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Abstract

Oncogenic Ras proteins are a driving force in a significant set of human cancers and wild-type, 

unmutated Ras proteins likely contribute to the malignant phenotype of many more. The overall 

challenge of targeting activated Ras proteins has great promise to treat cancer, but this goal has yet 

to be achieved. Significant efforts and resources have been committed to inhibiting Ras, but these 

energies have so far made little impact in the clinic. Direct attempts to target activated Ras proteins 

have faced many obstacles, including the fundamental nature of the gain-of-function oncogenic 

activity being produced by a loss-of-function at the biochemical level. Nevertheless, there has been 

very promising recent pre-clinical progress. The major strategy that has so far reached the clinic 

aimed to inhibit activated Ras indirectly through blocking its post-translational modification and 

inducing its mislocalization. While these efforts to indirectly target Ras through inhibition of 

farnesyl transferase (FTase) were rationally designed, this strategy suffered from insufficient 

attention to the distinctions between the isoforms of Ras. This led to subsequent failures in large-

scale clinical trials targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these 

setbacks, efforts to indirectly target activated Ras through inducing its mislocalization have 

persisted. It is plausible that FTase inhibitors may still have some utility in the clinic, perhaps in 

combination with statins or other agents. Alternative approaches for inducing mislocalization of 

Ras through disruption of its palmitoylation cycle or interaction with chaperone proteins are in 

early stages of development.
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 1. INTRODUCTION

Mutated Ras proteins play critical roles in both the development [1] and maintenance of 

tumors [2, 3]. In contrast to the increasingly successful therapeutic targeting of other driving 

oncogenes to treat human cancer [4], Ras has yet to be effectively blocked in the clinic [5]. 

This void is particularly serious because Ras mutations are the most prevalent oncogenic 

events in human cancer. Although previous estimates of 30% incidence of Ras mutations in 

human cancers are likely high due to selection bias for certain tumor types with particularly 

high rates, an average pan-Ras mutation incidence of 16% points to the potential that would 

result if effective targeting could be achieved [6]. Positive Ras mutation status is not only a 

major driver of disease, it also correlates with poor prognosis and resistance to therapy [7], 

for example in colorectal carcinoma and lung adenocarcinoma [8, 9].

Ras proteins are the products of genes that were the first identified human oncogenes [10]. 

There are three human Ras genes that code for four distinct proteins: H-Ras; N-Ras; and two 

variants of K-Ras produced by alternative splicing, K-Ras4A and K-Ras4B. We are still 

discovering fundamental new information about these isoforms. For example, K-Ras4A used 

to be viewed as a minor variant and was less studied, recent application of isoform-specific 

PCR and antibodies has shown expression at significant levels in all human cancer cell lines 

and tissue specimens tested [11]. This result is particularly notable in light of previous 

evidence that K-Ras4A may have an important role in lung carcinoma [12]. While the Ras 

proteins all have identical effector domains, studies have shown that these isoforms have 

some distinct functions [13–15]. For example, K-Ras is the only form that binds to 

calmodulin [16], that can confer stem-like properties to certain cell types [7], and that has 

essential functions in mouse embryogenesis [17, 18]. Insertion of H-Ras at the K-Ras locus 

allows embryonic development, but then reveals a late-onset cardiomyopathy [19].

In regard to the pathologic expression of each isoform, K-Ras is mutated most often, 

particularly in pancreatic, intestinal, cholangio, and lung carcinomas, while N-Ras is 

mutated more in certain skin and hematopoietic cancers. H-Ras mutations are less common, 

but occur more in salivary gland and urinary tract cancers [6]. Further examination of the 

mouse model that has H-Ras inserted at the K-Ras locus shows that carcinogen-induced 

pulmonary tumorigenesis is maintained at a similar rate, with the lung cancers now driven 

by oncogenic H-Ras [12]. This spectrum of results suggests that the pattern, timing and level 

of expression of the Ras protein, rather than the specific isoform, may be more crucial for 

some aspects of development and tumorigenesis. Nevertheless, there are also some isoform-

specific functions. Such discrepancies between isoforms are generally ascribed to 

differences in their short hypervariable regions (which are located just before the C-termini) 

and associated with their distinct subcellular locales [20–22].

In addition to the driving roles played by oncogenically-mutated Ras, it is likely that 

unmutated Ras proteins may also contribute to human cancers. For example, oncogenic K-

Ras activity may require functional H-Ras or N-Ras to drive its effects [23, 24]. Further, 

activated wild-type Ras proteins may also promote cancers that do not harbor mutated Ras. 

