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Abstract

Infectious disease epidemics such as influenza and Ebola pose a serious threat to global public 

health. It is crucial to characterize the disease and the evolution of the ongoing epidemic 

efficiently and accurately. Computational epidemiology can model the disease progress and 

underlying contact network, but suffers from the lack of real-time and fine-grained surveillance 

data. Social media, on the other hand, provides timely and detailed disease surveillance, but is 

insensible to the underlying contact network and disease model. This paper proposes a novel semi-

supervised deep learning framework that integrates the strengths of computational epidemiology 

and social media mining techniques. Specifically, this framework learns the social media users’ 

health states and intervention actions in real time, which are regularized by the underlying disease 

model and contact network. Conversely, the learned knowledge from social media can be fed into 

computational epidemic model to improve the efficiency and accuracy of disease diffusion 

modeling. We propose an online optimization algorithm to substantialize the above interactive 

learning process iteratively to achieve a consistent stage of the integration. The extensive 

experimental results demonstrated that our approach can effectively characterize the spatio-

temporal disease diffusion, outperforming competing methods by a substantial margin on multiple 

metrics.
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 I. Introduction

Infectious disease epidemics such as influenza and Ebola pose a serious threat to global 

public health. According to a recent World Health Organization (WHO) report [26], seasonal 

influenza alone is estimated to result in about 3 to 5 million cases of severe illness and about 

250,000 to 500,000 deaths each year. In the recent Ebola outbreak in West Africa, there have 

been 27,055 cases and 11,142 deaths [25]. These diseases share two important 

characteristics: (1) They spread through close contacts between people; With increased local 

and global travel, the epidemic is often of large spatial scale. (2) They spread rapidly; for 

example, during the 2009 H1N1 pandemic, the initial case occurred in Mexico in March 

2009; but by the beginning of November 2009, more than 6,000 people had died from H1N1 

influenza [23]. In order to take effective public health measures to mitigate such fast-

developing epidemics, it is crucial to characterize the disease and the evolution of the 

ongoing epidemic efficiently and accurately. To handle this problem, recent research in both 

computational epidemiology and social media mining have achieved important progress and 

demonstrated their respective usefulness in different aspects.

In the field of computational epidemiology, individual-based network epidemiology has 

been developed to study the spatio-temporal dynamics of the spread of epidemics. It 

simulates disease transmission at individual level, and interventions such as vaccinations, 

school closures, and quarantine. High-performance simulation systems have been developed 

that are capable of simulating epidemics using network-based models. Such simulations 

compute the evolution of an epidemic evolution, enabling planners to: (i) forecast the spatio-

temporal spread of the disease; (ii) estimate important epidemic measures such as the peak 

time; and (iii) evaluate the effectiveness of intervention strategies.

Currently, computational epidemiology suffers from the following challenges. 1) Lack of 
spatially fine-grained surveillance data for model tuning. Existing work mostly relies on 

surveillance data provided by the Centers for Disease Control and Prevention (CDC) [10] to 

estimate the model parameters. However, CDC surveillance data only provides state-level 

spatial information, which is insufficient for accurate diffusion modeling within a state. 2) 

Difficulties in tracking the dynamics of contact networks in real time. Intervention, such as 

school closures and vaccinations play an important role in mitigating epidemics by changing 

people’s infectivity and vulnerability and altering the contact network structure. Current 

approaches lack effective mechanisms to monitor the impact of ongoing interventions during 

the current season in real time. 3) High cost and low timeliness of retraining. Existing 

approaches generally rely on batch training based on the CDC surveillance data. However, 

CDC surveillance data is updated weekly, with a delay of at least one week, and thus cannot 

catch up with the real time disease spread.

Social media, on the other hand, can capture timely and ubiquitous disease information from 

social sensors (i.e., social media users) [11]. Social media-based approaches can be 
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classified into two categories: (i) aggregate-level disease surveillance and (ii) detailed 

health-informatics analysis. The first category assumes that self-reported symptoms from 

social media users are reliable signals reflecting the aggregate-level trend of a particular 

outbreak. Among these, some focus on detecting or tracking current influenza outbreaks 

while others aim to forecast the severity of the outbreak. The second category focuses on 

detailed modeling of the social media contents as well as their relevance to health 

informatics, disease geoinformatics, and health behaviors. However, social media mining 

approaches suffer from three major drawbacks. First, as a crucial determinant of the disease 

diffusion pattern, real contact networks are basically unobservable. Estimating social contact 

networks merely based on the location of social media users is neither accurate nor 

sufficient. Second, they generally can only characterize the health information of social 

media users, but not the whole demographic population. Third, they typically only employ 

the disease information retrieved from social media without utilizing disease model 

knowledge.

