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Abstract

In a decade with over half a billion dollars of investment, more than 300 chemical probes have 

been identified to have biological activity through NIH funded screening efforts. We have 

collected the evaluations of an experienced medicinal chemist on the likely chemistry quality of 

these probes based on a number of criteria including literature related to the probe and potential 

chemical reactivity. Over 20% of these probes were found to be undesirable. Analysis of the 

molecular properties of these compounds scored as desirable suggested higher pKa, molecular 

weight, heavy atom count and rotatable bond number. We were particularly interested whether the 

human evaluation aspect of medicinal chemistry due diligence could be computationally predicted. 

We used a process of sequential Bayesian model building and iterative testing as we included 

additional probes. Following external validation of these methods and comparing different 

machine learning methods we identified Bayesian models with accuracy comparable to other 

measures of drug-likeness and filtering rules created to date.
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 INTRODUCTION

In the past decade the National Institutes of Health (NIH) has funded extensive high 

throughput screening (HTS) efforts in both intra-mural and academic centers to identify 
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small molecule chemical probes or tool compounds via the Molecular Libraries Screening 

Center Network (MLSCN) and the Molecular Library Probe Production Center Network 

(MLPCN). By 2009 it was estimated to have cost $385 million1 and by 2010 $576.6 

million2 but since then funding was dramatically scaled back3. Various definitions for 

compounds to become probes based on a combination of potency, selectivity, solubility, and 

availability, have been used1. To date the NIH-funded academic screening centers have 

discovered just over 300 chemical probes (at the time of writing) and some of the groups 

have demonstrated sophisticated drug discovery capabilities4. The NIH has subsequently 

made publically accessible an extensive compilation of chemical and biology data on these 

probes. From medicinal and computational chemistry and biology perspectives, we thought 

this an opportune time to perform a subjective analysis in order to learn from this massive 

effort. We posit that medicinal chemistry and computational considerations are relevant and 

complementary to biological activity considerations. Presenting our probe analysis in the 

context of medicinal chemistry due diligence is timely given the emerging understanding of 

the relationship of chemistry ligand structure to biology target topology5–7. Moreover we 

used our analysis to test whether it was possible to computationally predict the evaluations 

and eventual decisions of an experienced medicinal chemist.

In the same period that these probes were generated, there have been extensive assessments 

of medicinal chemists' appraisal of drug- or lead-likeness. For example, Lajiness et al., have 

evaluated the ability of medicinal chemists to assess the drug- or lead-likeness of 

molecules8. Thirteen medicinal chemists assessed approximately 22,000 compounds, broken 

into 11 lists of approximately 2000 compounds each. It was found that they were not very 

consistent in the compounds they rejected as being undesirable8. Cheshire described how 

modern medicinal chemists are often “over-productive” synthesizing many more compounds 

than are required to achieve the objectives of the project9. In contrast Hack et al., used the 

wisdom of crowds to fill holes in a screening library by leveraging 145 global medicinal 

chemists at J&J10. A recent study by Kutchukian et al., investigated medicinal chemists 

behavior using surveys in which they selected chemical fragments for development into a 

lead compound from a set of ~4,000 available fragments11. Computational Bayesian 

Classifiers were also built for each chemist to model their selection strategy. These models 

were not used to prospectively predict compounds. The results suggested the chemists 

greatly simplified the problem, using only 1–2 of many possible parameters. Overall there 

was a lack of consensus in compound selections. Cumming et al., have proposed that the 

`quality' of small-molecule drug candidates, are under the control of chemists during the 

identification and optimization of lead compounds12. The fusion of all of these studies 

suggests that decision making by the medicinal chemist while variable, is still widely 

regarded and critical to drug discovery. However, since the development of the Rule of 513 

there has been an apparent focus on similar rules to filter undesirable compounds and 

influence synthetic decisions.