For example, in breast cancer Ras mutations are rare, but there is strong evidence that 

increased growth factor and HER2 signaling induce over-activated Ras proteins to produce 
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the transformed phenotype [25–27]. In type 1 neurofibromatosis (NF1), the loss of 

expression of neurofibromin, which normally functions to deactivate Ras, provides a route 

for over-activated Ras proteins to drive tumor formation [28–30]. Sporadic loss of 

neurofibromin expression likely drives Ras activation in other cancers, such as melanoma 

and lung adenocarcinoma, where it has also been linked to treatment resistance [31, 32].

Ras proteins drive pathways that can regulate perhaps all of the characterized hallmarks of 

cancer [33]. Thus, effective blockade of activated Ras could lead to beneficial outcomes if it 

could be achieved with acceptable levels of toxicity. The current status of several potential 

approaches are discussed below, with reference to the complexity of the Ras isoforms, and 

the degree to which there is a need to consider both the mutated and wild-type proteins. The 

focus will be on the status of attempts to directly target the protein, and to indirectly target it 

through induced mislocalization. The ongoing efforts to target pathways downstream of 

activated Ras, and that are beginning to prove useful in cancer treatment [34], have been 

reviewed elsewhere [5, 35].

 1.1. Direct Targeting of Ras

There are several barriers to direct therapeutic targeting of activated Ras. The first problem 

is that Ras is a small GTPase that is regulated through a cycle of GTP binding for activation 

(which is stimulated by guanine nucleotide exchange factors or GEFs) and then GTP 

hydrolysis to GDP for deactivation (which is stimulated by GTPase-activating proteins, or 

GAPs) [36], see (Fig. 1). Thus the conventional understanding of direct inhibition of an 

enzyme, i.e., to block its enzymatic activity, would actually produce an increase in the GTP-

bound, activated fraction of Ras and so be the opposite of the mechanistic goal. Structural 

analyses of Ras indicated that it was unlikely that a small molecule could be designed to 

restore to oncogenic variants the lost GTPase activity and sensitivity to GAPs [37]. 

Furthermore, screening efforts to discover such compounds failed [7]. A related problem 

underlies the challenge of targeting Ras for treatment of NF1 [38]. The Ras in this case is 

wild-type and so maintains its endogenous GTPase activity, with the over-activation caused 

by loss of expression of the GAP, neurofibromin [28, 29]. There is no clear route to design a 

small molecule that could replace the lost expression and activity of neurofibromin.

The second problem is that Ras binds GTP with picomolar affinity, and so it has not 

generally been feasible to design a small molecule that can displace the activating nucleotide 

[39]. This situation differs significantly from protein kinases, where ATP binding typically 

occurs with micromolar affinity. As a result, small molecule nucleotide analogues (typically 

with nanomolar affinities) effectively block ATP binding to kinases, but are unable to disrupt 

GTP binding to Ras [40]. Recent publications involving the GDP analog named SML-8-73-1 

by Gray, Westover and colleagues provide the first example of success in this area [41, 42]. 

These groups, and that of Shokat [43], have addressed an interesting premise: why not target 

the activating, mis-sense substitution itself? Such an approach would have elegant selectivity 

for the pathological driver. Their efforts have produced small molecules that target K-Ras 

with the G12C mutation, which commonly occurs in tobacco-induced lung cancer [44]. The 

feasibility of such covalent targeting is supported by recent studies with ibrutinib, which 

binds a cysteine in the active site to inhibit Bruton’s tyrosine kinase. Although the 
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compounds targeting Ras have only been shown to act in vitro so far, the approval of 

ibrutinib for treatment of relapsed mantle cell lymphoma provides a paradigm for this 

approach [45]. Shokat and colleagues developed a set of small molecules that could 

irreversibly bind to K-Ras G12C and prevent mutant protein—but not wild-type—from 

entering the GTP-bound state [43]. In parallel efforts, Gray and Westover and colleagues 

identified a GDP analog (SML-8-73-1) and a prodrug derivative (SML-10-70-1) that had the 

ability to covalently bind and specifically inactivate K-Ras G12C by leaving it in an open 

conformation that cannot interact productively with effectors [41, 42]. Although the 

compounds will require significant further pre-clinical optimization [46], these 

developments have rejuvenated interest in directly targeting Ras.