Although computational epidemiology can model the progress of a disease and the 

underlying disease contact network among individuals, it suffers from a lack of timely and 

fine-grained surveillance data. Social media mining, on the other hand, provides 

spatiotemporal surveillance with good timeliness and geographical details, but is unable to 

observe the underlying contact network and disease progress model. In order to overcome 

the above-mentioned challenges, we propose a novel online semi-supervised deep learning 

framework that integrates the strengths of individual-based epidemic simulation and social 

media mining techniques, named SocIal Media Nested Epidemic SimulaTion (SimNest). 
SimNest is a novel bispace framework that combines computational epidemiology and social 

media data by an interactive mapping, as shown in Figure 1. Specifically, on one hand, the 

health states and interventions actions of social media users are not only identified via their 

posts by deep learning, but also are regularized unsupervisedly by the disease model in 

computational epidemiology. On the other hand, the user health states and parametrized 

disease model learned from social media can provide the computational epidemic model 

with individual-level surveillance and the optimized disease model parameters. This 

interactive learning process between social media and computational epidemiolgoy 

iteratively performs, leading to a consistent stage between these two spaces. The main 

contributions of our study are summarized as:

• Proposing a novel integrated framework for computational 
epidemiology and social media mining: The existing approaches from 

computational epidemiology and social media mining focus on different 

but complementary aspects. The former focuses on modeling the 

underlying mechanisms of disease diffusion while the latter provides 

timely and detailed disease surveillance. SimNest framework utilizes both 

type of information by integrating the strengths of them.

• Developing a semi-supervised multilayer perceptron (MLP) for 
mining epidemic features: To achieve deep integration, we enforce 

unsupervised pattern constraints derived from epidemic disease progress 

Zhao et al. Page 3

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



model onto the supervised classification. Using this semi-supervised 

strategy, the sparsity of labeled data can be solved.

• Designing an online training algorithm: To minimize the inconsistencies 

between Twitter space and the simulated world, we propose to iteratively 

optimize model parameters via an online algorithm. This algorithm ingests 

the social media data streams and updates the model parameters in real 

time, which not only reduces the cost of retraining but also ensures the 

timeliness of the model.

• Conducting extensive experiments for performance evaluations: The 

proposed SimNest model was evaluated using Twitter data collected from 

Jan 2011 to Apr 2015 in 4 states and the District of Columbia in the 

United States. The proposed methods consistently outperformed 

competing methods in multiple metrics. The advantage of integrating the 

complementary strengths of computational epidemiology and social media 

mining is demonstrated.

 II. Related Work

Computational models for epidemiology are important for a number of reasons. 

Traditionally computational epidemiology focused on compartmental models, where a 

population is divided into subgroups (compartments) based on people’s health state and 

demographics, and the epidemic dynamics are modeled by ordinary differential equations 

[20], [24].

Recently, individual-based computational models have been developed to support network 

epidemiology, where an epidemic is modeled as a stochastic propagation over an explicit 

interaction network between people. One common approach taken by network epidemiology 

is to model the interactions between people using random graph models [13], [16]. Here, the 

closed form analytical results obtained can be applied to study epidemic dynamics, but this 

relies on the inherent symmetries in random graphs. With no explicit location modeling, it 

cannot be applied to compute the geographical spread of an epidemic.

Another direction taken by network epidemiology is to develop a realistic representation of a 

population by considering members’ social contact network, and then using individual-based 

simulations to study the spread of epidemics in the network [5], [8]. This approach first 

constructs a synthetic population, where each individual is assigned demographic, 

geographic, social, and behavioral attributes so that at various aggregate levels the synthetic 

population is statistically indistiguishable from the real population. The synthetic individuals 

are also assigned daily activities and their physical locations at any moment, so by 

connecting all persons located within close proximity to each other one can construct the 

corresponding synthetic social contact network for the population [4]. Individual-based 

simulations model epidemics as diffusion processes across this network, and compute who 

infects whom at what time at which location [8]. In addition to the synthetic network and 

disease model, another key component of individual-based epidemic simulations is the 

associated public health and individual interventions, which can be either pharmaceutical 
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such as vaccination, or non-pharmaceutical such as social distancing. These interventions 

affect the epidemic evolution by changing the node or edge properties of the network.