Previously others have suggested that marketed drugs contain a high percentage of such 

undesirable groups (277 out of 1070 compounds in one study)14. Filters or rules are widely 

used by pharmaceutical companies to flag molecules that may be false positives and frequent 

hitters from HTS screening libraries as well as select compounds from commercial 

vendors15. Some examples of widely used substructure filters include REOS from Vertex16, 
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as well as filters from GlaxoSmithKline17, BristolMyersSquibb18 and Abbott19–21. These 

pick up a range of chemical substructures such as thiol traps and redox-active compounds, 

epoxides, anhydrides, and Michael acceptors. Another group has developed a series of over 

400 substructural features for removal of Pan Assay INterference compoundS (PAINS) from 

screening libraries that is likely considered a definitive rule set22. Bruns and Watson have 

also described a set of 275 rules they developed at Eli Lilly over an 18-year period, that were 

used to identify compounds that may interfere with biological assays23. The structural 

queries were profiled for frequency of occurrence in drug-like and non-drug-like compound 

sets and were extensively reviewed by a panel of experienced medicinal chemists. Drug-

likeness itself has been suggested to not reflect adequately compound quality and rules may 

lead to undesirable molecular property inflation. Bickerton et al., proposed a measure of 

drug-likeness based on the concept of desirability called the quantitative estimate of drug-

likeness (QED)24. A recently developed computational method termed Bioactivity Data 

Associative Promiscuity pattern Learning Engine (BadApple) uses public data to predict 

promiscuity based on comparison of scaffolds25, 26. Finally, a retrospective analysis has 

shown that recently approved oral drugs are highly optimized for ligand efficiency, a metric 

that integrates binding affinity with molecular properties27.

The only critical evaluation to date of the NIH probes, was a study in 2009 that took a 

crowdsourcing approach to evaluation of 64 NIH chemical probes1. Eleven experts 

subjectively scored the probes and found 48 of 64 (75%) probes were of medium or high 

confidence. We proposed we could use this type of expert-derived classification data to learn 

what had been classed as desirable and then using this prospectively to help score additional 

molecules computationally. One of the chemists involved in the 2009 crowdsourcing study 

was enlisted to test the approach of whether an algorithm could learn from his selections. We 

have taken the approach of using several machine learning methods and have focused on 

Naïve Bayesian classification which has been used for modeling in vitro and in vivo data28 

by us and many others29. In addition we have compared the results of this effort with 

PAINS22, QED24, BadApple25 and ligand efficiency27, 30.

 Experimental

 Dataset—With just a few exceptions NIH probe compounds were identified from NIH's 

Pubchem web based book25 summarizing five years of probe discovery efforts. Probes are 

identified by ML number and by PubChem CID number. NIH probe compounds were 

compiled using the NIH PubChem Compound Identifier (CID) as the defining field for 

associating chemical structure. For chiral compounds, two dimensional depictions were 

searched in CAS SciFinder™ (CAS, Columbus OH) and associated references were used to 

define the intended structure.

A medicinal chemist,with more than 40 years of experience (C.A.L.) followed a consistent 

protocol for determining if compounds should be considered undesirable or desirable. The 

number of biological literature references associated with each compound was determined. 

Probes with more than 150 references to biological activity were considered unlikely to be 

selective despite any PubChem HTS assay data. Alternatively, probes with zero references 

were considered to have uncertain biological quality if the probe was not of recent vintage. 
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The idea is that if a probe report is at least several years old and if neither the probe 

originator nor anyone else has published on the probe then one might conclude there was 

some sort of problem. The idea that the presence of a given probe in a US patent 

application31 across many probes might be a pointer to promiscuous activity was shown on 

detailed examination to be incorrect. CAS SciFinder™ was used to determine the CAS 

RegNo. Probes with no CAS RegNo were considered problematic if associated with 

chemistry generally unexplored in drugs. Finally, probes with predicted chemical reactivity 

were considered to lead to uncertainty about the cause of the biological effect. Judgment was 

used for this criterion. Only the most flagrant offenders were flagged and then only with 

caution often in the face of considerable HTS experimental data. The reactivity criterion is 

likely the “softest” since this is a criteria where different experts clearly often disagree. 

