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Abstract

Single amino acid variations (SAV) occurring in human population result in natural differences 

between individuals or cause diseases. It is well understood that the molecular effect of SAV can 

be manifested as changes of the wild type characteristics of the corresponding protein, among 

which are the protein stability and protein interactions. Typically the effect of SAV on protein 

stability and interactions is assessed via the changes of the wild type folding and binding free 

energies. However, in terms of SAV affecting protein functionally and disease susceptibility, one 

wants to know to what extend the wild type function is perturbed by the SAV. Here we 

demonstrate that relative, rather than the absolute, change of the folding and binding free energy 

serves as a good indicator for SAV association with disease. Using HumVar as a source for 

disease-causing SAV and experimentally determined free energy changes from ProTherm and 

SKEMPI databases, we achieved correlation coefficients (CC) between the disease index (Pd) and 

relative folding (  and binding ( ) probability indexes, respectively. The obtained CCs 

demonstrate the applicability of the proposed approach and serves as good indicators for SAV 

association with disease.

Keywords

protein folding; protein binding; disease-causing mutations; natural variants; folding free energy; 
binding free energy

 1. Introduction

Human genetic variations result in natural differences among the humans or may cause 

diseases[1]. Genetic variations originate from subtle differences in DNA and it is well know 

that humans share 99.5% of DNA code and only the rest 0.5% results in the uniqueness of 

individuals. However, despite of low occurrence, common genetic variations may contribute 

significantly to human’s susceptibility to common diseases[2–4]. Thus, understanding 

common human genetic variations and associated functional impact is a very important part 

of any genetic study and shows great potential for direct clinical applications[5, 6].
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Genetic differences can be manifested at different levels as a Single Nucleotide 

Polymorphism (SNPs), which is a genetic change of single nucleotide or as non-

synonymous SNP (nsSNP), which results in amino acid change in the corresponding 

transcribed product. In this work we focus on substitutions of single amino acid in the 

corresponding protein and following the literature such a change is termed single amino acid 

variation (SAV) [4, 7–9]. The SAV can affect the corresponding protein’s function and thus 

may be associated with human diseases[10–13]. Predicting disease associated SAV’s effect 

and discriminating disease-causing and harmless SAV is of crucial importance for the early 

diagnostics and medicine [5, 14–17]. However, predicting the effect of disease-associated 

SAV is not a trivial problem[18, 19], prompting many researchers to develop predictive 

algorithms and tools[6, 18–23].

Disease-causing SAV can alter the function of the corresponding protein resulting in 

dysfunctional macromolecule[13, 18, 24–26]. Some disease-causing SAVs affect protein 

stability, resulting in the loss of the protein function[11, 25, 27, 28]. Other disease-causing 

SAVs that occur in protein interaction interface may disrupt the protein interaction network 

by altering the affinity of interacting partners[24, 29, 30]. The effects on protein folding and 

binding can be accessed via the changes of folding free energy (ΔΔG) and binding free 

energy (ΔΔΔG). Many computational and experimental efforts were carried out to determine 

the changes of folding and binding free energies due to SAVs and a large number of 

experimental measurements are collected in databases[31, 32]. However, in terms of SAV 

affecting protein functionally and disease susceptibility, it is also important to know to what 

extend the wild type property is perturbed by SAV. In this work, we investigate two 

quantities, the relative change of the folding (ff ) and binding (fb ) free energies. It is shown 

that relative, rather than the absolute, change of the folding and binding free energy serves as 

a good indicator for SAV association with disease. The original work of Casadio and 

colleagues demonstrated that disease index (Pd ) and folding probability index ( Pp ) are 

linearly correlated, although the obtained correlation coefficient (CC) was not 

impressive[14]. Following their work[14] and our own investigation[26], we show that 

higher CC can be achieved between the and changes of the folding and binding, if one takes 

the relative folding  and binding  probability index instead of the absolute changes.