Recently, there have been a number of proposals for influenza epidemic knowledge mining 

techniques based on social media, which can be categorized into two threads. The first 

thread focuses on aggregate level disease surveillance. For example, Krieck et al. [18] 

suggested that self-reported symptoms are the most reliable signal in detecting whether a 

tweet is relevant to an outbreak or not and then went on to demonstrate that this is because 

even though people generally do not identify their specific problem until diagnosed by an 

expert, they readily write about how they feel. Using a similar approach to identify flu-

related tweets, researchers generally concentrated on tracking the overall trend of a 

particular disease outbreak, typically influenza, by monitoring social media [2], [14], [17], 

[28].

The second thread focuses on detailed health-informatics semantic analysis. These 

approaches typically model the language of the social media messages and their relevance to 

public health [22] influenza surveillance [12], disease geoinformatics [15], user interactions 

[9], and health behavior [11]. Paul et al. [22] proposed a topic model that captures the 

symptoms and possible treatments for ailments, and then went on to propose a way to 

identify the geographical patterns in the prevalence of such ailments. Specific to self-

reporting on influenza, Collier et al. [12] categorized five sub-classes of tweets that serve as 

user behaviour response surveys for influenza outbreaks, Dredze et al. [15] focused on 

achieving accurate geographical location identification for influenza outbreak detection, 

Brennan et al. [9] utilized Twitter user interactions to uncover the health condition of Twitter 

users. Tackling the problem from a different direction, Chen et al. [11] concentrated on 

modelling the disease progression in individuals.

 III. Problem Setup

This paper aims to characterize the spatiotemporal diffusion of epidemics across the 

underlying social contact network. Specifically, assume the discrete time increases by 

interval, and there are T such time intervals T = {0, … , t, … , T}. We aim to know for each 

time interval t ∈ T the health states Ƶ of the people in the population. Regarding health state 

transition in a time interval t, we do not distinguish between different moments during the 

interval when it occurs exactly. To address this problem, approaches based on computational 

epidemiology and social media mining are formulated in turn below.

 A. Individual-based epidemic simulation

A disease transmits through people to people contacts. These people-people contacts form a 

network called a social contact network G = (V, ε, W), which is a directed, edge-weighted 

network. Nodes V correspond to individuals in the population. An edge (υ1, υ2) ∈ ε; with 

weight W(υ1, υ2) denotes the nodes υ1 and υ2 ∈ V has a contact of duration W(υ1, υ2). 

During the contact the disease may transmit from node υ1 to υ2 with probability p(W(υ1, 

υ2), τ), where τ, called transmissibility, is probability of transmission per unit of contact 

time and is a parameter associated with the disease. We first assume that the contact network 
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G is constant. In Section VI, we will consider the situation when G changes with 

interventions.

Each person is assumed to be in one of the following four health states at any time: 

susceptible (S), exposed (E), infectious (I), and recovered (R), which is known as the SEIR 

disease model. It is widely used in the mathematical epidemiology literature [3], [20]. 

Associated with each person υ are an incubation period pE (υ) and an infectious period pI(υ), 

each from a distribution. We assume that both are normally distributed, i.e., pE(υ) ~ N(μE, 

σE) and pI(υ) ~ N(μI, σI). A person is in the susceptible state until he becomes exposed. If a 

person υ becomes exposed, he remains so for pE(υ) days, during which he is not infectious. 

Then he becomes infectious and remains so for pI(υ) days. Finally he recovers and remains 

so. The transition S ↦ E is probabilistic. But we assume that once person υ becomes 

exposed, pE (υ) and pI(υ) are sampled from the two normal distributions respectively so their 

values are determined. In sum, given the parameters, let Zυ,t(pE(υ),pI(υ)) ∈ {S,E,I,R} denote 

the health state of person υ ∈ V on time t ∈ T. Therefore, we have Ƶ = {Zυ,t(pE(υ), 

pI(υ))}υ∈V,t∈T, where Ƶ stands for peoples’ inferred health states based on individual-based 

epidemic simulations.