Probes that met any of these criteria were considered undesirable and given a score of 0. A 

summary of the percentage of undesirable compounds that fell within each criterion is 

shown in Fig. 1. All other probes were given a score of 1 for desirable. These are binary 

choices with no degree of gradation and thus carry the biases inherent of any binary yes no 

methodology32 The data and molecular structures have been made publically available in the 

CDD Public database (Collaborative Drug Discovery Inc. Burlingame, CA)33.

 Molecular properties and filtering methods—Salts were removed from molecules 

prior to calculation of molecular properties and computational modeling. One compound 

that was a complex, ML134, was also removed from analysis. Several descriptors were 

calculated in the CDD database using the Marvin suite (ChemAxon, Budapest, Hungary) 

namely: molecular weight, logP, H bond donors, H bond acceptors, Lipinski score, pKa, 

heavy atom count, polar surface area, rotatable bond number. The JChem suite (ChemAxon) 

was also used to generate two values for pKa namely first the average charge at pH 7.4, 

where negative values are acidic, positive basic, and close to zero neutral, and second the 

distribution of the major microspecies.

Similarly descriptors were calculated including AlogP, molecular weight, number of 

rotatable bonds, number of rings, number of aromatic rings, number of hydrogen bond 

acceptors, number of hydrogen bond donors, and molecular fractional polar surface area 

from input SD files using Discovery Studio 3.5 (Biovia, San Diego, CA).

BadApple learns from “frequent hitters” found in the Molecular Libraries Screening 

program, and flags promiscuous compounds. This method was used to score the compounds 

in this study at the website2526.

PAINS is a set of filters determined by identifying compounds that were frequent hitters in 

numerous high throughput screens. PAINS filters were determined using the FAFDrugs2 

program34, 35.

The desirability of the NIH chemical probes was also compared with QED24 which was 

calculated using open source software from SilicosIt (Schilde, Belgium).

For determination of ligand efficiency, the IC50, AC50, and EC50 values associated with each 

chemical probe were accessed from PubChem using a java script. The calculations function 
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in CDD Vault software was used to determine ligand efficiency with the formula LE= 1.4*

−log(EC50 or IC50 or AC50)/(Heavy atom count).30, 36

Analysis of the 307 compounds was performed with Principal Component Analysis (PCA) 

using Discovery Studio was generated with the interpretable descriptors chosen previously 

(AlogP, molecular weight, number of rotatable bonds, number of rings, number of aromatic 

rings, number of hydrogen bond acceptors, number of hydrogen bond donors, and molecular 

fractional polar surface area). The desirable and undesirable compounds were also treated as 

unique “libraries” that were also compared through the “compare libraries” protocol in 

Discovery Studio via the use of assemblies (Murcko Assemblies)37.

 Machine learning models—We have previously described the generation and 

validation of the Laplacian-corrected Bayesian classifier models developed for various 

datasets using Discovery Studio 3.528. This approach was utilized with the literature probe 

data from PubChem. A set of simple molecular descriptors were used: molecular function 

class fingerprints of maximum diameter 6 (FCFP_6)38, AlogP, molecular weight, number of 

rotatable bonds, number of rings, number of aromatic rings, number of hydrogen bond 

acceptors, number of hydrogen bond donors, and molecular fractional polar surface area 

were calculated from input SD files. Models were validated using leave-one-out cross-

validation in which each sample was left out one at a time, a model was built using the 

remaining samples, and that model utilized to predict the left-out sample. Each of the 

models was internally validated, receiver operator (ROC) plots were generated, and the cross 

validated (XV) ROC area under the curve (AUC) calculated. The Bayesian model was 

additionally evaluated by performing 5 fold cross validation in which 20% of the data set is 

left out 5 times. Additionally leaving out 50% of the data and rebuilding the model 100 

times using a custom protocol was used for validation, to generate the ROC AUC, 

concordance, specificity and selectivity as described previously39, 40. The Internal ROC 

value represents the training set value while the external ROC represents the test set 

molecules left out. For the largest model created we also compared the Bayesian model with 

SVM and RP Forest and single tree models built with the same molecular descriptors. For 

SVM models we calculated interpretable descriptors in Discovery Studio then used Pipeline 

Pilot to generate the FCFP_6 descriptors followed by integration with R41. RP Forest and 

RP Single Tree models used the standard protocol in Discovery Studio. In the case of RP 

Forest models ten trees were created with bagging. RP Single Trees had a minimum of ten 

samples per node and a maximum tree depth of 20. In all cases, 5-fold cross validation 

(leave out 20% of the database 5 times) was used to calculate the ROC for the models 

generated and for comparison.

