table 1). Interestingly, the
promigratory effects of CD9 on prostate cancer cells in vitro do
not translate into prometastatic effects in vivo.66

Other tetraspanin family members that have roles in can-
cer cell migration or invasion include TSPAN1 and TSPAN8
(promigratory), CD63 (antimigratory), and CD81 (promigra-
tory or antimigratory) (Table 1). Collectively, these data indi-
cate that select tetraspanin family members are key regulators
of cancer cell migration, invasion, and metastasis and that
modulation of their activity may have promising results in
the treatment of specific types of cancer. The description of
specific strategies to target tetraspanins for cancer therapy is
beyond the scope of the present paper and has been discussed
elsewhere.67,68

Tetraspanins in endothelial cell migration and angiogenesis
Angiogenesis, the formation of new blood vessels from pre-

existing ones, is an integral part of many developmental and
pathological conditions including embryonic development,
wound healing, tissue regeneration, and cancer progression.
Migration of capillary endothelial cells is an essential component
of angiogenesis and is typically driven by growth factors such as
vascular endothelial growth factor or activated by integrins that
bind to ECM components.93 Human endothelial cells express at
least 23 tetraspanins including CD151, CD9, CD81, CD82,
CD63, and TSPAN8.9 Many of these tetraspanins, especially
CD151 and CD9, have been shown to regulate endothelial cell
migration and angiogenesis in vitro and in vivo. In human umbil-
ical vein endothelial cells (HUVECs), TEMs form endothelial
adhesive platforms that recruit cell adhesion proteins such as
ICAM-1 and VCAM-1 at cell–cell contact sites.94 Specifically,
CD151 is associated with b1, b3, b4, a2, a3, a5, and a6 integ-
rins at lateral junctions, and antibodies to CD151 inhibit
HUVEC migration and in vitro angiogenesis.95,96 Subsequent
studies have shown that these effects of CD151 on HUVECs are
mediated by integrin-dependent activation of the PI3K/Akt and
ERK signaling pathways.97-99 Additionally, CD151 promotes
migration, proliferation, and tube formation of ECV304 endo-
thelial cells by activating endothelial NO synthase (eNOS).100

CD151-null mice exhibit normal vascular development but
impaired angiogenesis of pathologic conditions such as tumor
growth, and CD151-null mouse lung endothelial cells display
aberrant migration and tube formation in vitro, along with
reduced adhesion-dependent activation of PKB/c-Akt, eNOS,
Rac, and Cdc42.101 CD151 gene delivery in rats and pigs follow-
ing myocardial infarction enhances both myocardial angiogenesis
and cardiac function, and these effects are correlated with the
activation of FAK, PI3K, and MAPK signaling.102,103 One study
showed that in a rat model of hind limb ischemia, CD151 gene
transfer promoted angiogenesis and improved the skin tempera-
ture of the lateral ischemic hind limb, and activated the FAK,
ERK, and PI3K/Akt/eNOS pathways.104 Importantly, these
effects of CD151 are abrogated by transfer of a CD151 mutant
with impaired integrin association, indicating that CD151-integ-
rin complex formation is required for CD151-induced
angiogenesis.104

CD9 is another tetraspanin that plays a key role in endothelial
cell migration and angiogenesis. Like CD151, tetraspanin CD9
is localized at endothelial cell–cell junctions and associates with
a3b1 integrin.96 Anti-CD9 antibody inhibits the migration of
human saphenous vein and mammary artery endothelial cells
toward fibronectin and vitronectin via modulation of b1 or b3
integrin-dependent signaling.105 In HUVECs, CD9 forms a ter-
nary complex with avb3 integrin and junctional adhesion mole-
cule A and positively regulates basic fibroblast growth factor–
induced cell migration and tube formation following release of
junctional adhesion molecule A and activation of MAPK.106 GS-
168AT2, a truncated form of CD9-partner 1 protein, which
depletes cell surface CD151 and CD9, inhibits vascular endothe-
lial growth factor–induced HUVEC migration and tube forma-
tion in vitro and attenuates tumor-associated angiogenesis in
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vivo.107 Moreover, anti-CD9 antibody was shown to inhibit
tumor progression in a human gastric cancer xenograft model via
inhibition of both tumor growth and tumor-associated angiogen-
esis.108 Interestingly, a recent study showed that CD9 deletion
attenuates lymphatic endothelial cell migration and tube for-
mation in vitro and diminishes both tumor metastasis to
lymph nodes and tumor-associated lymphangiogenesis in
vivo.109 These data indicate that targeting CD9 may subdue
cancer progression via inhibition of both angiogenesis and
lymphangiogenesis. Intriguingly, anti-CD9 antibody also
inhibits the migration of microvascular endothelial cells of the
bovine retina toward fibronectin,110 and intravitreous injection
of siRNA-CD9 or anti-CD9 antibodies reduces laser-induced
retinal and choroidal neovascularization in mice.111 These
findings suggest that CD9 may be a therapeutic target for
macular degeneration. Furthermore, tumor cells overexpress-
ing rat TSPAN8 promote endothelial cell branching in vitro
and induce systemic angiogenesis in vivo; these effects are
driven by selective uptake of tumor cell-derived, TSPAN8-
containing exosomes by endothelial cells, a process directed
by exosomal TSPAN8.112,113 Other tetraspanins implicated
in endothelial cell migration and possibly angiogenesis
include CD81 and CD63, which have been identified as pos-
itive regulators,96,114 and CD82, which has been reported as
a negative regulator.115 Therefore, accumulating evidence
indicates that targeting specific tetraspanins may hold promise
as a novel treatment for cancer and other conditions involv-
ing angiogenesis, such as macular degeneration and post-
ischemic revascularization.

