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Abstract

 Scope—High glycemic load diets have been associated with increased breast cancer risk in 

population-based studies, but the evidence is mixed. This investigation determined whether diets 

differing in glycemic load affected the carcinogenic process using a preclinical model.

 Methods and results—Human diets, formulated to differ 2-fold in glycemic load, were 

evaluated in the 1-methyl-nitrosourea-induced (37.5 mg/kg) mammary carcinogenesis model. 

Cancer incidence (23.3 vs 50.0%, P = 0.032 ), multiplicity, (0.40 vs 1.03, P = 0.030) and burden, 

(0.62 vs 1.19 g/rat, P = 0.037) were reduced in the low versus high glycemic load diets, 

respectively. However, the low glycemic protective effect was attenuated when two purified diets 

that differed in resistant starch and simulated the glycemic effects of the human diets were fed. 

Protection was associated with alterations in markers of cell growth regulation.

 Conclusion—Our findings show that human low or high glycemic load dietary patterns 

differentially affect the carcinogenic response in a non-diabetic rodent model for breast cancer. 

However, factors that are associated with these patterns, in addition to dietary carbohydrate 

availability, appear to account for the differences observed.

Graphical Abstract

Human diets, formulated to differ 2-fold in glycemic load, were evaluated in the 1-methyl-

nitrosourea-induced (37.5 mg/kg) mammary carcinogenesis model. Cancer incidence (23.3 vs 

50.0%, P = 0.032 ), multiplicity, (0.40 vs 1.03, P = 0.030) and burden, (0.62 vs 1.19 g/rat, P = 

0.037) were reduced in the low versus high glycemic load diets, respectively. However, the low 

glycemic protective effect was attenuated when two purified diets that differed in resistant starch 

and simulated the glycemic effects of the human diets were fed. Protection was associated with 

alterations in markers of cell growth regulation.
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 Introduction

A dominant focus of investigations of the role of diet in affecting breast cancer risk has 

centered on the amount and type of fat ingested [1, 2]. However, increasing attention is 

being given to the potential role of carbohydrates [3]. That interest is not limited to the 

evaluation of dietary fiber’s contribution to carbohydrate quality, but also to the glycemic 

response that a food invokes and that is quantified as glycemic index [4]. In addition, the 

effect of total amount of carbohydrate in a meal on postprandial glycemic response can be 

quantified and is referred to as dietary glycemic load [5]. With advances in methodology, it 

has become possible to characterize the patterns of foods consumed as either high or low 

glycemic load patterns [6].

High glycemic load dietary patterns are associated with persistent increases in circulating 

levels of glucose and insulin, the impact of which is determined in part by the metabolic 

state of an individual [4]. For example, the therapeutic benefits of low glycemic load diets 

for glucose and insulin regulation in obesity-associated insulin resistance and in diabetes are 

well recognized [7, 8]. Thus, given the evidence of increased risk for breast cancer in 

diabetics [9], the potential role of different glycemic load dietary patterns in affecting risk 

for breast cancer has been investigated and mixed evidence has emerged [10–17].

One approach to investigating glycemic load has been to develop a specific menu and recipe 

based dietary pattern of calculated glycemic load and to conduct highly controlled metabolic 

human feeding studies as reported in [18]. The use of this approach created an opportunity 

for the study reported herein. For years there have been concerns about the relevance of 

animal models for cancer to the human disease [19–26]. There also has been considerable 

debate about the limitations imposed by using the gold standard approach of purified diets in 

rodent models to study the effects of diet and nutrition on the carcinogenic process because 

human populations do not eat purified diets [27–30]. While such discussions have identified 

both strengths and weaknesses of animal models for cancer and the various dietary 
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formulations that can be fed to rodents, our study was designed to address a simple question: 

does feeding defined diets that were fed to a population of human participants in a 

randomized controlled format [31–34], provide any insights when the same human diets are 

fed to rats in a well characterized model for breast cancer with established relevance to the 

disease process in women? This paper reports the effects of two dietary glycemic load 

patterns on the carcinogenic response and on host systemic and cell autonomous processes 

considered to play a role in human breast carcinogenesis.