 Model predictions for additional compounds identified after model building
—After each model was built additional compounds were identified and these were used as 

an external test set for prospective analysis. These compounds were then later combined to 

enable model rebuilding. This approach was repeated 3 times. Finally a further 15 

compounds initially not scored were identified and these were used as a test set for all 

models created. For each molecule, the closest distance to the training set was also 

calculated (a value of zero represents a molecule in the training set).
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 Statistical analysis—The mean calculated molecular property values for compounds 

were compared using two tailed t-test with JMP v. 8.0.1 (SAS Institute, Cary, NC). For 

external test set prediction evaluation, the number of true positives (TP), true negatives (TN), 

false positives (FP), and false negatives (FN) were determined and used to generate ROC 

plots and determine accuracy ((TP+TN)/total), specificity (TN/(TN+FP)), sensitivity 

(TP/(TP+FN), and precision (TP/(TP+FP) using the standard indicated formula. Mean 

ligand efficiency, was assessed using a student's t-test, and PAINS and BadApple predicted 

scores were assessed using Fisher's exact test.

 RESULTS

 Determining NIH chemical probe quality

For a medicinal chemist to accurately assess the quality of probes identified through HTS, it 

is necessary to assess previous findings in the literature and in patent applications. 

Unfortunately, this type of due diligence is not easily performed and requires labor intensive 

mixing of publically available data and the use of commercial software. In the process of 

this study we have noted a number of areas where optimizing integration of this information 

would benefit all participants in the drug discovery community and these will be detailed 

elsewhere. Eventually, it should be possible to integrate and automate this type of due 

diligence analysis. With just a few exceptions (ML032, ML049 and ML287) NIH probe 

compounds were identified from NIH's PubChem web based book. ML032, ML049, ML287 

are identified in a spreadsheet available on the MLP website42. ML049 is associated with a 

probe report “Fluorescent Cross-Reactive FPR/FPRL1 Hexapeptide Ligand”. Neither 

ML032 and ML287 is associated with probe reports as listed on the MLP website42.

We have noticed that in terms of selectivity, the probes fall into two main categories: 1) the 

probe is selective in a drug discovery sense, i.e. one or two orders of magnitude more 

selective for the target versus all salient anti-targets 2) the probe is 3 to 10 times more 

selective for the target than for any single anti-target, is novel for the target and the breadth 

of activity against all anti-targets is experimentally very well characterized. Probes in this 

second category are in the majority.

 Molecular properties

The 307 molecules in the complete dataset (excluding the final 15 molecule test set) used for 

the largest model consisted of 240 scored as desirable and 67 as undesirable. Using 9 

descriptors from the CDD Vault software, the molecular weight, rotatable bond number and 

heavy atom count were all statistically significantly larger in the desirable compound set 

(Table 1). When we focused on just the acidic or basic compounds we found a statistically 

significant higher pKa value for acidic compounds only (Table 1). Using 8 partially 

overlapping descriptors calculated in Discovery Studio the number of molecular weight and 

rotatable bonds was also greater in desirable compounds while the molecular fractional polar 

surface area was lower (Table 2). Other descriptors showed no statistically significant 

difference between groups. Diversity analysis of the desirable and undesirable compounds 

using FCFP_6 fingerprints, Murcko assemblies, Tanimoto similarity, and default properties 

indicated few differences apart from undesirable molecules displaying a higher diversity of 
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Fingerprint features (Table S1). Library analysis using Murcko Assemblies showed little 

similarity (Table S2).

PCA analysis showed the desirable and non-desirable molecules overlapped based on these 

molecular properties (Fig. 2A) and that these were within the more diverse chemical 

property space of the Microsource spectrum commercial library of drugs and natural 

products (Fig. 2B). Library analysis using Murcko Assemblies showed higher similarity to 

the Microsource library than between the NIH undesirable and undesirable compounds. In 

contrast the use of a global fingerprint suggested the NIH probes and Microsource libraries 

were less similar than between the NIH desirable and undesirable compounds (Table S2).