Tetraspanins in keratinocyte migration during wound
healing

The wound healing process is divided into 4 sequential, yet
overlapping phases: (1) hemostasis, (2) inflammation, (3) pro-
liferation, and (4) remodeling. The entire process involves
coordinated action of different cell types, including immune
cells, endothelial cells, keratinocytes, and fibroblasts.116,117 Re-
epithelialization of the epidermis, which involves proliferation
and migration of keratinocytes from the wound edges across
the wound bed to cover the injured area, is an integral part of
the proliferation phase of wound healing. Several tetraspanins
are expressed on the keratinocyte surface; of these, CD151,
CD9, and CD81 are colocalized with a3 and b1 integrins at
intercellular junctions. One study showed that antibodies to
CD151, CD9, CD81, a3, and b1 inhibit the migration of
human keratinocytes in an in vitro wound-healing assay.118

Consistent with these results, CD151 expression has been
found to be upregulated during wound healing in C57BL/6
mice, especially within the migrating epidermal tongue at the
wound edge.119 CD151-null mice show impaired wound heal-
ing that is primarily attributed to a re-epithelialization defi-
cit,119 and CD151-null keratinocytes migrate poorly on
Matrigel (a basement membrane equivalent) and laminin-332
(a key player in re-epithelialization)120 and in skin explant
cultures.121 Collectively, these data indicate that CD151 posi-
tively regulates wound healing by promoting keratinocyte

migration during re-epithelialization. In the proliferation
phase of wound healing, fibroblasts grow, migrate, and from a
new ECM by excreting collagen and fibronectin. This process
is an essential prerequisite to epidermal re-epithelialization.
CD151 is also expressed in normal skin fibroblasts, and
CD151-null fibroblasts migrate much faster on collagen I
while showing no significant changes in adhesion, prolifera-
tion, or the ability to cause contraction in response to trans-
forming growth factor b-1 or platelet-derived growth
factor.120 These results show that CD151 has a potential role
in fibroblast migration during wound healing and may thus
warrant further investigation.

Similar to CD151, CD9 is colocalized with a3 and b1
integrins at intercellular junctions of keratinocytes.118 Previ-
ous studies have shown that anti-CD9 antibody attenuates
the migration of primary human keratinocytes;118 however,
CD9 silencing enhances the migration of HaCaT cells, an
immortal human keratinocyte cell line, through activation of
the JNK pathway and subsequent MMP-9 expression.20 One
possible explanation for these seemingly inconsistent results is
that the binding of anti-CD9 antibody to CD9 does not
inhibit CD9 function, but rather enhances it. The finding
that CD9 is downregulated in migrating keratinocytes during
wound healing both in vitro and in vivo supports the antimi-
gratory effect of CD9 on keratinocytes under these condi-
tions.19,20 Similar to CD151-null mice, CD9-null mice show
delayed wound healing that is attributed to impaired epider-
mal migration. Because abnormal elevations of MMP-9 are
detected in CD9-null wounds, this delayed epidermal migra-
tion may be attributed to excessive degradation of type IV
collagen in the basement membrane at the wound site rather
than to changes in the migrating keratinocytes themselves.19

Moreover, because CD9 promotes endothelial cell migration
and angiogenesis,105,106 loss of CD9 might negatively affect
angiogenesis at the wound site, additionally contributing to
impaired epidermal migration and re-epithelialization. In
summary, these data implicate tetraspanins CD151 and CD9
as important regulators of the wound healing process, indicat-
ing their role as potential therapeutic targets for pathological
wound repair. Tetraspanins CD63 and CD81 are also found
in keratinocytes,118 and their roles in wound healing may
warrant future investigation.