 Materials and methods

 Experiment 1 Evaluation of human diets differing in glycemic load

Female Sprague Dawley rats were obtained from Taconic Farms, Germantown, NY at 19 

days of age (DOA) and injected with 37.5 mg of 1-methyl-1-nitrosourea/kg body weight, 

intraperitoneally, at 20 DOA as previously described [35]. All animals were fed purified 

AIN-93G diet for 1 week following carcinogen injection and were then randomized to one 

of two dietary groups (n = 30 rats/diet group) and fed either the human high or low glycemic 

load diets that were formulated to differ by a factor of 2 (Supplementary Tables S1 and S2). 

The menus are described in supplemental information section of [33]. While consideration 

was given to feeding a purified diet in this experiment, it was decided that it would be more 

informative to construct purified diets that mirrored the macronutrient content of the human 

diet (Experiment 2).

Preparation and characterization of human diets: Each day of a 7-day menu was prepared in 

the same metabolic facility used in the clinical study and was homogenized in a Hobart 

blender [31]. All 7 days of homogenized food for each diet arm were combined and further 

processed in a paddle mixer until a homogenous mixture was obtained. That mixture was 

then divided into 50 g portions and immediately frozen. Portions were labeled in a manner 

that blinded the investigators to whether the portions came from the high or low glycemic 

load diet. Proximate analysis of both diets in the form fed to the rats was performed by a 

commercial laboratory (Warren Analytical, Greeley, CO). The glycemic response to each 

diet was determined using a previously reported procedure [36].

 Experiment 2 Evaluation of purified diets differing in glycemic load

Female Sprague Dawley rats were obtained from Taconic Farms, Germantown, NY at 19 

DOA and injected with 37.5 mg of 1-methyl-1-nitrosourea/kg body weight, intraperitoneally, 

at 20 DOA as previously described [35]. All animals were fed purified AIN-93G diet for 1 

week post carcinogen injection and were then randomized to one of two dietary groups (n = 

50 rats/diet group) and fed either the low or high glycemic load purified diet formulated 

using corn starch that differed in its content of resistant starch (detailed formulation, 

Supplementary Table S2).

 Procedures common to both experiments

Rats were fed 2 meals per day (08:00–11:00 and 14:00–17:00), 7 days per week until the 

end of the study; food consumption was ad libitum during each meal. All rats were weighed 

weekly and palpated twice per week for detection of mammary tumors beginning at 21 days 
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post-carcinogen until study termination. Both experiments were terminated 8 weeks post 

carcinogen based on our previous work [35]. All animals were group housed (3/cage) in an 

AAALAC accredited vivarium. The animal room was maintained at 22 ± 1°C with 50% 

relative humidity and a 12-h light/12-h dark cycle. The work reported was reviewed and 

approved by Colorado State University Animal Care and Use Committee and conducted 

according to that committee’s guidelines.

 Necropsy and Sample Collection

Following an overnight fast, rats were killed over a 3-hour time interval via inhalation of 

gaseous carbon dioxide. The sequence in which rats were euthanized was stratified across 

groups so as to minimize the likelihood that order effects would masquerade as treatment-

associated effects. Detected tumors were excised, weighed, and cut into two parts; one 

section was fixed in formalin for histological classification and the remainder of each tumor 

was snap frozen in liquid nitrogen. All tumors were histopathologically classified according 

to established criteria [37] and only mammary carcinomas were used in tabulating the 

carcinogenic response and for molecular assessments. Because a statistically significant 

effect on the carcinogenic response was observed only in Experiment 1, additional analyses 

were limited to that experiment.

 Analyses of plasma—Plasma from the animals in the carcinogenesis experiment was 

isolated by centrifugation at 1000 × g for 10 min at room temperature and then stored at 

−80C until it was analyzed. Plasma was subjected to the assessment of the following 

molecules: insulin-like growth factor 1 (IGF-1), IGF binding protein 3 (IGFBP-3), 

adiponectin, insulin, and leptin using commercially available ELISA assays (Diagnostic 

Systems Laboratory, Webster, TX; Cayman Chemicals, Ann Arbor, MI; and Millipore, 

Billerica, MA). Glucose in plasma was determined enzymatically using a commercially 

available kit (Pointe Scientific, Inc., Canton, MI.). Assays were performed according to 

manufacturer’s instructions.