 2. Materials and Methods

 ProTherm and SKEMPI Databases

In this study, the ProTherm [32] and the SKEMPI [31] databases are used to collect the 

experimentally measured changes of folding and binding free energies. The ProTherm is a 

database providing thermodynamic parameters, structural information, measuring methods, 

experimental conditions and literature information of 25820 entries from 740 different 

proteins. In ProTherm, 12561 single amino acid mutations are available and linked to entries 

in Protein Data Bank (PDB)[33]. The SKEMPI database collects data of the changes in 

thermodynamic parameters and kinetic rate constants for 3047 protein-protein mutants. In 

SKEMPI, structures of the complex are available in the PDB and mutations’ corresponding 

structural regions in proteins are also provided. Since protein’s folding energy is affected by 

many factors including PH, temperature etc., we downloaded the cases satisfying the 
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experimental conditions that 6<pH<8 and 20 °C <T<40°C. Thus, 1925 cases of singe amino 

acid mutations in ProTherm and 2286 cases of singe amino acid mutations in SKEMPI are 

downloaded for the statistical study in this work.

 Relative change of folding and binding free energies (fk)

SAV’s effect on protein stability and binding can be quantified by the changes of folding and 

binding free energies[20, 34]. It can be expected that larger change of the free folding or 

binding energies should have higher probability to be linked to disease. However, the 

magnitude of absolute folding free energy (ΔG) or the absolute binding free energy (ΔΔG) of 

wild type (WT) is very different among proteins, varying from several to tens kcal/mol. The 

same magnitude of change of folding free energy (ΔΔG) may affect the protein stability 

quite differently if the corresponding proteins have very different WT folding free energies. 

For example, several kcal/mol folding free energy change may be devastating for a protein 

with WT folding free energy of the same magnitude, but could have little effect on stability 

of very stable protein with folding free energy above tens of kcal/mol. The same arguments 

can be extended to protein-protein interactions. Strong binder’s functionality may not be 

affected by small changes of the binding free energy, while the recognition of weak binders 

may completely abolished by SAV causing change of the binding free energy of order of a 

kcal/mol. Such considerations prompted us to consider the relative change of the folding and 

binding free energies as an indicator for disease association. Thus, we define the relative 

folding or binding free energy change as:

(1)

where k stands for k=f (folding) and k=b (binding) free energy, ΔΔGk(X,Y) is the change of 

the folding or binding free energy caused by SAV X→Y and ΔGk,w is the wild type folding 

(k=f) or binding (k=b) free energy.

 The relative probability index of protein folding ( ) and binding ( ) free energies

The absolute probability index (Pp ) was introduced by Casadio and colleagues [14] to 

quantify SAV’s probability to increase or decrease protein’s folding stability by 1kcal/mol:

(2)

In the lights of above considerations, instead of using absolute change of binding and 

folding free energy, we calculate the relative free energy change caused by SAVs and use it 

as an indicator for disease association. Thus, we define the relative perturbation index ( ) 

to evaluate the SAV’s probability to affect the protein’s function and to result in disease:

Peng and Alexov Page 3

Proteins. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

where fk is the threshold value determining the relative free energy change to be considered 

disease-causing. It varies from 0 (none of the mutations is disease-causing) to 1 (all 

mutations are disease-causing). The fthreshold is the threshold which shows to what extend 

the wild type stability or binding is perturbed by SAV. The same equation is applied for the 

relative changes of the folding (k=f) and binding (k=b) energies.

 3. Results

The primary goal of our investigation is to find a quantities related to the changes of the 

folding and binding free energies caused by SAV and the corresponding probability of the 

same mutations to be disease causing. The probability of a given type of SAV to be disease-

causing is estimated via the disease index Pd (degree of harmfulness) [14, 26] and tested 

quantities are the relative perturbation indexes,  and .

 Disease index

In our previous work[26], we used the HumVar dataset[21] to obtain the disease index (Pd)

[14], or the degree of harmfulness, for every possible amino acid mutation by taking all 380 

different combinations of 20 natural amino acids. HumVar dataset is released on 2014 and 

contains 69,240 entries, out of which 37,935 termed polymorphism, 24,685 disease and 

6,578 unclassified. Among 380 possible amino mutations, 108 were not observed and 123 

were observed less than 10 times in the HumVar dataset. It is well known that the sample 

size is an important feature of statics study and larger sample sizes generally lead to 

increased precision when estimating unknown parameters. In our case, each SAV has 

different sample sizes and some SAVs are rarely observed in the database. To ensure that the 

corresponding Pd is not calculated for very limited number of cases, we only take mutations 

which are observed more than ten times in the HumVar database. The results for sixty most 

harmful SAVs are shown in Table 1.