The third problem is that the function of activated Ras-GTP is transmitted through its 

formation of complexes with effectors [47], and small molecule inhibition of such 

protein:protein contacts has often proved difficult [48]. The structure of Ras does not have 

any clearly exploitable pockets to target, and allosteric regulation sites have not been 

revealed [43, 49]. A proof-of-principle study used expression of a blocking antibody 

fragment to demonstrate that oncogenic function of mutated K-Ras could be inhibited in a 

mouse model [50]. These results are a successor to earlier studies in which micro-injection 

of Ras antibodies into fibroblasts demonstrated the essential role of proto-oncogenic Ras 

function in serum stimulation of G1-to-S phase progression [51]. Recently, Kataoka and 

colleagues demonstrated that binding of H-Ras.GTP to c-Raf1 could be inhibited by small 

molecules both in vitro and in vivo. These inhibitors were also capable of down-regulating a 

number of Ras-driven pathways, and were orally active against a K-Ras driven colon cancer 

xenograft [52].

Another potential mechanism to inhibit Ras activation would be to block its activation by a 

GEF. Progress has recently been made in this area by disruption of Ras interaction with Son 

of Sevenless (Sos) [49, 53, 54]. On the other hand, the ultimate utility of targeting the GEF 

step has not yet been determined. Given that Ras mutations favor constitutive signaling, it 

seems likely that wild-type proteins would be significantly more dependent on GEF 

interaction, i.e., there is probably differential reliance on basal vs. stimulated nucleotide 

exchange [24, 54, 55]. Thus it is plausible that disrupting Sos activation of normal Ras could 

lead to unwanted toxicity if oncogenic Ras is the desired target.

The degree to which inhibitors of Sos/Ras interaction will also block Ras activation by other 

GEFs has generally not been defined. Sos is likely the principal activating pathway for Ras 

as a driver of cellular proliferation [56] and thus the logical target for these efforts. If 

compounds also block other GEFs that activate Ras in different contexts, then adverse events 

could occur. For example, Ras-GRP GEFs play critical roles in regulation of Ras in 

lymphocytes to control immune functions [57]. In T cells, subtle regulation of Ras 

determines development and selection, and small perturbations in Ras activation could lead 

to auto-immune dysfunction [57–59]. Another important example is provided by Ras-GRF 

GEFs that regulate neuronal Ras, particularly the H-Ras isoform [60], to control synaptic 

plasticity [61, 62]. Ras-GRF control of Ras is likely to integrate multiple neurotransmitter 

and neurotrophic pathways [63–67]. Disruption of Ras activation in the brain is strongly 
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linked to disordered cognition and mental retardation [68]. It is clear that the accurate 

regulation of Ras is vital for normal functioning.

 1.2. Indirect Targeting of Activated Ras Through Inhibition of Prenylation to Cause 
Mislocalization

Ras proteins require a sequence of post-translational modifications to appropriately localize 

to membranes and become functionally active [69–71], see (Fig. 2). The demonstration that 

correct localization was essential for Ras’s transformative activity was the basis for a 

strategy to block Ras-driven cancers by inhibiting these modifications [72, 73]. In addition, 

selective toxicity might occur if mislocalized, constitutively-active Ras brought related 

signaling molecules to an abnormal environment [72, 74]. The initial step in the series that 

leads to membrane association and activity is the post-translational prenylation of the 

cysteine residue in the CaaX sequence (where C is cysteine, “a” is any residue (typically 

aliphatic), and X is glutamine, methionine, serine or leucine) found at the carboxyl terminus 

of Ras. Prenylation entails the covalent attachment of farnesyl or geranylgeranyl moieties to 

the cysteine catalyzed by farnesyl transferase (FTase) or geranylgeranyl transferase-I 

(GGTase-I), respectively [75]. Which moiety is attached depends on the CaaX sequence, and 

if a farnesyltransferase inhibitor (FTI) is present. All Ras molecules preferably undergo 

farnesylation. However, if an FTI is present, then K- and N-Ras, because of a leucine at the 

“X” position, can undergo geranylgeranylation by GGTase-I [76–78].

 1.2.1. Inhibition of Prenylation by Suppressing Isoprenoid Synthesis—A 

popular strategy for disrupting Ras localization targeted prenylation. One general approach 

targets isoprenoid biosynthesis. Farnesyl pyrophosphate (FPP) and geranylgeranyl 

pyrophosphate (GGPP), which are co-substrates in FTase and GGTase-I reactions 

respectively, are intermediates in the cholesterol biosynthetic pathway [73], see (Fig. 2). 

