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Abstract

Single amino acid variations (SAV) occurring in human population result in natural differences
between individuals or cause diseases. It is well understood that the molecular effect of SAV can
be manifested as changes of the wild type characteristics of the corresponding protein, among
which are the protein stability and protein interactions. Typically the effect of SAV on protein
stability and interactions is assessed via the changes of the wild type folding and binding free
energies. However, in terms of SAV affecting protein functionally and disease susceptibility, one
wants to know to what extend the wild type function is perturbed by the SAV. Here we
demonstrate that relative, rather than the absolute, change of the folding and binding free energy
serves as a good indicator for SAV association with disease. Using HumVar as a source for
disease-causing SAV and experimentally determined free energy changes from ProTherm and
SKEMPI databases, we achieved correlation coefficients (CC) between the disease index (~,) and

relative folding (P;'vf and binding (13;"b) probability indexes, respectively. The obtained CCs
demonstrate the applicability of the proposed approach and serves as good indicators for SAV
association with disease.
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1. Introduction

Human genetic variations result in natural differences among the humans or may cause
diseases[1]. Genetic variations originate from subtle differences in DNA and it is well know
that humans share 99.5% of DNA code and only the rest 0.5% results in the uniqueness of
individuals. However, despite of low occurrence, common genetic variations may contribute
significantly to human’s susceptibility to common diseases[2—4]. Thus, understanding
common human genetic variations and associated functional impact is a very important part
of any genetic study and shows great potential for direct clinical applications[5, 6].
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Genetic differences can be manifested at different levels as a Single Nucleotide
Polymorphism (SNPs), which is a genetic change of single nucleotide or as non-
synonymous SNP (nsSNP), which results in amino acid change in the corresponding
transcribed product. In this work we focus on substitutions of single amino acid in the
corresponding protein and following the literature such a change is termed single amino acid
variation (SAV) [4, 7-9]. The SAV can affect the corresponding protein’s function and thus
may be associated with human diseases[10-13]. Predicting disease associated SAV’s effect
and discriminating disease-causing and harmless SAV is of crucial importance for the early
diagnostics and medicine [5, 14-17]. However, predicting the effect of disease-associated
SAV is not a trivial problem[18, 19], prompting many researchers to develop predictive
algorithms and tools[6, 18-23].

Disease-causing SAV can alter the function of the corresponding protein resulting in
dysfunctional macromolecule[13, 18, 24—-26]. Some disease-causing SAVs affect protein
stability, resulting in the loss of the protein function[11, 25, 27, 28]. Other disease-causing
SAVs that occur in protein interaction interface may disrupt the protein interaction network
by altering the affinity of interacting partners[24, 29, 30]. The effects on protein folding and
binding can be accessed via the changes of folding free energy (AAG) and binding free
energy (AAAG). Many computational and experimental efforts were carried out to determine
the changes of folding and binding free energies due to SAVs and a large number of
experimental measurements are collected in databases[31, 32]. However, in terms of SAV
affecting protein functionally and disease susceptibility, it is also important to know to what
extend the wild type property is perturbed by SAV. In this work, we investigate two
quantities, the relative change of the folding (7¢) and binding (£,) free energies. It is shown
that relative, rather than the absolute, change of the folding and binding free energy serves as
a good indicator for SAV association with disease. The original work of Casadio and
colleagues demonstrated that disease index (Py) and folding probability index ( £, ) are
linearly correlated, although the obtained correlation coefficient (CC) was not
impressive[14]. Following their work[14] and our own investigation[26], we show that
higher CC can be achieved between the and changes of the folding and binding, if one takes

the relative folding P,f and binding Plf probability index instead of the absolute changes.