The desirable/ and undesirable scores were compared to several other rules and tools used to 

predict drug-likeness. None of the molecular probes characterized had more than 2 

violations of the Rule of Five12, and we found no statistical difference between the desirable 

and undesirable molecules13. BadApple revealed that the desirable compounds are less 

likely to be promiscuous, predicting 12% of desirable and 33% of undesirable probes fall 

into this category (Fisher's exact test, p=0.04). In total, 34 of 322 probes were flagged by the 

PAINS filters, representing 6.7% of desirable and 25% of undesirable compounds (Fisher's 

exact test, p>0.0001) (Fig. 3). There was no significant difference in the QED. The mean 

ligand efficiency of both desirable and undesirable probes was in the “ideal” range defined 

as greater than 0.3 kcal per mole heavy atom30 (desirable = 0.308 vs. undesirable =0.327, p= 

0.000003). All the various scores were used to create a heatmap for ease of comparison (Fig. 

4).

 Bayesian Model 1

Using 57 molecules from the original dataset from 2009. The model had a Receiver 

Operator Characteristic (ROC) value for leave one out (optimistic) of 0.654, 5 fold cross 

validation ROC = 0.613 (Table S3) and leave out 50% × 100 ROC of 0.63 (Table 3). The top 

twenty substructure descriptors consistent with compounds classed as desirable probes 

contain well known drug like substructures like thiazole, pyridine, and morpholine 

fragments43, 44 to name just a few representative examples (Fig. S1). The top 20 features in 

undesirable probes include seleno-organic, compounds prone to facile oxidation such as 

phenol rich aromatic rings, aniline-rich functionality, and thio-ethers45, 46 (Fig. S2).

 Bayesian Model 2

Using 170 molecules the model had an ROC value for leave one out of 0.710, 5 fold cross 

validation ROC = 0.654 (Table S4) and leave out 50% × 100 ROC of 0.59 (Table 1). In this 

model, the top twenty substructure descriptors consistent with compounds classed as 

desirable probes contain drug-like heterocycles, biomimetic amino acid analogs, and 

charged functionality likely to help with compound solubility at physiologically relevant pH 

levels (Fig. S3), the top 20 features in undesirable probes include highly conjugated systems 

with potential Michael acceptors, relatively unstable hydrozones, and easily oxidized 

heterocycles like the furan derivatives (Fig. S4).
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 Bayesian Model 3

Using 191 molecules the model had an ROC value for leave one out of 0.707, 5 fold cross 

validation ROC = 0.671 (Table S5) and leave out 50% × 100 ROC of 0.60. The top twenty 

substructure descriptors consistent with compounds classed as desirable probes contain 

drug-like features such as Nitrogen-rich heterocycles, biomimetic amino acid analogs, 

thioamides, and charged functionality (Fig. S5). The top 20 features in undesirable probes 

include relatively unstable hydrazones, seleno compounds, heterocycles known to oxidize 

and a variety of potential electrophiles (Fig. S6).

 Bayesian Model 4

Using 307 molecules the model had an ROC value for leave one out of 0.796, 5 fold cross 

validation ROC = 0.735 (Table S6) and leave out 50% × 100 ROC of 0.69. The top twenty 

substructure descriptors consistent with compounds classed as desirables probes contain 

drug-like heterocycles, aromatic fragments with electron withdrawing functionality, and 

charged functionality (Fig. S7), and the top 20 features in undesirable probes include 

electron rich ring systems prone to facile oxidation, compounds with adjacent functionality 

likely to increase functionality (such as two adjacent carbonyl groups or a variety of Michael 

acceptors), and potentially unstable ring systems (Fig. S8).

Differences are observed between 5 fold cross validation (Tables S1–4) and leave out 50% × 

100 cross validation (Table 3). The N307 model has statistics that are slightly higher than the 

191 molecule model.