 B. Social media based user health state inference

Social media is a popular way for people to post about their everyday feelings, and is 

commonly treated as a surrogate for the physical world [2]. Taking Twitter as an instance, 

suppose the set of Twitter users who have ever mentioned their flu infectiousness is denoted 

as U ⊆ V, which can increase with Twitter data streams. Each user posts nu,t tweets in each 

time interval t (e.g., hour, day), t = 1, 2, … , T. Define Twitter streams as D = {Du,t}u∈U,t∈T, 

where the matrix  denotes the posts from user u in time t. The (i, j)-th entry, 

denoted as Du,t,i,j, refers to the frequency of the i-th term in the j-th tweet. V refers to the 

vocabulary. Suppose we have a predefined subset of keywords K related to flu, and denote A 
as the corresponding incidence matrix, A ∈ [0,1]|K|×|V|. Define a matrix Xu,t as follows: Xu,t 

= A · Du,t · 1, where 1 denotes a vector of all ones. It is clear that Xu,t ∈ Z|K| × 1 is the vector 

of keywords frequencies from user u at time t. Hence,  denotes the keyword 

vectors of user u, while X = {Xu}u∈U denotes the set of all the keyword vectors. We are 

interested in learning a classifier fW, which maps the social media user textual content Xu,t 

to their corresponding health states Yu,t:

(1)

where Yu,t = 1[Zu,t = I], I stands for “Infectious”, and 1[·] stands for the indicator function. 

Therefore, Yu,t = 1 signifies that user u’s health state Zu,t at time t is infectious (I); and Yu,t 

= 0 that it is not.  denotes all the health states of user u. W denotes the parameter 

set of the classifier.

There are three main challenges when using either individual-based epidemic simulation or 

social media mining techniques individually: (1) There is as yet no surveillance data that is 

sufficiently real-time and fine-grained to permit the detailed progress of the epidemic 
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simulation to be linked consistently with the physical world. (2) The people-people disease 

contact network and disease model is hidden to social media data. (3) The fast-streaming 

and time-evolving nature of huge social media data requires efficient updating of the trained 

model. Traditional batch-based training suffer from high expense and poor timeliness.

In order to overcome the above-mentioned challenges in either of the above threads 

individually, we propose using both types of information by deeply integrating the strengths 

of individual-based epidemic simulation and social media mining techniques in our new 

framework, SocIal Media Nested Epidemic SimulaTion (SimNest), which is elaborated in 

the following section.

 IV. SimNest Model

As shown in Figure 2(A), SimNest learns the users’ health states from social media posts 

based on a multilayer feature representation. Other than considering each time point 

individually, SimNest utilizes disease progress model in computational epidemiology to 

constrain the temporal pattern of health states in two aspects: (1) constraining the infectious 

period to follow a probability distribution in Figure 2(C) and (2) resisting a temporally 

discontinuous health states like in Figure 2(D). As shown in Figure 2(B), by mapping social 

media users’ health states into demographics-based synthetic contact network, an interactive 

learning between these two spaces is achieved. Specifically, simulation model parameters 

are adjusted by the social media surveillance data while the weights of the multilayer-based 

health state model are regularized by the underlying synthetic disease contact network.

To make the underlying health states in the contact network G consistent with those gathered 

from social media data D, SimNest simultaneously optimizes contact network, disease 

progress model parameters pI and pE, and social media-based health state inference fW (·). 

Among all the keyword vectors X, we are given a set of labeled samples 

with corresponding class label , and unlabeled samples , 

where U2 = U − U1 is the set of all the unlabeled users. Mathematically, SimNest model is 

formulated as jointly minimizing the following four loss functions: (A) Supervised loss, (B) 

Bispace consistency loss, (C) Infectious duration loss, and (D) Temporal proximity loss, as 

illustrated as below.

(2)

The different loss functions are illustrated in Figure 2. In the following subsections, we will 

elaborate each of these.

 A. Supervised Loss

To effectively build the mapping fw (·) between tweet texts and user health states, which is 

an abstract concept, we substantialize it by applying deep data representation, namely 

multilayer perception:
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(3)

apart from the input layer that is the tweet text and the output layer that is the user health 

state, another hidden layer represents the abstract semantics, where m is the number of 

hidden layer features. W = W(1) ∪ W(2), where W(1) ∈ ℝ|K|×m is the weight matrix for the 

mapping from text layer to abstract semantics layer, W(2) ∈ ℝm×1 is the weight vector for 

the mapping from abstract semantics layer to the user health status layer and s (·) is the 

sigmoid function. .