2. Materials and Methods

ProTherm and SKEMPI Databases

In this study, the ProTherm [32] and the SKEMPI [31] databases are used to collect the
experimentally measured changes of folding and binding free energies. The ProTherm is a
database providing thermodynamic parameters, structural information, measuring methods,
experimental conditions and literature information of 25820 entries from 740 different
proteins. In ProTherm, 12561 single amino acid mutations are available and linked to entries
in Protein Data Bank (PDB)[33]. The SKEMPI database collects data of the changes in
thermodynamic parameters and kinetic rate constants for 3047 protein-protein mutants. In
SKEMPI, structures of the complex are available in the PDB and mutations’ corresponding
structural regions in proteins are also provided. Since protein’s folding energy is affected by
many factors including PH, temperature etc., we downloaded the cases satisfying the
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experimental conditions that 6<pH<8 and 20 °C <T<40°C. Thus, 1925 cases of singe amino
acid mutations in ProTherm and 2286 cases of singe amino acid mutations in SKEMPI are
downloaded for the statistical study in this work.

Relative change of folding and binding free energies (fy)

SAV'’s effect on protein stability and binding can be quantified by the changes of folding and
binding free energies[20, 34]. It can be expected that larger change of the free folding or
binding energies should have higher probability to be linked to disease. However, the
magnitude of absolute folding free energy (AG) or the absolute binding free energy (AAG) of
wild type (WT) is very different among proteins, varying from several to tens kcal/mol. The
same magnitude of change of folding free energy (AAG) may affect the protein stability
quite differently if the corresponding proteins have very different WT folding free energies.
For example, several kcal/mol folding free energy change may be devastating for a protein
with WT folding free energy of the same magnitude, but could have little effect on stability
of very stable protein with folding free energy above tens of kcal/mol. The same arguments
can be extended to protein-protein interactions. Strong binder’s functionality may not be
affected by small changes of the binding free energy, while the recognition of weak binders
may completely abolished by SAV causing change of the binding free energy of order of a
kcal/mol. Such considerations prompted us to consider the relative change of the folding and
binding free energies as an indicator for disease association. Thus, we define the relative
folding or binding free energy change as:

AAGL(X,Y)
k AGy ’ 1)

where k stands for k=f (folding) and k=b (binding) free energy, AAG(X,Y) is the change of
the folding or binding free energy caused by SAV X—Y and AGy  is the wild type folding
(k=f) or binding (k=b) free energy.

The relative probability index of protein folding (Pp“f) and binding (P;">b) free energies

The absolute probability index (#,) was introduced by Casadio and colleagues [14] to
quantify SAV’s probability to increase or decrease protein’s folding stability by 1kcal/mol:

P Number of X to Y SAV with |[AAG>1kcal/mol| in the dataset
P Total number of X to' Y SAV in the dataset 2

In the lights of above considerations, instead of using absolute change of binding and
folding free energy, we calculate the relative free energy change caused by SAVs and use it

as an indicator for disease association. Thus, we define the relative perturbation index ( Pp“’“)
to evaluate the SAV’s probability to affect the protein’s function and to result in disease:
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prik_ Number of X to Y SAV with | f1.> fihreshord| in the dataset
P Total numberof X to Y SAV in the dataset ’

@)

where 7 is the threshold value determining the relative free energy change to be considered
disease-causing. It varies from 0 (none of the mutations is disease-causing) to 1 (all
mutations are disease-causing). The firesnosg 1S the threshold which shows to what extend
the wild type stability or binding is perturbed by SAV. The same equation is applied for the
relative changes of the folding (k=f) and binding (k=b) energies.

3. Results

The primary goal of our investigation is to find a quantities related to the changes of the
folding and binding free energies caused by SAV and the corresponding probability of the
same mutations to be disease causing. The probability of a given type of SAV to be disease-
causing is estimated via the disease index P, (degree of harmfulness) [14, 26] and tested

quantities are the relative perturbation indexes, P’ *and By b,

Disease index

In our previous work[26], we used the HumVar dataset[21] to obtain the disease index (~,)
[14], or the degree of harmfulness, for every possible amino acid mutation by taking all 380
different combinations of 20 natural amino acids. HumVar dataset is released on 2014 and
contains 69,240 entries, out of which 37,935 termed polymorphism, 24,685 disease and
6,578 unclassified. Among 380 possible amino mutations, 108 were not observed and 123
were observed less than 10 times in the HumVar dataset. It is well known that the sample
size is an important feature of statics study and larger sample sizes generally lead to
increased precision when estimating unknown parameters. In our case, each SAV has
different sample sizes and some SAVs are rarely observed in the database. To ensure that the
corresponding Pyis not calculated for very limited number of cases, we only take mutations
which are observed more than ten times in the HumVar database. The results for sixty most
harmful SAVs are shown in Table 1.