Presumably, limiting the supply of precursors needed for FPP and GGPP synthesis should 

reduce prenylation. Early studies focused on the use of statins (e.g., particularly lovastatin) 

to inhibit HMG-CoA reductase. Preclinical studies with lovastatin indicated that it could 

inhibit prenylation in cultured cells. Furthermore, it showed promising therapeutic effects in 

murine tumor xenograft studies and, in some cases, the therapeutic effect correlated with 

reductions in the tumors’ prenylated Ras content [79, 80]. However, the concentrations 

needed to affect Ras prenylation in these preclinical studies are unattainable in humans 

because of dose limiting toxicity [81]. Specifically, although a lovastatin plasma level of 3.9 

μM was achieved in a phase I clinical trial, it could not be maintained because of toxicity 

[82]. Treatment of cultured vascular smooth muscle cells with 3 μM lovastatin was sufficient 

to greatly impair their proliferation and reduced prenylation of RhoB, but had negligible 

effect on Ras [83]. The upper range of tolerable lovastatin dosing in humans results in 

plasma levels of ~225 nM and does not affect Ras processing in peripheral blood cells [84]. 

Irrespective of this limitation, statins continue to be widely used in preclinical studies, 

especially in combinational protocols, at concentrations ≥ 10 μM. Although sufficient to 

modulate Ras prenylation, such concentrations are physiologically irrelevant since they 

cannot be achieved in humans. There have also been recent clinical trials with statins with 

the goal of improving cognitive functions in children and adults with NF1. Despite the 

previous results in humans, the rationale for these studies is that there will be an inhibition 
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of Ras [85–87]. The largest trial, with 84 children and a placebo-controlled, double-blind 

design, failed to demonstrate any beneficial effects of simvastatin treatment [87].

Nitrogen-containing bisphosphonates (nBPs) are synthetic analogues of inorganic 

pyrophosphate. They readily bind Ca2+ and have a very high affinity for areas of bone 

undergoing osteoclastic resorption [88–90]. Because of this affinity, and their cytotoxicity 

towards osteoclasts, nBPs have been used in the treatment of osteoporosis, Paget’s disease, 

and metastatic bone disease [90, 91]. Like statins, nBPs suppress isoprenoid synthesis, but 

do so by inhibiting farnesyl pyrophosphate synthase (FPP synthase), the enzyme 

immediately responsible for the generation of FPP, which is the precursor to GGPP [89, 92], 

see (Fig. 2). In vitro studies, with a variety of cell types, demonstrated that nBPs suppress 

the conversion of [14C]mevalonate into [14C]FPP and [14C]GGPP [89, 93], reduce the 

prenylation of Ras [93] and Rap1A [89], and cause a loss of membrane-associated Ras [94]. 

In addition to their proven effectiveness in the treatment of a variety of osteoclast-mediated 

bone conditions, mouse xenograft studies suggest that nBPs may be useful in the treatment 

of some non-bone-related cancers [89, 95]. At issue is whether these latter in vivo anti-

cancer effects are mediated by protein deprenylation.

An alternative approach for modifying production of isoprenoids entails the targeted 

inactivation of geranylgeranyl diphosphate synthase (GGDPS), a cytosolic enzyme 

responsible for the conversion of FPP to GGPP [95]. A variety of isoprenoid 

bisphosphonates have been synthesized that selectively inhibit the in vitro activity of 

purified GGDPS with high nM to low micromolar potency [95–97], see (Fig. 2). Cell culture 

studies confirmed that the more potent of these also suppressed the prenylation of Rap1A (a 

GGTase-I substrate) and Rab6 (a GGTase-II substrate) to a level comparable to 10 μM 

lovastatin [96, 97]. However, unlike lovastatin, the GGDPS inhibitors did not affect the 

prenylation of Ras [96, 97]. Furthermore, it has been reported that cotreatment of cultured 

K562 leukemia cells with lovastatin and the GGDPS inhibitor digeranyl bisphosphonate 

resulted in a synergistic suppression of both Rap1a and Rab6 prenylation, but an antagonism 

of lovastatin’s inhibitory effects on Ras prenylation [96]. This is not surprising since 

inhibition of GGDPS activity would lead to a build up of FPP, and thus favor the 

farnesylation of Ras. Interestingly, concentrations of the GGDPS inhibitor digeranyl 

bisphosphonate sufficient to inhibit prenylation in cultured K562 cells also suppressed cell 

growth and induced apoptosis [96]. Furthermore, the anti-proliferative and pro-apoptotic 

activities of digeranyl bisphosphonate were synergistically enhanced by co-treatment with 

lovastatin [96]. These latter findings suggest that prenylated proteins other than Ras may be 

the targets and basis for the anti-proliferative/pro-apoptotic activities of some prenylation 

inhibitors.