 The relative binding and folding probability indexes and determining the selected ratio 
of disease-causing and harmless free energy changes

Previous studies showed that Pd and Pp are linearly correlated indicating that disease 

mechanism is associated with changes of protein stability or protein binding[14, 26, 35]. 

Here we apply  to further explore such a linkage. However, it should be clarified that 

both indexes,  and , depend on the threshold value chosen to classify the free energy 

changes as disease-causing or not. In previous works[14, 26, 35], absolute value of the free 

energy change was used, typically 1kcal/mol. Here we explore different approach by 

requiring that the threshold value of the relative free energy change to be a parameter. Thus, 

in our approach, there is no specific threshold value for the free energy changes, rather the 

cases with sorted free energy changes are dynamically selected to result in selected ratio of 

disease-causing and harmless mutations for each particular SAV type.
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The  and  probability indexes are calculated with the dynamically selected threshold 

value using the databases. Similar to the previous disease index calculation, each SAV shows 

different sample size and rarely observed SAVs tend to have  very sensitive to the 

sample size. Thus, to reduce the effect from the relative rarely observed SAV, we take only 

the SAVs, which are observed no less than 5 times and 10 times in the database to obtain the 

. In the SKEMPI database, there are 64 different SAV type observed for at least five 

times and 20 different SAV types observed for at least 10 times. Also, 50 different mutations 

are observed for at least five times and 29 different mutations are observed for at least 10 

times in the ProTherm database. These truncated datasets are comprised of proteins with 

different WT properties. Thus, the wild type folding free energy varies from −17.2 to −1.2 

kcal/mol within 63 different proteins and the wild type binding free energy varies from 

−20.87 to −4.28 kcal/mol taken within 62 different protein complexes.

 Investigating the correlation between Pd and  as a function of cut-off parameter value 
(fthreshold )

As it was outlined above, the fthreshold determines what relative change (fk) of the folding or 

binding free energy is considered to be disease-causing. Since the optimal value is unknown, 

we carried out an analysis to determine its optimal value. It was done by calculating the 

Pearson product-moment CC between Pd and  systematically altering the fthreshold. 

Figure 1(a) shows the CC of Pd and  using different threshold values. It can be observed 

that CC increases with fthreshold at the beginning and then starts to decrease when fthreshold is 

more than 0.18. This behavior of CC demonstrates that there is an optimal fthreshold that 

provides the best correlation between Pd and . The CC is larger when N >10, perhaps, 

due to better statistics. Therefore, fthreshold =0.18 is selected as the optimal  in our study. 

Similarly, the CC of Pd and  using different fthreshold is shown in figure 1(b). It can be 

seen that CC increases with fthreshold at the beginning and reaches the maximum at fthreshold 

=0.3 for N>5. However, for N>10, CC continues to increase above fthreshold of 0.3, but the 

number of cases lowers resulting in small  (this causes artificial overestimation of CC). 

Because of that, we select fthreshold =0.3 as the optimal  in our study.

To bridge current investigation with previously reported approaches, which used the absolute 

value of the free energy change, typically 1kcal/mol, to classify the free energy changes as 

disease-causing or not, here we carry similar analysis varying the absolute threshold value 

(ΔΔGthreshold ). This results in different ratio of disease-causing and harmless mutations, and 

we perform the absolute probability index calculation with dynamically selected 

ΔΔGthreshold and then calculate the CC of Pd and  to study its change with ΔΔGthreshold 

value. Figure 2(a) shows the CC of Pd and . The results show that CC reaches the 

maximum when ΔΔGthreshold =2kcal/mol for N>5. However, for N>10 situation, the max 

value can’t be determined since CC keeps increasing artificially with the increase of 

ΔΔGthreshold. Similarly, figure 2(b) shows the CC of Pd and . For both N>5 and >10 cases, 

the maximum of CC is achieved at ΔΔGthreshold =1.5kcal/mol. Overall, the results show that 
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2kcal/mol and 1.5kcal/mol are the most optimal threshold value for absolute binding and 

folding Pp.