 Statistical Analyses of the carcinogenesis experiments and plasma analytes

Experiment 1 was powered on cancer incidence with the assumed incidence in the high 

glycemic load group of 70% and with a predicted reduction of 50% in the low glycemic load 

group based on the epidemiological literature [10–17].; the power was 80% with an n = 30/

group. However, the actual power based on results was approximately 50%, primarily 

because the cancer incidence in the high glycemic load (referent) group only reached 50%. 

In Experiment 2, the n was increased to 50 rats/per group based on Experiment 1 results. 

With n = 50 rats/group, 80% power existed to detect the differences observed in Experiment 

1.

Effects on cancer incidence were evaluated by Pearson chi-square analysis and cancer 

latency was evaluated by survival analysis [38]. Differences between groups in cancer 

multiplicity (number of mammary carcinomas/rat) and in cancer mass were evaluated by the 

Kruskal Wallis test. Differences between groups in body weight and plasma molecules were 

analyzed by ANOVA. All analyses were performed using Systat statistical analysis software 

version 12 (Systat Software, San Jose, CA).
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 Proteomic analysis—Western blotting was used in a manner analogous to the use of 

protein array technology. Primary antibodies used in this study were anti-cyclin-D1, anti-

p27Kip1 from Thermo Fisher Scientific (Kalamazoo, MI); anti-Bax and anti-Bcl-2 from BD 

Biosciences (San Diego, CA); anti Caspase 3, anti-pRB/RB, anti-pAMPK, anti-AMPK, anti-

pAkt, anti-Akt, anti-pmTOR, anti-mTOR, anti-pP70S6, anti-P70S6, anti- pTSC2, anti-XIAP, 

anti-rabbit immunoglobulin-horseradish peroxidase-conjugated secondary antibody and 

LumiGLO reagent with peroxide were purchased from Cell Signaling Technology (Beverly, 

MA); anti-TSC2, anti-p21Cip1, anti-VEGF and anti-mouse immunoglobulin-horseradish 

peroxidase-conjugated secondary antibody were from Santa Cruz Biotechnology, Inc. (Santa 

Cruz, CA); mouse anti-β-Actin primary antibody was obtained from Sigma Aldrich (St. 

Louis, MO). For analysis, tissue was homogenized in lysis buffer [40 mM Tris-HCl (pH 

7.5), 1% Triton X-100, 0.25 M sucrose, 3 mM EGTA, 3 mM EDTA, 50 μM β-

mercaptoethanol, 1 mM phenyl-methylsulfonyl fluoride, and complete protease inhibitor 

cocktail (Calbiochem, San Diego, CA)]. The lysates were centrifuged at 7500 × g for 10 min 

at 4 °C and supernatant fractions collected and stored at −80 °C. Supernatant protein 

concentrations were determined by the Bio-Rad protein assay (Bio-Rad, Hercules, CA). 

Western blotting was performed as described previously. Briefly, 40 μg of protein lysate per 

sample was subjected to 8–16% sodium dodecyl sulfate-polyacrylamide gradient gel 

electrophoresis (SDS-PAGE) after being denatured by boiling with SDS sample buffer [63 

mM Tris-HCl (pH 6.8), 2% SDS, 10% glycerol, 50 mM DTT, and 0.01% bromophenol blue] 

for 5 min. After electrophoresis, proteins were transferred to a nitrocellulose membrane and 

thereafter cut into strips at the appropriate molecular weights for each target protein. The 

amounts of target proteins were determined using specific primary antibodies, followed by 

treatment with the appropriate peroxidase-conjugated secondary antibodies and visualized 

by LumiGLO reagent western blotting detection system. The chemiluminescence signal was 

captured using a ChemiDoc densitometer (Bio-Rad) that was equipped with a CCD camera 

having a resolution of 1300 × 1030. Quantity One software (Bio-Rad) was used in the 

analysis. The Quantity One software has a warning algorithm that notifies the user if pixel 

density is approaching saturation so that all signals used for analysis are in the linear range. 