The relative binding and folding probability indexes and determining the selected ratio
of disease-causing and harmless free energy changes

Previous studies showed that Pyand A~ are linearly correlated indicating that disease
mechanism is associated with changes of protein stability or protein binding[14, 26, 35].

Here we apply Pp“’C to further explore such a linkage. However, it should be clarified that

both indexes, Pg’f and Pp"b, depend on the threshold value chosen to classify the free energy
changes as disease-causing or not. In previous works[14, 26, 35], absolute value of the free
energy change was used, typically 1kcal/mol. Here we explore different approach by
requiring that the threshold value of the relative free energy change to be a parameter. Thus,
in our approach, there is no specific threshold value for the free energy changes, rather the
cases with sorted free energy changes are dynamically selected to result in selected ratio of
disease-causing and harmless mutations for each particular SAV type.
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The Pp“f and P,f”’ probability indexes are calculated with the dynamically selected threshold
value using the databases. Similar to the previous disease index calculation, each SAV shows

different sample size and rarely observed SAVs tend to have P, % very sensitive to the
sample size. Thus, to reduce the effect from the relative rarely observed SAV, we take only
the SAVS, which are observed no less than 5 times and 10 times in the database to obtain the

P;”“. In the SKEMPI database, there are 64 different SAV type observed for at least five
times and 20 different SAV types observed for at least 10 times. Also, 50 different mutations
are observed for at least five times and 29 different mutations are observed for at least 10
times in the ProTherm database. These truncated datasets are comprised of proteins with
different WT properties. Thus, the wild type folding free energy varies from -17.2 to -1.2
kcal/mol within 63 different proteins and the wild type binding free energy varies from
-20.87 to —4.28 kcal/mol taken within 62 different protein complexes.

Investigating the correlation between P4 and Pp“’“ as a function of cut-off parameter value

(fthreshold )

As it was outlined above, the 7 0sn0/0 determines what relative change (7) of the folding or
binding free energy is considered to be disease-causing. Since the optimal value is unknown,
we carried out an analysis to determine its optimal value. It was done by calculating the

Pearson product-moment CC between Pyand By * systematically altering the fiespor

Figure 1(a) shows the CC of Pyand sz"b using different threshold values. It can be observed
that CC increases With fi0sp0/0 at the beginning and then starts to decrease when fixespo/a 1S
more than 0.18. This behavior of CC demonstrates that there is an optimal Fesh0/that

provides the best correlation between Pyand P;’f. The CC is larger when N >10, perhaps,
due to better statistics. Therefore, fi4r0sn0/0=0.18 is selected as the optimal P,f”’ in our study.

Similarly, the CC of Pyand P;,"’f using different f4esh0/4 1S Shown in figure 1(b). It can be
seen that CC increases with fi.esn0/7 at the beginning and reaches the maximum at fxespo/a
=0.3 for N>5. However, for N>10, CC continues to increase above fiesh0/q 0f 0.3, but the

number of cases lowers resulting in small P,Z"f (this causes artificial overestimation of CC).

Because of that, we select fyyasp0/0=0.3 as the optimal Py * in our study.

To bridge current investigation with previously reported approaches, which used the absolute
value of the free energy change, typically 1kcal/mol, to classify the free energy changes as
disease-causing or not, here we carry similar analysis varying the absolute threshold value
(AAGipreshorg)- This results in different ratio of disease-causing and harmless mutations, and
we perform the absolute probability index calculation with dynamically selected

DA Gypresholg @and then calculate the CC of Pyand sz to study its change with AAGreshord

value. Figure 2(a) shows the CC of Pyand Pzﬂ’. The results show that CC reaches the
maximum when AA Gyresnorg =2Kkcal/mol for N>5. However, for N>10 situation, the max
value can’t be determined since CC keeps increasing artificially with the increase of

DA Gprashols Similarly, figure 2(b) shows the CC of AP and Pg . For both N>5 and >10 cases,
the maximum of CC is achieved at AAGypresporg =1.5kcal/mol. Overall, the results show that
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2kcal/mol and 1.5kcal/mol are the most optimal threshold value for absolute binding and
folding 7.