 The square of residuals (SR)

The above analysis was done with respect to the CC of the linear fitting of either  or 

and Pd. However, the fitting procedure depends of the magnitude of the quantities being 

considered. Alternatively, here we investigate the square of residuals (SR) between either 

 or  and Pd using different threshold value. Linear relation between Pd and the 

corresponding  or  is considered as:

(4)

(5)

where a and b are free coefficients which will be varied and k stands for k=f (folding) and 

k=b (binding) free energy

Then we can calculate the square of residual (SR) as:

(6)

(7)

where the summations runs over all X→Y pairs in corresponding dataset. k stands for k=f 

(folding) and k=b (binding) free energy The goals is to find optimal a and b coefficients 

resulting in smallest SR value.

Firstly, we perform the SR calculation between Pd and  using 1kcal/mol as threshold or 

 using above determined optimal thresholds (for relative indexes fthreshold =0.18 for 

binding and fthreshold =0.3 for folding). The slopes, “a” and “b” parameters, are free 

coefficients which are varied as parameters and the results are shown in Figure 3. It is shown 

that the relation between SR values and slope parameter is a parabolic function and the 

corresponding fitting equation is labeled in each graph. The SR value between Pd and  is 

much smaller than that of the  using 1kcal/mol, which indicates that the  is better 

indicator for Pd.
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Furthermore, we perform the SR calculation between Pd and  or  using above 

determined optimal thresholds (for relative indexes: fthreshold =0.18 for binding and fthreshold 

=0.3 for folding; and for absolute indexes: ΔΔGthreshold =2kcal/mol for binding and 

ΔΔGthreshold =1.5 kcal/mol for folding). The slopes “a” and “b” are also variable parameters 

and the goal is to further compare the performance of two quantities  and . The results 

about binding and folding are shown in figure 4. It can be observed that the SR of  (with 

determined optimal thresholds) is still smaller comparing with absolute Pp (with determined 

optimal thresholds).

Using the fitting equation in each graph, we can determine the minimal SR values and the 

related slope values in each calculation and the results are shown in Table 2. It can be 

observed that  always establishes smaller minimal SR values and the optimal slope 

values for the binding and folding linear model are approximately 

, and .

 Multiple Linear Regression (MLR)

Previous study has proved that disease-causing SAV can affect protein binding stability, 

folding stability and other effects such as protein structure and dynamics [36–39]. Human 

disease index Pd shows the probability of a given type of SAV to be disease-causing and here 

we ask the question if it can be correlated with three components including folding 

probability index, binding probability index and other effects represented by a variable C. 

This correlation between Pd and  or  can be described by the following equations, for 

relative and absolute probability indexes, respectively:

(8)

(9)

where a, b, d, and e are coefficients to be determined. k stands for k=f (folding) and k=b 

(binding) free energy.

To study the disease-causing mutations’ association with both binding and folding free 

energy change, we perform the multiple linear regression (MLR) between Pd and  or 

and calculate the corresponding CC. We take 30 SAV types, which are observed for at least 

five times in both SKEMPI database and ProTherm database, to establish the MLR. Firstly, 

the  and  or  and  as treated as independent variables and used to fit a linear 

equation to Pd data. We perform the MLR between Pd and  (using above determined 

optimal thresholds), between Pd and  (using 1kcal/mol as threshold) and between Pd and 
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 (using above determined optimal thresholds). The results for CC are shown in Table 3 

and the MLR between Pd and  establishes highest 0.61 CC value.