All Western blot signals were within a range where the signal was linearly related to the 

mass of protein and actin-normalized scanning density data were used for analysis.

 Data evaluation—Data from plasma and Western blot analyses were evaluated via 

unsupervised and supervised multivariate techniques per our previously published approach 

[39–42]. Briefly, principal components analysis (PCA), an unsupervised clustering 

technique was first applied to each data set [43]. The PCA model can be written: X = Xbar 
+TP′ + E where X is the matrix of measured variables, Xbar is a vector of means (all 0 when 

the data are centered), T is a matrix of scores that summarize the X variables, P is a matrix 

of loadings, and E is a matrix of residuals. PCA analysis was followed by evaluation of the 

same data sets using orthogonal projections to latent structures for discriminant analysis 

(OPLD-DA), a supervised class-based method [39–41, 44]. The OPLS-DA model can be 

written: X = TpPp′ + ToPo′ + E where the interpretation of equation 2 is similar to that for 

the PCA model; however, an additional rotation has been applied using the class information 

to partition TP′ into a predictive, TpPp′, and an orthogonal, ToPo′, component. The number 

of predictive and orthogonal components in the models was determined by cross-validation.
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 Visualization of PCA and OPLS-DA—Scatter plots of the first two score vectors for 

the PCA models were drawn, along with 95% confidence ellipses based on Hotelling’s 

multivariate T2, to identify outliers that might bias the results. For OPLS-DA, class 

separation was shown in several ways. Biplots were used to co-chart scores and loadings 

from the OPLS-DA model for their simultaneous display and interpretation. Thus this plot 

displays similarities and dissimilarities among observations (each carcinoma assessed) and 

permits interpretation of the observations in terms of the variables (each target protein that 

was measured). Observations situated near variables are high in those variables and are low 

in variables situated opposite. Observations close to the plot origin have average properties. 

Variables close to the plot origin do not contribute to the formation of the scores in question, 

i.e. they are poorly described by the model components. S-plots were constructed to identify 

influential proteins in the separation of treatment groups. S-plots based on the first principal 

component show reliability (modeled correlation) plotted against feature magnitude 

(loadings or modeled covariance). If protein concentrations have variation in correlation and 

covariance between classes, this plot will assume an S-shape, with heavily influential 

features separating from other features at the upper right and lower left tails of the feature 

cloud within the model space [40, 41]. Variable importance in the projections (VIP) plots 

were also computed. VIP expresses the influence on Y (class assignment, i.e., low or high 

glycemic load diet) of every variable xk. The VIP for each variable is expressed with its 

respective 95% confidence interval. VIP can be compared with one another. VIP greater than 

1 are considered most relevant to accounting for class separation; whereas, VIP values less 

than 0.5 are considered unimportant. VIP scores between 0.5 and 1.0 are considered to be in 

a gray area relative to interpreting their importance to class separation. All multivariate 

analyses were done using SIMCA-P+ v.12.0.1 (Umetrics, Umea, Sweden).

 Results

 Low glycemic load diet protects against mammary carcinogenesis

The effect of human diets that differed in glycemic load was initially determined 

(Experiment 1). Growth rates of the rats fed the low or high human glycemic load diets were 

similar (Figure 1A). Cancer incidence was reduced (23.3 vs 50.0%, P = 0.032, Odds ratio = 

0.30, 95% CI = 0.10 to 0.92), and cancer latency prolonged (Figure 1B, Hazard ratio = 0.37, 

95% CI = 0.16 to 0.88, P = 0.024) in rats fed the low glycemic diet. Cancer multiplicity over 

time (Figure 1C), cancer multiplicity at necropsy, (0.40, 95% CI = 0.05 to 0.75, vs 1.03, 

95% CI = 0.49 to 1.58, P = 0.030), and cancer burden (Figure 1D: 0.62, 95% CI = −0.32 to 

1.56, vs 1.19, 95% CI = 0.32–2.07, P = 0.037), were also reduced in the low versus high 

glycemic diet group.