 Comparison of machine learning methods

For the n307 dataset a Forest model, a single tree model and an SVM model were all created 

to compare with the Bayesian model. The 5 fold cross validation ROC values were highest 

for the Bayesian model followed by the SVM (Table 4).

 Rebuilding the Bayesian model in secure CDD Vault with Models

Rebuilding the n307 Bayesian model in CDD Models software with just FCFP_6 

fingerprints and using 3 fold cross validation ROC (0.69) suggested that it was comparable 

to the model developed previously which included additional molecular descriptors (Table 3, 

4 Table S4).

 External test set predictions

Table 5 summarizes model external testing as additional data were discovered. All four 

models were compared using the prediction of the final test set of 15 molecules. The largest 

model with 307 molecules has the best ROC AUC of 0.78 while the model built with 191 

molecules comes a close second with an ROC AUC of 0.75. Comparison of the various 

models and their prediction of test set compounds was enabled via a heatmap (Table 3).

We also compared the ability of other tools for predicting the medicinal chemist's 

desirability scores for the same set of 15 compounds. We found neither the QED, BadApple, 

or ligand efficiency metrics to be as predictive with ROC AUC of 0.58, 0.36, and 0.29 
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respectively. Therefore these drug likeness methods do not agree with the medicinal 

chemist's desirability scores.

 DISCUSSION

This work was directly influenced by the earlier study scoring 64 NIH chemical probes by 

11 experts1. We hypothesized that we could learn from one of these medicinal chemistry 

experts (C.A.L.) and use the resultant computational models to predict newer chemical 

probe scores. While our aim is not to replace the medicinal chemist, we have shown in this 

study that a machine learning algorithm has the potential to learn from them, and could be 

used to filter compounds for assessment either alone or alongside other approaches such as 

rules or filters recently described24, 2527, 30. Interestingly, ligand efficiency was higher in 

compounds scored as undesirable, this would echo recent suggestions that ligand efficiency 

is not a replacement for considering in vitro and in vivo properties of molecules47. Therefore 

using methods that can learn from the medicinal chemist expert's decisions based on this 

data may be advantageous.

For accessing and evaluating the public chemical probe data, we followed a standardized 

process for obtaining prior references. This process had severe limitations caused by a 

mismatch of privately (commercial) and publicly accessible data, and navigating between 

these two spheres was problematic which we will discuss elsewhere in due course. In 

addition, lack of information due to publication bias is another hurdle in medicinal 

chemistry due diligence. Much of the process of due diligence relies on “soft” skills – such 

as appropriately combining the literature and making subjective determinations. These 

aspects of decision making likely will never go away but arguably it would be an advantage 

if the “soft” aspects of a medicinal chemist's choices could be captured computationally. 

Much of chemical biology focuses on discovery of tools and probes and sometimes in an 

environment with considerably more biology than chemistry expertise. We posit that the 

medicinal chemistry aspect in tool and probe discovery is important and that learning from 

the thorough documentation of a set of probes that have gone through this process could 

encode these medicinal chemistry “insights” in an algorithm.

What may have been an early probe learning process could have colored a 2009 published 

probe assessment1 in the sense that the earlier assessment included compounds with more 

dubious credentials that would have not been chosen in more recent probe reports (in 2009, 

for 64 compounds 75% were acceptable, for 307 compounds in this study 78% were 

acceptable). Surprising to us was the probe use of trifluoroacetate (TFA) salts given the 

known deleterious effects of TFA on long term cell culture48, the frequent contamination of 

TFA salts with excess TFA49 and the known biological activity of TFA per se50.

A cheminformatics analysis of the data collected showed that high confidence probe 

compounds have statistically higher numbers of rotatable bonds, more heavy atoms and a 

higher molecular weight (Table 1). These and other readily interpretable calculated 

properties were used as descriptors alongside FCFP_6 fingerprints to develop machine 

learning models. These models were both internally and externally validated and went 

through a prospective iterative learning process as we uncovered data on more probes (Table 
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3–5) which were scored by the medicinal chemist. The results of this study indicate that 

Naïve Bayesian models represent a potential way to surmount the issues with bridging the 

public and commercial data sources required to perform the chemical probe due diligence 

process. They also perform similarly to recently developed heuristics and may be 

complimentary. Such models may serve as selection criteria for compounds for screening in 

order to identify future probes that would be acceptable to medicinal chemists.