 1.2.2. Inhibitors of Prenylation Enzymes—A second general approach for 

modulating Ras prenylation involves suppression of FTase or GGTase-I catalytic activities. 

This entails the use of agents that suppress prenylation by competing with FPP, GGPP, or 

CaaX containing protein substrates for binding to FTase or GGTase-I, see (Fig. 2). Early 

attempts focused on the development of FTIs, and an extensive preclinical literature 

accumulated indicating that FTIs were effective at reversing H-Ras-mediated transformation, 

and suppressing H-Ras driven tumor xenografts in mice [98–100]. This strategy became the 
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dominant one for targeting oncogenic Ras [101]. Ultimately, six different FTIs entered 

clinical trials [i.e., tipifarnib (aka R115777 or Zarnestra), lonafarnib (aka SCH66336 or 

Sarasar), BMS-214662, L778123, L744832 and FTI-277]. Of the six, the CaaX box 

competitive inhibitor tipifarnib advanced the farthest and was tested in stage III trials 

involving colorectal and pancreatic cancers [102, 103]. The results of these stage III 

tipifarnib studies were very disappointing. No significant anti-tumor activities were 

observed. In retrospect, an obvious explanation for the failure of these trials was the focus on 

malignancies driven by activated K-Ras, which are able to undergo alternative 

geranylgeranylation in the presence of an FTI [76–78].

Although a logical explanation exists for the negative outcomes of the tipifarnib phase III 

trials, the lack of efficacy branded FTIs as being failed drugs for the treatment of human 

cancer. Unfortunately that perception has persisted in spite of more recent studies indicating 

that FTIs may be useful in the treatment of astrocytomas, gliomas, and a subset of patients 

with hematological cancers [104–106]. It is not clear whether inhibition of Ras prenylation 

underlies any of these responses, however. Lonafarnib, which also advanced as far as phase 

II/III cancer trials, has more recently shown great promise as a novel therapy for progeria 

[107]. In this case the rationale is to block farnesylation of a variant of lamin-A, not Ras. It 

is, however, still plausible that FTIs may be effective against cancers that are driven by 

oncogenic H-Ras, which would not be able to escape inhibition through undergoing 

alternative prenylation [see [5] for review]. Mutated H-Ras is present in approximately 3% 

of human cancers [35]. Tumor profiling is already identifying patients with oncogenic H-Ras 

[108]. Perhaps by supporting such results with bioinformatic analysis to delineate driving 

pathways [109], it might be possible to select a patient population who may be primed to 

respond in a FTI clinical trial.

Both pharmacological and molecular approaches have documented the contributions of 

GGTase-I to Ras prenylation, so it is reasonable to ask whether it would be possible to 

achieve effective inhibition of K-Ras prenylation and localization by the combined inhibition 

of both FTase and GGTase-I. For example, K-Ras prenylation is maintained in cells/tissues 

derived from mice deficient in either FTase or GGTase-I due to a conditional knock out of 

the b-subunit of either enzyme [110]. However, dual deficiency in FTase and GGTase-1 

reduces K-Ras prenylation in both cell lines and tissues derived from knockout mice [110]. 

Similarly, cotreatment with FTI and GGTase-I inhibitors (GGTIs) facilitates the 

deprenylation of both N- and K-Ras in cultured cells and murine xenograft models [99, 111, 

112]. However, doses of GGTIs sufficient to block K-Ras prenylation in vivo were observed 

to be toxic, and lethal if chronically administered [111]. Furthermore, the anti-tumor activity 

of GGTIs towards models driven by activated K-Ras has been reported to be independent of 

K-Ras prenylation status [99, 113].