Human dietary patterns that differ in glycemic load also vary in many other respects, which 

conceivably could account for the mixed findings observed in population-based studies [10–

17]. Therefore, we constructed purified diets that had a similar macronutrient content to the 

7-day human cycle menu (Supplementary Table S1), but that differed in resistant starch 

which is a means of manipulating the glycemic load of the diet formulation. The purified 

diets were calculated to have a 2-fold difference in glycemic load, the same as the human 

diets. The effect of these purified diets on the carcinogenic response was determined 
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(Experiment 2). Growth rates of the rats fed these diets were similar (Figure 2A). However, 

the effect of glycemic load on the carcinogenic response was greatly attenuated when the 

purified diets were fed (Figure 2B–D). Specifically, in the low glycemic diet group, cancer 

incidence was lower (49.0% vs 62.7%, P = 0.165, odds ratio = 0.5, 95% CI = 0.26 to 1.26), 

and cancer latency was prolonged (Figure 2B, hazard ratio = 0.66, 95% CI = 0.38 to 1.13, P 
= 0.131), but these differences were not statistically significant. Similarly, neither cancer 

multiplicity over time (Figure 2C), cancer multiplicity at necropsy, 1.18, 95% CI = 0.73 to 

1.63, vs 1.14, 95% CI = 0.81 to 1.46, P = 0.479), nor cancer burden (Figure 2D, 1.75, 95% 

CI = 0.72 to 2.77, vs 2.10, 95% CI = 1.03 to 3.17, P = 0.251), were significantly affected in 

rats fed purified low versus high glycemic load diets.

 Glycemic response does not account for the differences in carcinogenic response 
observed between human and purified rodent diets

We reasoned that since the glycemic load of the human diets and purified rodent diets were 

based on calculated values, the glycemic response to these diets might differ in the rat and 

thus account for the differences observed in the carcinogenic response. The glycemic 

response to the same amount of carbohydrate (1 g/kg body weight) from each diet, human 

and rodent, was determined by gavaging a slurry of each diet to fasted rats. The area under 

the curve analysis showed that the patterns of glycemic response were similar (Figure 3) 

between the human and rodent diets. Factorial analysis of variance of the area under the 

curve values for each diet (n = 8 rats per diet group) indicated that the low versus high 

glycemic load diets differed (P = 0.009), but the differences between the human and purified 

rodent diets were not statistically significant (P = 0.705). Thus, we judge that it is unlikely 

that the small differences that were apparent in Figure 3 between human diets and the 

purified rodent diets account for the marked differences that were observed in the 

carcinogenic response (Figures 1 and 2).

 Circulating analytes as indicators of cancer risk

Since only the human diets showed a differential effect of glycemic load on the carcinogenic 

process, we focused our analyses on tissue from Experiment 1. The plasma obtained from 

each animal (n = 30/diet group) was evaluated for the same analytes evaluated in the clinical 

studies that were conducted using these diets [31–34]. Differences were observed in 

concentrations of fasting plasma glucose, insulin, IGF-1, hsCRP, or IL-6, leptin and 

adiponectin in the low versus high glycemic load group, but none of those differences were 

statistically significant (Table 1). A similar response was observed in the clinical studies of 

the same low and high glycemic load diets (Supplementary Table S3); however, unlike those 

clinical studies of non obese women who were clinically free from cancer, we had data for 

cancer endpoints for each animal (Experiment 1). Therefore, plasma data were subjected to 

unsupervised and supervised analyses to determine whether plasma analytes in aggregate 

were predictive of dietary group assignment or the presence or absence of cancer. 

Unsupervised PCA revealed poor separation either between diet groups or between cancer 

bearing versus cancer free rats (Data not shown). However, when these data were subjected 

to supervised OPLS-DA, classification accuracy for diet group was 83% and for cancer 

status was 78%. Based on variable importance analyses (VIP), the most important plasma 
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analytes for distinguishing between diet group or cancer bearing and cancer free rats were 

plasma insulin and adiponectin.