A common way to learn W is to define a loss function over the training data, and then obtain 

the best W by minimizing the loss of misclassification towards labels:

(4)

 B. Bispace consistency loss

To sufficiently benefit from the complementary advantages of individual-based epidemic 

simulation and social media data, the inner inconsistency of the integrated model need to be 

minimized. Specifically, the hidden health states in the individual-based epidemic simulation 

need to be consistent with the observations from social media. On the other hand, the 

intelligence gleaned from the social media data also needs to correspond to the hidden 

disease progression across the hidden contact network. More formally, our goal is 

formulated as the following loss function:

(5)

where Qυ,t(G, pE, pI) = 1[Zυ,t(pE(υ), pI(υ))= I], and I stands for the state of “infectious”, as 

introduced in Section III. Θ = {G, pE, pI} are the parameters of individual-based epidemic 

simulaiton and pE(υ) ~ N (μE, σE) and pI(υ) ~ N (μI, σI) are the incubation and infectious 

duration distributions of person υ, respectively.

But it is impossible to link the corresponding person to a specific user in Twitter, and not all 

the people post tweets. Fortunately, however, the specific spatial subregion (e.g., blocks, 

counties, etc.) of Twitter user u ∈ U and simulated individual υ ∈ V can be known. Hence, 

the above loss function can be resorted to a fine-grained spatial subregion:
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(6)

where U2,l denotes the Twitter users in location l, Vl denotes the people in location l, and λ1 

is the parameter scaling the person count in the individual-based epidemic simulation down 

to the count of social media users.

 C. Infectious Period Loss

Existing social media mining techniques typically do not assume a specific disease 

progression model and hence cannot take advantage of its important knowledge pattern. 

Unlike them, SimNest borrows the disease progression model from the epidemic simulation 

to regularize the patterns in the huge unlabeled social media data. This not only greatly 

mitigates the problem of label data sparsity, but also improves the timeliness and 

generalization of the modeling. Specifically, the infectious duration of a Twitter user is 

dependent on the flu outbreak’s characteristics as well as his or her general state of physical 

health, denoted as the following normal distribution:

(7)

By maximizing the likelihood function for the observations, we can obtain the following 

objective function:

which can be transformed to the following formulation by considering Equation 1:

(8)

 D. Temporal Proximity Loss

Another important intrinsic pattern in the health state modeling is that the states in the 

neighboring time points should be similar. Moreover, a person recovering from the flu 

typically cannot get the flu again in the same flu season, as illustrated in Figure 2(D). Thus, 

the infectious dates are temporally consecutive. This fact motivates the loss function for the 

proximity of the neighbor states:
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(9)

 V. Online Training Algorithm

To efficiently solve the optimization problem presented in Equation 2, we propose an online 

parameter optimization framework. It adopts an alternating minimization approach where all 

variables are fixed except for the one being updated.

 A. Solving for W

The process of solving W is based on stochastic gradient descent (SGD) [7]. Training with 

SGD makes it possible to handle very large databases since every update involves one (or a 

pair) of examples, and grows linearly in time with the size of the dataset. The convergence 

of the algorithm is also ensured for low enough values of threshold error.

The derivatives of ℒ1, ℒ3, ℒ3, and ℒ4 can be deduced using backpropagation algorithms and 

its variants1.

 B. Solving for Θ

Solving for Θ = {G,pE,pI} with respect to the loss function ℒ2 is a nonconvex and non-

differentiable problem, so a numerical optimization algorithm such as the Nelder- Mead 

method [7] can be adopted to solve it.

 C. Solving for pI, λ1

The sufficient statistics μI and σI of the infectious period distribution pI have the following 

analytical solution:

(10)

(11)

Solving for λ1 according to the loss function ℒ2 in Equation 6 yields the following analytical 

solution:

1For the detailed deductions, see our supplementary material here: http://people.cs.vt.edu/liangz8/materials/papers/SimNestAddon.pdf

Zhao et al. Page 10

Proc IEEE Int Conf Data Min. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://people.cs.vt.edu/liangz8/materials/papers/SimNestAddon.pdf


(12)

Utilizing the above alternating optimization process, SimNest is trained and utilized to 

forecast the spatiotemporal epidemic diffusion progress in the online fashion illustrated in 

Algorithm 1. Specifically, the unlabeled data set X is continually updated by the social 

media data streams, with the most out-dated data (such as three months old) being replaced 

by the newly-arriving data. Then, the weight matrix W is optimized via a SGD fashion until 

convergence. Utilizing the optimized infectious period distribution as the input for the 

simulation process, the epidemic simulation parameter pE is optimized by minimizing the 

inconsistencies with social media data. Finally, the population’s health status Ƶ is predicted. 

The optimized parameter pE is then utilized for the next-step’s optimization of weight matrix 

W with the updated unlabeled data. Therefore, as the data is streaming, the parameters is 

being optimized with the newest data and the predicted health states Ƶ streams out.