In addition to combinations of molecules that selectively target FTase or GGTase-I, 

considerable effort has gone into the synthesis of dual prenyltransferase inhibitors (DPIs), 

see (Fig. 2). As nicely documented in a paper by Tucker et al., the ratio of FTI to GGTI 

activity can vary markedly from DPI to DPI [114]. Of the many DPIs synthesized, 

L-778,123 is probably the most extensively examined. Low micromolar concentrations of 

L-778,123 were reported to suppress the prenylation of H-, N- and K-Ras in HL-60 
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leukemia cells [115]. However, doses of L-778,123 sufficient to inhibit the prenylation of 

Rab6 and HDJ2 in the peripheral blood mononuclear cells (PBMCs) of treated dogs had no 

effect on canine K-Ras prenylation [113]. Similarly, two phase I pre-clinical studies with 

L-778,123 [113, 116] reported that doses and scheduling protocols having no, or acceptable 

side effects, partially suppressed patient PBMC Rab6 and HDJ2 prenylation. However, no 

deprenylation of K-Ras occurred, even at doses that had to be discontinued because of 

adverse side effects. In the clinical studies the level of suppression of HDJ2 and Rab6 

deprenylation correlated with plasma L-778,123 concentrations.

 1.2.3. Combinations of Statins and Inhibitors of Prenylation Enzymes—A 

third general approach for modulating Ras prenylation entails treatment with a statin plus 

FTI or GGTI. The statin dosage in such protocols is insufficient by itself to inhibit 

prenylation, but sufficient to decrease the isoprenoid pool available for FPP and GGPP 

synthesis. Several studies document the synergistic anti-proliferative/cytotoxic effects of 

statin and FTI cotreatment on H-, K- and N-Ras driven tumors. For example, Ding et al. 
reported that a combination of atorvastatin and tipifarnib inhibited the growth of K-Ras 

mutated pancreatic cancer cells and xenografts in excess of the additive inhibitory effects of 

the two agents [117]. Unfortunately, there was no determination of whether the observed 

effect correlated with the deprenylation of Ras. Similarly, Morgan et al. reported that 

lovastatin synergized with the FTI L-744,832 to inhibit the in vitro growth of primary 

myeloma cells isolated from bone marrow aspirates of patients with multiple myeloma. In 

this study, the concentration of lovastatin (20 μM) used for analyses of Ras prenylation 

status was by itself sufficient to cause deprenylation of both N- and K-Ras [112]. In contrast, 

Yonemoto et al. reported that cotreatment of H-Ras transfected NIH3T3 fibroblasts with the 

FTI J-104,871 and 2.5 μM lovastatin shifted the IC50 for the FTI from 3.1 to 0.5 μM, and 

that this change was accompanied by a parallel deprenylation of H-Ras [118].

The strongest rationale for combinations of a statin with inhibitors of FTase or GGTase 

likely applies to FTIs or GGTIs that compete with the prenyl co-substrate of the enzyme 

rather than with the CaaX peptide substrate. In such situations, the limitation of the prenyl 

substrate pools imposed by the statin would most likely potentiate the action of the FTI or 

GGTI [83, 119–121]. For example, combinations of lovastatin and farnesyl pyrophosphate 

prodrug FTIs dramatically synergize with one another in their killing of NF1 malignant 

peripheral nerve sheath tumors [122–124]. Prenylation analyses in these studies indicated 

that the combinational treatment decreased the prenylation of not only Ras, but also of 

Rap1A and Rab5, proteins normally geranylgeranylated by GGTase-I and GGTase-II, 

respectively. Importantly, these cells express little or no H-Ras and the predominant 

activated isoform is N-Ras [125]. Further, the synergy occurred with concentrations of 

lovastatin as low as 100–250 nM, i.e., levels that are achievable and tolerated in humans.

 1.2.4. Summary of Prenylation as a Target for Inhibition of Activated Ras—
Studies of Ras prenylation and inhibitors have yielded several key insights. First, statins and 

prenylation inhibitors often exhibit therapeutic effectiveness against tumors that are either 

not Ras-driven, or, if they are Ras-driven, there is no change in Ras prenylation status 
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following inhibitor treatment [126–128]. Hence, in some cases, the anti-cancer activities of 

statins or FTIs and GGTIs appear to be independent of effects on Ras prenylation.

Second, the effects of prenylation inhibitors and high dose statin treatment are not limited to 

Ras. Hundreds of proteins are predicted to be prenylated [129]. It is likely that the 

deprenylation of some of these non-Ras proteins (e.g., RhoB, Rheb) contributes to the 

cytostatic/cytotoxic activities of statins and FTIs and GGTIs. It is also plausible, as 

discussed above, that endogenous H-Ras might be a critical target for FTI action [5].