 Plasma analytes predict activity of downstream targets in mammary carcinoma

Insulin and adiponectin have been reported to mediate pro- or anti-carcinogenic effects, 

respectively, through their downstream targets, protein kinase B (Akt) and AMP activated 

protein kinase (AMPK). Therefore, we used regression analysis to determine the relationship 

between plasma insulin and activated AKT (r2= 0.31, p=0.04) and between adiponectin and 

activated AMPK (r2= 0.17, p=0.15) in mammary carcinomas. Both analyses are consistent 

with established canonical relationships and pointed to the potential involvement of mTOR 

network signaling in accounting differential responses to the human diets. To investigate this 

possibility, a more detailed proteomic analysis was undertaken.

 Proteomic analyses indicate dissimilarity in cell growth regulation in carcinomas 
occurring in low versus high glycemic load animals

We reasoned that if glycemic response was driving the carcinogenic response via modulation 

of mTOR network activity mediated by insulin and adiponectin that differences in regulation 

of multiple nodes in that signaling cascade would be observed. To evaluate this hypothesis, 

Western blot data for 28 proteins were mean centered, pareto-scaled, and evaluated using 

unsupervised PCA (Figure 4A). There was partial separation of carcinoma by diet group; 

therefore, the same data set were subjected to supervised OPLS-DA in order to permit 

separation of variation due to diet treatment from unrelated variation and to noise (Figure 

4B). The cross-validated predictive ability of this 7 component model, Q2(Y), was 54.5% 

with 72.9% of total variance, R2(X), explained, and with 100% classification accuracy. The 

biplot for this model (Figure 4C) shows not only the scores plot depicting the separation 

among carcinoma in rats fed low versus high glycemic load diets, but also the proteins most 

influential in accounting for the observed separation. It is noteworthy that while there is 

distinct separation associated with glycemic load of the diet (x-axis), there is little clustering 

along the y-axis (the orthogonal component associated with variation unrelated to glycemic 

load, and presumably associated with tumor heterogeneity. The effects related to glycemic 

load were quantified via S-plot analysis (Figure 4D) and variable importance for projection 

analysis (VIP, Figure 4E). Supplementary Figure S1 shows the graphic presentation of 

arbitrary units of optical density for each Western blot. Only limited evidence was found that 

implicated mTOR related signaling. Rather, low glycemic load was associated with higher 

concentrations of proteins involved in inhibition of cell cycle (P21 and P271) and induction 

of apoptosis; whereas, carcinomas in the high glycemic load diet had higher concentrations 

of a protein associated with progression through the G1/S cell cycle checkpoint (cyclin D1), 

inhibition of caspase activity (XIAP), and angiogenesis (VEGF).

 Discussion

It is relatively uncommon for defined human diets to be fed in clinical trials and such studies 

are only feasible over short periods of time and at institutions in which metabolic study 

facilities are available. Hence, it is virtually impossible for effects of specific menu- and 

recipe-defined diets to be determined on cancer endpoints in human populations [31–34]. 
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Thus, the possibility of evaluating specific human diets on cancer endpoints in animal 

models for cancer, with a linkage between the human trial and the rodent experiment being 

provided by comparison of effects of diet on plasma biomarkers, has significant potential to 

hasten advances in the field of diet, nutrition and cancer. Cancer incidence was reduced by 

50%, cancer multiplicity by 40%, and tumor burden by 52% in the low versus high glycemic 

load human diet groups (Figure 1). These are meaningful differences in the animal model 

and if such differences were found in human populations they would be considered clinically 

important. Moreover, the evaluation of blood from all animals in Experiment 1 showed that 

as in the clinical trial, in normal weight individuals, the feeding of the low or high glycemic 

load diets had non-significant effects on biomarkers of glucose homeostasis and chronic 

inflammation and that the diet group related trends in these markers were in general in the 

same direction in the preclinical and clinical studies [31, 33].

One advantage of preclinical models, such as the rapid emergence model for breast used in 

this study, is that many experiments can be conducted in a relatively short timeframe, 

making it feasible to identify protective elements of an intervention [35]. Thus, in the 

experiment in which purified rodent diets were fed (Experiment 2), we designed two diets to 

determine if the effects of the human diets on the carcinogenic response could be directly 

attributed to differences in resistant starch, a dietary factor that significantly affects the 

glycemic response to a meal [45, 46]. We considered this experiment highly relevant to the 

human diet experiment (Experiment 1) in that the glycemic response between the two 

purified diets was similar to that observed between the two human diets (Figure 3). The 

purified diet experiment (Figure 2) shows that resistant starch per se has little effect on the 

carcinogenic response. This finding indicates that other components of the human diet, in 

addition to carbohydrate availability, are likely to account for protection against cancer. 