The square of residuals (SR)

The above analysis was done with respect to the CC of the linear fitting of either P} *or Pf
and P, However, the fitting procedure depends of the magnitude of the quantities being
considered. Alternatively, here we investigate the square of residuals (SR) between either

Pg”“ or ij and Py using different threshold value. Linear relation between A;and the

corresponding P,* or Py’ is considered as:

rk__
Pp —an (4)

k
Py=bFy, (5)

where a and b are free coefficients which will be varied and k stands for k=f (folding) and
k=b (binding) free energy

Then we can calculate the square of residual (SR) as:

Square of residuals(relative probability index)= Z (By k —aP;
X ©®)

Square of residuals(absolute probability index)= Z (sz —bPy) 2,
XY (7)

where the summations runs over all X—Y pairs in corresponding dataset. k stands for k=f
(folding) and k=Db (binding) free energy The goals is to find optimal a and b coefficients
resulting in smallest SR value.

Firstly, we perform the SR calculation between P and P;f using 1kcal/mol as threshold or

Pg’k using above determined optimal thresholds (for relative indexes fi4esp0/0=0.18 for
binding and fi4esp0/0=0.3 for folding). The slopes, “a” and “b” parameters, are free
coefficients which are varied as parameters and the results are shown in Figure 3. It is shown
that the relation between SR values and slope parameter is a parabolic function and the

corresponding fitting equation is labeled in each graph. The SR value between Pyand Pp"’“ is

much smaller than that of the sz using lkcal/mol, which indicates that the P;’“ is better
indicator for Pd.
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Furthermore, we perform the SR calculation between P and Plf or Pg”“ using above
determined optimal thresholds (for relative indexes: firashoiy=0.18 for binding and fixespofg
=0.3 for folding; and for absolute indexes: AA Gixreshols =2Kkcal/mol for binding and
DAGpreshold=1.5 keal/mol for folding). The slopes “a” and “b” are also variable parameters

and the goal is to further compare the performance of two quantities Pp“’" and Pj. The results

about binding and folding are shown in figure 4. It can be observed that the SR of PZZ”“ (with
determined optimal thresholds) is still smaller comparing with absolute £, (with determined
optimal thresholds).

Using the fitting equation in each graph, we can determine the minimal SR values and the
related slope values in each calculation and the results are shown in Table 2. It can be

observed that Pp“k always establishes smaller minimal SR values and the optimal slope
values for the binding and folding linear model are approximately

Py=0.96P)7, P;=0.84P;", P;=1.25P], and P;=0.98P..

Multiple Linear Regression (MLR)

Previous study has proved that disease-causing SAV can affect protein binding stability,
folding stability and other effects such as protein structure and dynamics [36—-39]. Human
disease index Pyshows the probability of a given type of SAV to be disease-causing and here
we ask the question if it can be correlated with three components including folding
probability index, binding probability index and other effects represented by a variable C.

This correlation between Pyand PZZ"’“ or P[ﬂ“ can be described by the following equations, for
relative and absolute probability indexes, respectively:

Py=aPy 0P +C (g

Py=dP]+eFP)+C, (qg)

where a, b, d, and e are coefficients to be determined. k stands for k=f (folding) and k=b
(binding) free energy.
To study the disease-causing mutations’ association with both binding and folding free

energy change, we perform the multiple linear regression (MLR) between P and P;”“ or Pp’f
and calculate the corresponding CC. We take 30 SAV types, which are observed for at least
five times in both SKEMPI database and ProTherm database, to establish the MLR. Firstly,

the P/ and P, or P/ and P! as treated as independent variables and used to fit a linear
equation to Pydata. We perform the MLR between Pyand PIZ"k’ (using above determined

optimal thresholds), between P and P]f (using 1kcal/mol as threshold) and between Pyand
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sz (using above determined optimal thresholds). The results for CC are shown in Table 3

and the MLR between Pyand Ppr’k establishes highest 0.61 CC value.