Algorithm 1: Online Algorithm for SimNest

Input: Data matrix X = X1 ∪ X2, Twitter data stream C, contact network G.

Output: the population’s predicted health states Ƶ.

1 Set the learning rate η = 0.5. Initialize weight matrix W as matrix of random values between -1 and 1;

2 repeat

3  Update unlabeled data set X2 by Twitter data stream;

4  repeat

5   Randomly select a labeled sample (Xu,t, Yu,t);

6

   ;

7   Randomly select an unlabeled sample Xu;

8

   ;

9   Randomly select an unlabeled sample Xυ;

10   for i ← 1 to T do

11

    

12   end

13   Randomly select a user u from a location l ∈ L;

14

   ;

15

   ;
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16

   ;

17  until converge;

18

  ;

19

  

20  until the end of data stream;

 VI. Extensions

 A. Dynamics of contact network

In the epidemic diffusion progression, interventions are among the most common and 

effective ways for the government and individuals to reduce the potential impact from 

disease outbreaks. Interventions influence the epidemic diffusion largely by changing the 

people-people contact network. They can be categorized into two types: (1) Pharmaceutical 

(PI) versus (2) Non-pharmaceutical (NPI). PI interventions, such as administering antivirals 

and vaccines, can change the characteristics (e.g., disease transmissibility) of the person 

nodes in the social contact network, while NPI interventions are those actions that 

effectively change the contact network structure, including school closures, quarantine and 

sequestration. Therefore, both types of interventions can result in changes in the social 

contact network.

The SimNest framework accommodates these heterogeneous dynamics of contact network 

effectively via two aspects: (1) Timely intervention actions monitoring based on social 

media data; and (2) Intervention substantialization through the epidemic simulation process. 

Take vaccination as an example. First, tweets like “I just got flu shot, it still hurts.” that 

mention their user Ul’s vaccinations from each subregion l ∈ L are identified by the text 

classifiers. In our experiments, we achieved a 78% identification accuracy based on the 

cross-validation results. For example, Figure 3 shows the users who got the flu shots as 

identified by their Twitter postings during Jan 2011 and Jan 2013 in Virginia. It clearly 

demonstrates both yearly and weekly periodicity and a peak time around November of each 

year. The relative vaccination ratio in different subregions can then be estimated as rl = |

Ul|/λ1|Vl|, where |Vl| is the size of the population in subregion l and λ1 is the population size 

scaling factor from the physical world to the Twittersphere, as calculated by Equation 12. 

Next, in the epidemic simulation SimNest substantializes the vaccinations by reducing the 

transmissibility p(W(υ1,υ2)), (υ1 ∈ Vl or υ2 ∈ Vl) of rl · |Vl| random individuals in region l 
by a ratio, which can either be set by domain knowledge or literature.

 B. Heterogeneous surveillance data

The SimNest framework is also flexible to involve multiple surveillance data sources. In our 

basic problem definition, we only utilize social media data as a fine-grained surveillance 
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data. Other than that, SimNest allows the addition of heterogeneous surveillance data 

sources such as CDC [10] surveillance data for the United States, and Paho [21] surveillance 

data for Latin America. Take CDC surveillance data as an instance, because it is state-level 

weekly aggregate data, to be comparable to it, SimNest aggregates the predicted user health 

states into state-level weekly data and involves the following loss function into Equation 2, 

and get the following equation2:

where C(i) denotes the additional surveillance data on ith time interval. Assume τ′ denotes 

the time interval between two consecutive data points of C, and τ is the interval of time step 

of the discrete simulation system. T′ is defined as the number of timepoints of the 

surveillance data such that T′ = [T · τ′/τ] as= [i · τ′/τ], ae = [(i + 1) τ′/τ] − 1. λ2 is the scaling 

parameter.

 VII. Experiments

In this section, the performance of the proposed SimNest model is evaluated. First, the 

experiment setup is elaborated. Then, the effectiveness of the SimNest model on state-level 

influenza epidemic forecasting is demonstrated on real data by comparing with 8 

comparison methods. In addition, the performance for forecasting fine-grained geographical 

subregion is evaluated.

 A. Experiment Setup

This subsection presents the data preparation, label set and performance metrics.