Consistent with this observation, there was only limited support that mTOR network activity, 

of which insulin mediated signaling is a component, was playing a dominant role in 

explaining the impact of the human diets on the carcinogenic response. Rather, supervised 

cluster analyses provided evidence that growth regulation reflected by indicators of cell 

cycle regulation, apoptosis, and angiogenesis were modulated in a manner consistent with 

the smaller tumor masses detected in the low glycemic load group (Figure 4). This finding 

demonstrates that diet affects biological processes cited as hallmarks of cancer [47]. Of 

particular interest was the suppression of XIAP protein expression in the low glycemic 

tumors, suggestive of differential effects of the human diets on unfolded protein responses 

that are involved in a number of metabolic diseases including cancer [48].

 Strengths and Limitations

Feeding human diets to rodents has precedent, although the approach has been infrequently 

used in investigations of diet, nutrition and cancer [49–51]. The preparation of human diets 

in a manner that could be fed to rodents provided the same glycemic response in the rat as 

was predicted by calculation based on glycemic index and glycemic load data determined in 

human participants (Figure 3). There are also weakness to this approach which include the 

fact that the human diets fed to rodents were homogenized, thus eliminating variables that 

might exist due to differences in food matrices or eating behaviors. Another limitation is that 
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the same blended human diet was fed to rats each day without the daily variations in food 

consumption that occur when a cycle menu is followed by human participants.

 Implications

There is currently a movement toward integrating preclinical and clinical studies in the 

cancer chemotherapy field, an approach referred to as co-clinical investigation [52, 53]. The 

study reported herein represents an extension of that paradigm to enhance progress in the 

field of diet, nutrition, and cancer. This study informs a range of contemporary questions in 

this field including whether human dietary patterns can realistically be expected to alter a 

genetically driven disease process such as cancer, and whether experiments conducted in 

rodents fed purified diets are sufficient for detecting differences in cancer outcomes of 

dietary patterns actually consumed in real life circumstances by human populations. Our 

findings indicate not only that human dietary patterns can alter the carcinogenic process, but 

also that purified rodent diets designed to model the differences in glycemic response to the 

human diets fail to render the same effects on the carcinogenic response. Our study 

illustrates that human diets can be assessed for effects on the carcinogenic process in animal 

models for cancer. This approach has merit considering that dietary effects may be obscured 

in studies of human populations due to difficulties in measuring specific dietary patterns 

using standard dietary assessment tools such as food frequency questionnaires. The approach 

also addresses the inability to simulate all aspects of a human dietary pattern when rodent 

studies are limited to purified diet formulations.

 Summary

This study shows that dietary glycemic load patterns impact the carcinogenic process but 

that more work is needed to identify the characteristics of different glycemic load dietary 

patterns that account for the observed effects. The combinatorial use of both clinical 

approaches and preclinical models affords an opportunity to unmask the beneficial effects of 

diet and nutrition in the prevention and control of cancer.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Effects of high or low glycemic load human diets on body weight gain and the carcinogenic 

response. (A) change in group mean body weight over time. (B) time to event curves; cancer 

latency was delayed by the LGL diet (P = 0.024); final cancer incidence was reduced by 

50% in LGL versus HGL (P = 0.032). (C) mean number of palpable cancers per rat over 

time; final cancer multiplicity was reduced by 40% in LGL versus HGL, (P = 0.030). (D) 

cancer mass per rat (cancer burden) was reduced by 52% in LGL versus HGL (P = 0.037). 