Third, individual prenylated proteins differ in their sensitivities to FTIs and GGTIs. For 

example, K-Ras is less sensitive to deprenylation than is N-Ras [130]. Similarly, in a study 

in which K-Ras farnesylation could be investigated independent of any confounding 

geranylgeranylation, comparable deprenylation of K-Ras and NDJ2 (both of which are 

normally farnesylated) required a 10-fold higher concentration of the FTI tipifarnib to block 

K-Ras [111]. Such findings emphasize the limitations of using the deprenylation of marker 

proteins, such as Rap1A and NDJ2, as surrogates for Ras prenylation status. There is also 

the general problem of studying easily biopsied tissues in clinical studies, such as peripheral 

blood mononuclear cells, rather than the more difficult-to-biopsy tumor itself. Thus, it is 

often difficult to know in clinical studies if deprenylating agents actually affect Ras in the 

target tissue.

Fourth, the prenylation enzymes and the effects of many prenylation inhibitors need to be 

considered in terms of relative selectivity rather than specificity. For example, analyses of 23 

CaaX box competitive FTIs indicated that 17 were also potent inhibitors of GGTase-II [131]. 

In the case of GGTase-I, it is well established that it can farnesylate prenyl acceptors that 

have a C-terminal leucine in their CaaX box motif [132, 133]. Similarly, in vitro studies 

indicate that FPP binds to GGTase-II, and that GGTase-II can farnesylate Rab7 if the ratio of 

FPP to GGPP is high [134]. This ability of GGTase-I and -II to catalyze farnesylation may 

provide an explanation as to why FTIs designed to compete with FPP might also inhibit the 

prenylation of proteins that are normally GGTase-I and -II substrates.

 1.3. Alternative Approaches to Target Activated Ras by Preventing Ras Maturation and 
Localization

Ras prenylation is the first step in its process of maturation and localization. The sequence 

continues with proteolytic cleavage after the prenylated cysteine by Ras converting enzyme 

(Rce1), and subsequent methylation by isoprenylcysteine carboxyl methyltransferase (Icmt), 

see (Fig. 2). Both of these steps have been considered as potential therapeutic targets, though 

such work does not seem particularly promising. Likely problems include lack of specificity 

for Ras proteins over the many other substrates of these enzymes and consequent toxicity 

[see [5] for review].

Ubiquitination has also been implicated in controlling the cellular localization of Ras. In a 

series of papers, de la Vega and colleagues described the dynamic relationship between the 

de-ubiquitinase USP17 and Rce1 to control H- and N-Ras trafficking, but leaving K-Ras4B 

unaffected [135]. Briefly, ubiquitination of an Rce1 isoform localizes it to the endoplasmic 

reticulum (ER). In the presence of active USP17, deubiquitination occurs, causing this 
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isoform to leave the ER and be degraded. As a result of this degradation, CaaX modification 

is blocked [136]. Research in this area could lead to another potential alternative for 

targeting Ras.

Subsequent to the prenylation, proteolysis and methylation reactions, an additional 

palmitoylation step is required for membrane association of H-, N-, and K-Ras4A [137], see 

(Fig. 3). K-Ras4B and 4A have stretches of lysine residues near their C-termini that serve as 

polybasic signals for membrane association [71]; K-Ras4A achieves membrane association 

due to the effects of both its polybasic residues and palmitoylation [11, 138]. In addition to 

the isoform-specific differences, another distinction at this step is that palmitoylation is 

clearly reversible, with specific enzymes catalyzing both the addition and removal of the 

palmitoyl moiety, and that this reversibility governs the subcellular localization and function 

of H- and N-Ras [139–143]. There is increasing interest in whether these reactions may 

provide therapeutic targets to block activated Ras (but not K-Ras4B) function [144–147]. 

The work is at a comparatively early stage and the complexity of the system makes it hard to 

study [148], suggesting that there may be a number of unanticipated obstacles. Yet the 

complexity also gives several reasons for optimism. As we learn more about the 

palmitoylation/depalmitoylation cycle of Ras, regulatory mechanisms will be revealed [149]. 