In a decade and after over half a billion dollars of investment, over 300 chemical probes 

have come out of NIH funded screening efforts to date. A thorough due diligence process by 

an experienced medicinal chemist with over 40 years of experience, suggests that out of a 

total of 322 probes 79% are considered to have desirable qualities. The outputs from this 

time- consuming process are a moving target but can be effectively used to build algorithms 

that learn from the data. A comparison versus other molecule quality metrics or filters such 

as QED, PAINS, BadApple and ligand efficiency indicates that a Bayesian model based on a 

single medicinal chemist's decisions for a small set of probes not surprisingly can make 

decisions that are preferable in classifying desirable compounds (based on the expert's a 

priori definition of desirability). The use of such machine learning methods may be an 

approach to increase the probability that a chemical probe would be considered useful by a 

medicinal chemist, and avoid much wasted time and money invested in poor compounds. 

Our integration of a Bayesian model based on open source FCFP_6 descriptors alone and 

the 307 NIH chemical probes in the CDD database (Fig. S9) suggests that it could be used 

readily to score vendor libraries before screening as well as evaluate future chemical probes 

prior to the extensive due diligence process being performed with commercial tools. This set 

of NIH chemical probes could also be scored by other in-house medicinal chemistry experts 

to come up with a customized score that in turn could be used to tailor the algorithm to their 

own preferences. For example this could be tailored towards CNS or anticancer compounds.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 Abbreviations Used

(AUC) Area under the curve

(BadApple) Bioactivity Data Associative Promiscuity pattern Learning 

Engine

(CDD) Collaborative Drug Discovery

(CID) Compound Identifier
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(FCFP) molecular function class fingerprints

(MLSCN) Molecular Libraries Screening Center Network

(MLPCN) Molecular Library Probe Production Center Network

(PAINS) Pan Assay INterference compoundS

(PCA) Principal component analysis

(SVM) Support vector machine

(TFA) Trifluoroacetate

(QED) Quantitative estimate of drug-likeness

(XV) cross validated
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Figure 1. 
Relative contribution of each criteria for considering compounds as undersirable.
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Figure 2. Visualizing chemical property space of desirable and undesirable probes
A. Principal component analysis (PCA) of the 307 desirable (yellow) and undesirable (blue) 

NIH probes. 76.6% of the variance was explained with three principal components. B. PCA 

of the NIH chemical probes (yellow) and 2320 Microsource spectrum compounds (blue). 

81.9% of variance was explained by 3 principal components.
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Figure 3. Comparison of the expert's evaluation of the NIH chemical probes with PAINS and 
BadApple Filters
Desirable NIH chemical probes are less likely to be filtered by PAINS or BadApple as 

promiscuous than those scored as undesirable. (Fisher's exact test, p>0.0001 for PAINS and 

p=0.04 for BadApple).
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Figure 4. Comparison of desirability scores with Bayesian learning predicted scores for each test 
set, QED, BadApple, and ligand efficiency metrics
The colors on the heat map correspond to the value of the indicated metric for each probe, 

listed vertically. The scale was normalized internally with green corresponding to the 

optimal condition within each metric.
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Table 5

Test set assessment of Bayesian models of an expert's evaluation of the NIH chemical probes, a value of 1 = 

ideal. Each statistic is colored by the value, where blue is desirable and red is undesirable.

Model Test molecules AUC Sensitivity Specificity Precision Accuracy

N57 114 0.58 0.7 0.42 0.75 0.62

N57 120 0.55 0.69 0.42 0.91 0.66

N57 15 0.72 0.67 0.33 0.8 0.6

N170 21 0.55 0.38 0.6 0.75 0.43

N170 120 0.78 0.62 0.67 0.94 0.63

N170 15 0.58 0.67 0.33 0.8 0.6

N191 120 0.8 0.67 0.75 0.96 0.68

N191 15 0.75 0.83 0.33 0.83 0.73

N307 15 0.78 0.75 0.33 0.82 0.67
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