Tetraspanins in immune cell migration
Tetraspanins were first identified as cell surface antigens in

lymphocytes.2 Later studies showed that immune cells express
at least 20 tetraspanins on their surface.122 In immune cells,
tetraspanins interact with many key leukocyte proteins,
including immunoreceptors, integrins, and signaling mole-
cules, allowing them to regulate a range of fundamental
immune cellular processes such as antigen presentation, anti-
body production, degranulation, proliferation, and migration/
extravasation.122-124 In the present review, we focus on the
role of tetraspanins in the migration and extravasation of leu-
kocytes, a critical process in the immune response.
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Dendritic cells (DCs) are antigen-presenting cells that stimu-
late both naive B and T cells during immune responses, and their
effectiveness depends on their ability to capture, process, and
present antigens and migrate to secondary lymphoid tissues.125

Tetraspanins CD63, CD9, CD81, CD82, and CD151 are
expressed in immature DCs, and antibodies to CD63, CD9,
CD81, and CD82 (but not CD151) enhance chemokine-
induced migration of these cells.126 CD81-null DCs display dras-
tically impaired motility because of their inability to form actin
protrusions. CD81 silencing in human and mouse DCs produces
a similar phenotype along with a selective loss of Rac1 activity.127

Although CD37-null DCs potently stimulate T cells in vitro,128

these cells induce poor T-cell responses when injected into wild-
type mice. This is attributed to impaired migration from skin to
draining lymph nodes.129 In Jurkat T lymphocytes, tetraspanin
CD9 enhances cell migration, activation, and proliferation by
regulating the expression and clustering of ALCAM, a member
of the immunoglobulin superfamily of cell adhesion mole-
cules.130 In mast cells, CD9 colocalizes with high-affinity IgE
receptor and the transmembrane adaptor protein non-T-cell acti-
vation linker (NTAL), promoting antigen-driven chemotaxis via
cross talking with these partner proteins.131 Natural killer cells
show substantial expression of CD81, CD63, and CD151 on
their cell surface, and stimulation of CD81 with an immobilized
antibody induces phosphorylation of ezrin/radixin/moesin pro-
teins, facilitating natural killer cell migration toward various che-
mokines.132 In endothelial cells, tetraspanins associate with cell

adhesion proteins such as ICAM-1 and VCAM-1 at cell–cell con-
tact sites with transmigrating leukocytes, and endothelial CD9/
CD151 silencing prevents lymphocyte transendothelial migra-
tion.94,133 Additionally, CD63-null HUVECs fail to recruit leu-
kocytes, and CD63-null mice show reduced leukocyte rolling,
recruitment, and extravasation, a phenotype similar to that asso-
ciated with loss of P-selectin.134 Interestingly, antibodies to
CD81 and CD9 block monocyte migration across brain endo-
thelial monolayers by acting on both leukocyte and endothelial
tetraspanins.135,136 Taken together, these data indicate that both
leukocyte and endothelial tetraspanins play crucial roles in leuko-
cyte migration and extravasation during immune responses.

Leukocyte infiltration into the central nervous system is a
key process in the development of demyelinating lesions in
multiple sclerosis.137 In mice, administration of an anti-
CD81 antibody reduces inflammation in the spinal cord and
ameliorates the development of neurological symptoms of
experimental autoimmune encephalomyelitis.136 These results
suggest that targeting specific tetraspanins may be a novel
therapeutic approach for inflammatory disorders such as mul-
tiple sclerosis.

Conclusions

The regulatory function of tetraspanin proteins in cell migra-
tion has been integrated in the present review (Fig. 2). Tetraspa-

nins interact with a wide
range of membrane pro-
teins such as integrins, cell
surface receptors, and sig-
naling molecules. They also
modulate all 4 determining
factors of cell migration:
cell–cell adhesion, cell–
ECM adhesion, cytoskeletal
protrusion/contraction, and
proteolytic ECM remodel-
ing. Numerous in vitro and
in vivo studies have
highlighted the important
regulatory function of tetra-
spanins in the migration of
cancer cells, vascular endo-
thelial cells, skin cells (kera-
tinocytes and fibroblasts),
and leukocytes. Conse-
quently, tetraspanins are
implicated in many patho-
logic or remedial processes
that rely on cell migration,
such as cancer, macular
degeneration, ischemic
injury repair, wound heal-
ing, and inflammation.
Targeting tetraspanins via

Figure 2. Schematic depiction of how tetraspanins regulate cell migration. T, tetraspanin; I, integrin; C, cadherin; R,
Rac; M, matrix metalloproteinase; G, growth factor receptor; A, ALCAM.
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small molecule agents, RNAi, or antibodies may allow the
development of novel therapy for these diseases.
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