It is known that many mutations have profound effects and can affect both protein folding

and binding stability. Therefore, P,/ and ;" or P/ and P, are not completely independent
and considering them as independent variables in MLR will probably bring in artificial

errors. Since, the dependence between P,/ and P, or P/ and P is unknown and is hard to

be quantified, we simply used the larger values between sz and PIf for each type of SAV to
represent the effects of both folding and binding stability changes. Therefore, in the MLR,

the larger values among P]f and Pf,’ for each type of SAV will be kept to represent both
folding and binding effects and the smaller values for this SAV will be counted as 0. The
corresponding CC calculations results are also shown in Table 3 and MLR between Pyand

Py* reaches 0.59 CC value, which is also higher than CC value obtained using Py.

4. Discussion

The analysis indicates that the relative folding and binding free energy changes serve as
better indicator for disease association as compared with the absolute energy changes. This
is demonstrated by better CC and smaller square residual as benchmarked against disease
indexes delivered from HumVar database. Such an observation is consistent with the
expectation that weak binders and not very stable proteins will be affected more by
alterations of the binding and folding free energy (as compared with strong binders and very
stable proteins) and thus their functionality will be affected in greater manner. As result, they
may become dysfunctional and the corresponding mutations could be disease-causing. The
reported approach can be used in conjunction with other fags and characteristics to assist
developing methods for predicting disease-causing SAVS.
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(a) Pearson correlation coefficient (CC) between P and P;,”’b with dynamically selected

Tinresnola (b) Pearson correlation coefficient (CC) between Pyand By / with dynamically
selected fixresnoi- N>5 and N>10 means only the SAVs, which are observed at least five or
ten times in the datasets, were used for CC calculation.
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Figure 2.
(a) Pearson correlation coefficient (CC) between P,and Plf with dynamically selected

DAGreshola (b) Pearson correlation coefficient (CC) between P and PJ with dynamically
selected AAGypresnors N>5 and N>10 means only the SAVs, which are observed at least five
or ten times in the datasets, were used for CC calculation.
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Figure 3.
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@=Relative Ppf (N>10)
y = 2.5834x7 - 5.3624x + 3.5631

==Absolute Ppf (N>10)

Relative Ppb(N>10)
==Absolute Ppb (N>10)

(a) The SR calculation of Pg’f (using optimal 74e5n0/0 Value) and PIf (using 1kcal/mol

threshold) when taking N>5. (b) The SR calculation of Pp"f (using optimal fyresposg Value)

. . . T,b .
and sz (using 1kcal/mol threshold) when taking N>10. (c) The SR calculation of £, (using

optimal fyespoiy Value) and P; (using 1kcal/mol threshold) when taking N>5. (d) The SR

calculation of P;”’ (using optimal fiesp0g Value) and sz (using 1kcal/mol threshold) when
taking N>10. N>5 and N>10 means only the SAVs, which are observed at least five or ten
times in the datasets, will be used for SR calculation.
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Figure 4.
(a) The SR calculation of Pg’f (using optimal 74e5n0/0 Value) and PIf (using optimal

AAGipresholg Value) when taking N>5. (b) The SR calculation of Pp“f (using optimal Freshorg
value) and Plf (using optimal AAGyresnolg Value) when taking N>10. (c) The SR calculation
of Pp“b (using optimal 745n0/0 Value) and P]f (using optimal AA Gyrespholg Value) when taking

N>5. (d) The SR calculation of P};” (using optimal feshoisvalue) and P (using optimal
DA Gypresholg Value) when taking N>10. N>5 and N>10 means only the SAV, which are
observed at least five or ten times in the datasets, will be used for SR calculation.
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Table 3

The results of the correlation coefficients (CCs) from the multiple linear regressions.
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Relative probability index
(optimal threshold)

Absolute probability index
(threshod: 1kcal/mol)

Absolute probability
index (optimal threshold)

f b
CC of using independent P;D and PP

0.61

0.44

0.54

Pb

f
CC of using larger value between PP and P

0.59

0.40

0.49
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