It is known that many mutations have profound effects and can affect both protein folding 

and binding stability. Therefore,  and  or  and  are not completely independent 

and considering them as independent variables in MLR will probably bring in artificial 

errors. Since, the dependence between  and  or  and  is unknown and is hard to 

be quantified, we simply used the larger values between  and  for each type of SAV to 

represent the effects of both folding and binding stability changes. Therefore, in the MLR, 

the larger values among  and  for each type of SAV will be kept to represent both 

folding and binding effects and the smaller values for this SAV will be counted as 0. The 

corresponding CC calculations results are also shown in Table 3 and MLR between Pd and 

 reaches 0.59 CC value, which is also higher than CC value obtained using .

 4. Discussion

The analysis indicates that the relative folding and binding free energy changes serve as 

better indicator for disease association as compared with the absolute energy changes. This 

is demonstrated by better CC and smaller square residual as benchmarked against disease 

indexes delivered from HumVar database. Such an observation is consistent with the 

expectation that weak binders and not very stable proteins will be affected more by 

alterations of the binding and folding free energy (as compared with strong binders and very 

stable proteins) and thus their functionality will be affected in greater manner. As result, they 

may become dysfunctional and the corresponding mutations could be disease-causing. The 

reported approach can be used in conjunction with other fags and characteristics to assist 

developing methods for predicting disease-causing SAVs.
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Figure 1. 

(a) Pearson correlation coefficient (CC) between Pd and  with dynamically selected 

fthreshold. (b) Pearson correlation coefficient (CC) between Pd and  with dynamically 

selected fthreshold. N>5 and N>10 means only the SAVs, which are observed at least five or 

ten times in the datasets, were used for CC calculation.
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Figure 2. 

(a) Pearson correlation coefficient (CC) between Pd and  with dynamically selected 

ΔΔGthreshold. (b) Pearson correlation coefficient (CC) between Pd and  with dynamically 

selected ΔΔGthreshold. N>5 and N>10 means only the SAVs, which are observed at least five 

or ten times in the datasets, were used for CC calculation.
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Figure 3. 

(a) The SR calculation of  (using optimal fthreshold value) and  (using 1kcal/mol 

threshold) when taking N>5. (b) The SR calculation of  (using optimal fthreshold value) 

and  (using 1kcal/mol threshold) when taking N>10. (c) The SR calculation of  (using 

optimal fthreshold value) and  (using 1kcal/mol threshold) when taking N>5. (d) The SR 

calculation of  (using optimal fthreshold value) and  (using 1kcal/mol threshold) when 

taking N>10. N>5 and N>10 means only the SAVs, which are observed at least five or ten 

times in the datasets, will be used for SR calculation.

Peng and Alexov Page 13

Proteins. Author manuscript; available in PMC 2017 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 

(a) The SR calculation of  (using optimal fthreshold value) and  (using optimal 

ΔΔGthreshold value) when taking N>5. (b) The SR calculation of  (using optimal fthreshold 

value) and  (using optimal ΔΔGthreshold value) when taking N>10. (c) The SR calculation 

of  (using optimal fthreshold value) and  (using optimal ΔΔGthreshold value) when taking 

N>5. (d) The SR calculation of  (using optimal fthreshold value) and  (using optimal 

ΔΔGthreshold value) when taking N>10. N>5 and N>10 means only the SAV, which are 

observed at least five or ten times in the datasets, will be used for SR calculation.
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Table 3

The results of the correlation coefficients (CCs) from the multiple linear regressions.

Relative probability index 
(optimal threshold)

Absolute probability index 
(threshod:1kcal/mol)

Absolute probability 
index (optimal threshold)

CC of using independent  and 

0.61 0.44 0.54

CC of using larger value between  and 

0.59 0.40 0.49

Proteins. Author manuscript; available in PMC 2017 February 01.


	Abstract
	1. Introduction
	2. Materials and Methods
	ProTherm and SKEMPI Databases
	Relative change of folding and binding free energies (fk)
	The relative probability index of protein folding (
Ppr,f) and binding (
Ppr,b) free energies

	3. Results
	Disease index
	The relative binding and folding probability indexes and determining the selected ratio of disease-causing and harmless free energy changes
	Investigating the correlation between Pd and 
Ppr,k as a function of cut-off parameter value (fthreshold )
	The square of residuals (SR)
	Multiple Linear Regression (MLR)

	4. Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3