 1) Dataset—The Twitter data in this paper was retrieved by the following process. First, 

we query the Twitter API with flu-related keywords and retrieve the data during Jan 1, 2011 

and Apr 15, 2015 in the United States. The flu-related keywords include terms such as “flu”, 

“influenza”, and “h1n1”, among others. The retrieved tweets are then classified according to 

whether or not they indicate the infection of their authors. The positive tweets are extracted 

and formed our influenza Twitter set, denoted as D(+). For the classifier, we adopt 

LibShortText [27], a logistic regression model specially designed for classifying short text 

like tweets. The classifier is trained on the existing labeled training set provided by Lamb et 

al. [19]. This training set forms our labeled tweets set, namely the tweets X1 and their labels 

Y1 in Section IV. The input features K of this model are the disease keywords provided by 

Paul and Dredze [22].

The authors U2 of the positive tweets set D(+) are extracted and their tweets posted during 

two weeks before and after their tweets in D(+) are retrieved via Twitter API. After removing 

retweets, this Twitter data set is geocoded and only those tweets with location of interest are 

retained to form the unlabeled Twitter data set X2 defined in Section IV. Four states, 

2The solution of this equation is in our supplementary material
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including Connecticut (CT), Massachusetts (MA), Maryland (MD), and Virginia (VA), and 

the District of Columbia (DC) are utilized for this performance evaluation. The Carmen 

geocoder [15] is utilized to resolve the location of each tweet into a tuple containing 

information at the country, state, county, and city level. About 70% of the tweets in our 

dataset are assigned with a location by Carmen. To generate the contact network, we utilize 

the real demographics for each region. Substantial information about Twitter data and the 

demographics for the five regions are shown in Table I.

 2) Labels and Metrics—For the proposed model and all the competing methods, the 

data between Aug 1, 2011 and Jul 31, 2012 is utilized as the training season, while the data 

between Aug 1 2012 and Jul 31 2014 is used for predicting. The forecasting results for the 

flu outbreaks are validated against the corresponding influenza statistics reported by the 

Centers for Disease Control and Prevention (CDC). The CDC weekly publishes the 

percentage of the number of physician visits related to influenza-like illness (ILI) within 

each major region in the United States. In the experiment, four metrics are adopted, namely 

mean squared error (MSE), Pearson correlation, p-value, and peak time error. MSE stands 

for the mean value of the squared errors between all the predicted data points and 

corresponding label points. Pearson correlation is the covariance of the predicted and label 

data points divided by the product of their standard deviations. It varies from -1 to 1 and the 

larger the value, the stronger the positive correlation between them. The p-value denotes 

how likely the hypothesis of no correlation between the predicted and label data points is 

true. Thus, the smaller the p-value, the Pearson correlation is more statistically significant. 

Lastly, peak time error is the time interval between the predicted peak time (i.e., the week 

with the highest infectious number) and the actual peak time reflected by the CDC label 

data.

 B. State-level influenza epidemic forecasting performance

The performance for forecasting the percentage of ILI visits for each state with different lead 

times is evaluated. Specifically, the lead time vary from 1 week to 20 weeks, which means 

every method forecasts the data point from 1 week until 20 weeks in the future. Due to space 

limitations, we only show the results for Virginia and Connecticut; the results for the other 

states exhibits the similar patterns to these two. In the experiment, our SimNest model 

involves the extensions elaborated in Section VI.

 1) Comparison methods—Our SimNest model is compared with 6 other methods. 

Among them, 4 methods are from social media mining: Linear Autoregressive Exogenous 
model (LinARX) [1], Logistic Autoregressive Exogenous model (LogARX) [2], Simple 
Linear Regression model (simpleLinReg) [17], Multi-variable linear regression model 
(multiLinReg) [14]. Another 2 methods are from computational epidemiology: SEIR [20] 

and EpiFast [6]. Their detailed settings are elaborated in our supplementary materials.

 2) Performance on the Pearson correlation and p-value—Figure 4(a), 4(b), 4(c), 

and 4(d) show the forecasting performance in terms of the Pearson correlation and p-value in 

two states, VA and CT, and for three seasons, 2011-2012, 2012-2013, and 2013-2014. Note 

that every season starts from August 1st and ends at July 31 each year. Also remember that 
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the training period is 2011-2012 while the rest two seasons are both for testing. Overall, 

social media-based methods (i.e., LinARX, LogARX, MultiLinReg, and SimpleLinReg) 

typically achieves high Pearson correlation (i.e., between 0.6-0.95) with small lead time less 

than 2 weeks, but the Pearson correlation decreases all the way below 0 while lead time 

increases to 20. The p-value confirms the statistically significance of the high Pearson 

correlation when the lead time is less than 2 weeks. Computational epidemiology-based 

methods (i.e., SEIR and EpiFast), on the other hand, performs not as well as social media-

based methods with small lead time, but the Pearson correlation does not drop significantly 

when lead time increases. For example, SEIR still can achieve a Pearson correlation around 