It is plausible that such steps may ultimately be exploited as targets for intervention to block 

Ras function. One reason why effective therapeutic targeting of the prenylation, proteolytic 

and methylation steps has proven to be difficult is that there is generally a single enzyme for 

each reaction that has many substrates in addition to Ras. In contrast, the enzymology of 

palmitoylation is extremely complex with many identified genes [150, 151]. Early results 

suggested that H- and N-Ras palmitoylation was under control of specific enzymes [152]. 

For example, DHHC9, which can be inhibited by microRNA-134, may be predominantly 

responsible for palmitoylation of H-Ras in cortical neurons [153]. If a specific subset of 

palmitoylation/depalmitoylation enzymes with limited redundancy controls Ras, then some 

selective targeting might be achieved [154]. On the other hand, dynamic palmitoylation is 

required for synaptic remodeling [155], which, together with the evidence that H-Ras 

function is critical here [see [5] for review], could suggest that blocking these reactions may 

lead to cognitive problems.

The functions of the lipid modifications of Ras proteins are expressed through induced 

interactions with both the lipid bilayer and also targeting or chaperone proteins [156]. These 

interactions have also been developed as potential therapeutic targets for activated Ras, see 

(Fig. 3). One that has made it to the clinic is the compound salirasib, which is an analog of 

the farnesyl isoprenoid [157], and that may interfere with the chaperoning activity of 

galectins toward farnesylated Ras proteins to disrupt their localization and activity [158]. It 

is likely that interactions with other, non-Ras farnesylated proteins will also be disrupted. A 

related compound that has been tested in patients is TLN-4601 [159]. Neither drug has been 

demonstrated to affect K-Ras function in patients [159–161], although a decrease in total K-

Ras protein was reported in paired (pre- and post-treatment) tumor biopsies in two patients 

taking salirasib [161]. In a recent trial on hematological malignancies, salirasib efficacy was 

modest and did not correlate with Ras mutation status [162]. Although the diseases under 

study would presumably have made biochemical examination of peripheral blood 

mononuclear cells relevant, results from such studies were not reported.
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Another chaperone for farnesylated proteins, including Ras, is phosphodiesterase-delta 

(PDEδ) [163]. Recently Zimmerman and colleagues have described small molecules that 

disrupt the interaction of K-Ras and PDEδ. One of these, termed deltarasin, decreased K-Ras 

function in pancreatic cells and inhibited growth of xenografts [164, 165]. The degree to 

which there is a selective effect on Ras as opposed to other farnesylated proteins and 

whether the inhibition will be effective in vivo and exerted through block of K-Ras function 

remain to be defined.

 CONCLUSION

When it was realized that oncogenic Ras mutants were a driving force in many human 

cancers, great efforts and resources were committed to targeting these proteins. 

Unfortunately, these energies have so far produced little impact in the clinic. To an extent, 

directly targeting activated Ras parallels the trials and tribulations faced by scientists trying 

to therapeutically exploit tumor suppressors like p53, in that the biochemical lesion in 

oncogenic Ras is actually a loss of GTPase function. While the efforts to indirectly target 

Ras through FTIs were rationally designed, this strategy suffered from insufficient attention 

to the distinctions between the isoforms and lack of consideration of the fundamental 

biology of Ras prenylation. This led to their subsequent failure in large-scale clinical trials 

targeting K-Ras driven lung, colon, and pancreatic cancers. Despite these setbacks, efforts to 

indirectly target activated Ras through inducing its mislocalization have persisted and 

progress continues.
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Fig. (1). Direct inhibition of Ras Function
The Ras activation/deactivation cycle and interaction with downstream effectors provides 

several potential therapeutic targets. Mature Ras proteins are anchored at the membrane and 

achieve an active conformation that interacts with effectors following the binding of GTP. 

This active conformation is lost upon GTP hydrolysis.
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Fig. (2). Inhibition of Ras maturation
Newly-synthesized Ras polypeptides undergo complex, multi-step maturation pathways. 

Many of the enzymes shown have been considered as potential therapeutic targets. In 

addition to those detailed in this figure, both Rce1 and Icmt have also been investigated [see 

5 for review].
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Fig. (3). Inhibition of Ras trafficking
The prenylated Ras proteins require additional steps to achieve the membrane localization 

that is required for their activity. H-Ras, K-Ras4A, and N-Ras are reversibly palmitoylated. 

K-Ras4B requires interactions with chaperone proteins such as galectins or PDEδ. This 

figure is adapted and re-drawn from [156].
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