HGL = high glycemic load diet; LGL = low glycemic load diet.
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Fig. 2. 
Effects of high or low glycemic load purified rodents diets on body weight gain and the 

carcinogenic response. (A) change in group mean body weight over time. Time to event 

curves; cancer latency was unaffected by the LGL diet (P = 0.13). (B) final cancer incidence 

was not significantly affected in LGL versus HGL (P = 0.23). (C) ave. number of palpable 

cancers per rat over time; final cancer multiplicity was not significantly affected in LGL 

versus HGL (P = 0.048). (D) cancer mass per rat (cancer burden) was unaffected in LGL 

versus HGL (P = 0.25). HGL = high glycemic load diet; LGL = low glycemic load diet.
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Fig. 3. 
Effect of diets varying in available carbohydrate content on glycemic response in the rat. The 

glycemic response to diets prepared for human consumption whose calculated glycemic load 

was 244 (HGL) and 117 (LGL). (A) when fasted rats were gavaged (1 g carbohydrate/kg 

body weight) with the composite human diets, prepared as described in the methods section, 

the mean area under the curve, using the analysis of incremental area, was 105 (95% CI = 

26.6 to 183.6) and 18 (95% CI = 42.0 to 28.7) for HGL and LGL, respectively. The 

glycemic response for purified rodent diets (Supplementary Table S2). (B) the mean area 

under the curve, using the incremental area method of analysis, was 72 (95% CI = 47.2 to 

96.3) and 19 (95% CI = −37.4 to 76.2) for HGL and LGL, respectively. Factorial analysis of 
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variance of the area under the curve values for each diet (n = 8 per diet group) indicated that 

the low versus high glycemic load diets differed (P = 0.009), but the differences between the 

human and purified rodent diets were not statistically significant (P = 0.705). HGL = High 

glycemic load diet; LGL = low glycemic load diet.
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Fig. 4. 
Effects of high or low glycemic load human diets on patterns of protein expression in 

mammary carcinomas. Multivariate discriminant analysis was used to determine whether 

Western blot data for 26 proteins assessed in mammary carcinomas could distinguish among 

treat groups. (A) To visualize inherent clustering patterns, the scatter plot represents 

unsupervised analysis through PCA. Incomplete separation of treatment groups is observed. 

Model fit: R2X(cum)= 0.747, with 5 components. (B) To determine contributing sources of 

variation, the scatter plot represents supervised analysis of the 2-class OPLS-DA model, 

which rotates the model plane to maximize separation due to class assignment. Complete 
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separation of the 2 classes was observed. Model fit: R2Y(cum) = 0.984, Q2Y(cum) = 0.963. 

(C) To determine the proteins responsible for class separation multivariate analysis was used 

to construct a biplot that identified influential proteins responsible for the separation 

between classes. (D) An S-plot was constructed by plotting modeled correlation in the first 

predictive principal component against modeled correlation from the first predictive 

component. Upper right and lower left regions of S-plots contain candidate proteins with 

both high reliability and high magnitude discriminatory proteins (n = 28). (E) To determine 

the statistical reliability of the proteins shown in (4-D), jack-knifed confidence intervals 

(JKCI) were created on the magnitude of covariance in the first component for the 28 

proteins and sorted in ascending order based on expression in the low glycemic load group; 

proteins with JKCI including 0 were considered not to account for separation.
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Table 1

Effect of dietary glycemic load on plasma analytes

Plasma analyte Low glycemic load diet High glycemic load diet P-value

Glucose (mmol/L) 8.1 ± 1.1 8.2 ± 1.9 0.734

Insulin (pmol/L) 161 ± 24 174 ± 28 0.078

Insulin like growth factor-1 (ug/L) 978 ± 202 1035 ± 149 0.215

hsC-reactive protein (mg/L) 300 ± 42 315 ± 51 0.239

Interleukin-6 (ng/L) 56.9 ± 9.8 61.2 ± 17.9 0.254

Adiponectin (ug/L) 14.2 ± 2.4 11.8 ± 1.1 0.001

Leptin (ug/L) 1.2 ± 0.3 1.4 ± 0.3 0.011

*
Values are means ± SD, n=30. Data were evaluated by ANOVA. P-values shown are unadjusted for the number of endpoints assessed. For 

statistical significance P<0.007 is required (P=0.05/7 (the number of endpoints measured)
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