0.6 while the lead time is 20 weeks. The reasons are two-folded. First, social media-based 

methods benefit from the real-time surveillance data while computational epidemiology-

based methods use CDC data with a 1-2 week time lag. This difference makes the former 

one advantageous in predicting data points in the nearest future. Second, social media-based 

methods are purely data-driven, while computational epidemiology methods make use of the 

long-term disease progression mechanism. This makes computational epidemiology not too 

sensitive to current data and more robust in the performance. Among all the methods, our 

SimNest model performs the best in overall performance by achieving the highest Pearson 

correlations in Figure 4(a), 4(c), and among the top 3 in Figure 4(b), and 4(d). In addition, 

the consistent low p-value indicates the robustness of our SimNest model. This result 

demonstrates that SimNest successfully takes the advantages of the strengths of both social 

media-based methods and computational epidemiology-based methods.

 3) Performance on MSE and peak time error—Figure 4(e), 4(f), 4(g), and 4(h) 

illustrate the performance on MSE and peak time error of all the methods in VA and CT for 

three seasons. Similar to the facts reflected by the Pearson correlation in Figure 4, the social 

media-based methods outperform computational epidemiology-based methods like SEIR 

and EpiFast in small lead time by achieving low MSE and peak time error. However, while 

the lead time increases, both the two errors of increase by 5-10 times. Computational 

epidemiology-based methods consistently achieves a reasonably well MSE and peak time 

error as low as 2-5 weeks. Our SimNest, again outperforms all the other methods in overall 

performance. Specifically, It achieves an MSE less than 5 × 10−4 consistently in both 

training and testing periods, and achieves the peak time error around 0-4 weeks, which is 

generally 5-15 weeks less than that of social media-based methods, and at least 3-5 weeks 

less than that of computational epidemiology-based methods.

 C. Spatial subregion outbreaks forecasting performance

Individual-based network epidemiology methods such as EpiFast can model the 

geographically detailed epidemic outbreaks. To demonstrate the advantage of embedding 

social media as an individual-level surveillance data, Figure 5 illustrates the comparison 

between the forecasting of ILI visit percentage for different subregions (i.e., counties) within 

the Connecticut state. According to Figure 5(a) and 5(b), our SimNest model outperforms 

EpiFast in the Pearson correlation for Season 2011-2012, Season 2013-2014, and half of 

Season 2012-2013. The p-values of both methods are less than 0.01 for all the three seasons, 

showing a statistically significance on the Pearson correlation comparison of them. Finally, 
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our SimNest model again outperforms EpiFast in MSE for Season 2011-2012, Season 

2013-2014, and half of Season 2012-2013.

 VIII. Conclusions

To achieve timely and accurate epidemic diffusion modeling, computational epidemiology 

and social media mining communities recently have achieved important progress but still 

suffer from their different drawbacks. This paper proposes SimNest, a novel bispace co-

evolving framework to integrate the complementary strengths of computational 

epidemiology and social media mining. Extensive experiments based on multiple states and 

flu seasons demonstrated the advantages of integrating the respective strengths of 

computational epidemiology and social media mining. The detailed geographical subregion 

outbreaks forecasting is also improved by using social media that provides individual-level 

surveillance data.
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Figure 1. 
In SimNest, the simulated world mirrors social media space. The posts of social media users 

reflect their statuses information of health, vaccination, or isolation. This information is 

mapped to the corresponding spatial subregions in the demographics-based contact network 

in the simulated world.
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Figure 2. 
The illustration of the SimNest model.
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Figure 3. 
Counts of Twitter users in Virginia who got flu shot
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Figure 4. 
ILI visits percentage forecasting performance on the Pearson correlation and p-value for VA 

and CT in 3 seasons
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Figure 5. 
ILI visit percentage forecasting performance for Spatial subregions in CT for three flu 

seasons
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Table I

Twitter data set and demographics

Demographics Twitter

state population size #connection #tweets #users

CT 3,518,288 175,866,264 9,513,741 10,257

DC 599,657 19,984,180 12,148,925 7,015

MA 6,593,587 332,194,314 19,785,147 15,005

MD 5,699,478 285,159,648 20,754,218 19,758

VA 7,882,590 407,976,012 15,899,713 14,302
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