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Abstract

TRAIL/Apo-2L is a member of the TNF superfamily first described as an apoptosis-inducing 

cytokine in 1995. Similar to TNF and Fas ligand, TRAIL induces apoptosis in caspase-dependent 

manner following TRAIL death receptor trimerization. Because tumor cells were shown to be 

particularly sensitive to this cytokine while normal cells/tissues proved to be resistant along with 

being able to synthesize and release TRAIL, it was rapidly appreciated that TRAIL likely served 

as one of our major physiologic weapons against cancer. In line with this, a number of research 

laboratories and pharmaceutical companies have attempted to exploit the ability of TRAIL to kill 

cancer cells by developing recombinant forms of TRAIL or TRAIL receptor agonists (e.g., 

receptor-specific mAb) for therapeutic purposes. In this review article we will describe the 

biochemical pathways used by TRAIL to induce different cell death programs. We will also 

summarize the clinical trials related to this pathway and discuss possible novel uses of TRAIL-

related therapies. In recent years, the physiological importance of TRAIL has expanded beyond 

being a tumoricidal molecule to one critical for a number of clinical settings — ranging from 

infectious disease and autoimmunity to cardiovascular anomalies. We will also highlight some of 

these conditions where modulation of the TRAIL/TRAIL receptor system may be targeted in the 

future.
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 1. Introduction

The quest for the so-called “magic bullet” of cancer therapy can be considered one of the 

oldest and foremost aspirations of the scientific community. During this long and fierce 

journey, scientists have struggled with financial, ethical, as well as biological obstacles. The 

work completed over the years has generated a lavish amount of information, including the 

discovery of novel biochemical pathways that regulate tumor cell growth and anti-tumor 

molecules, thereby improving considerably the way we currently treat cancer. Strikingly, 

much of this knowledge has also contributed to the development of strategies for fighting 

other diseases not related to cancer. No “magic bullet” has emerged so far, and the scientific 

community agrees that combined therapies are the best strategy to fight cancer and many 

other diseases.

The discovery of TNF-related apoptosis-inducing ligand (TRAIL/Apo-2L) was well 

preceded by the description of tumor necrosis factor (TNF)/Lymphotoxin (LT) in the late 

1960’s and early 1970’s (Carswell et al., 1975; Granger & Kolb, 1968; Kolb & Granger, 

1968) and cloning of TNF/LT in 1985 (Pennica et al., 1984; Aggarwal & Kohr, 1985). TNF-

α is the prototype of a superfamily of proteins that are bioactive as a transmembrane protein 

and/or in soluble form. Initially, TNF-α was considered by many to be the first “magic 

bullet” against cancer, since it induced tumor cell death, as its name implies. Soon enough, 

however, it was realized that the major physiological property of TNF-α was to mediate 

immune/inflammatory responses, and pharmacological concentrations of TNF-α resulted in 

dramatic hepatotoxicity and a systemic inflammatory response syndrome (Kimura et al., 

1987; Ciesielski & Modzelewski, 1995). The discovery and cloning of Fas (CD95) (Trauth 

et al., 1989; Yonehara et al., 1989; Itoh et al., 1991) and Fas Ligand (FasL/CD178) (Suda et 

al., 1993) led to the description of the pro-apoptotic Fas/FasL pathway and rekindled the 

expectations of finding a physiological “magic bullet” against tumor cells. But once again, 

disappointment emerged with the findings that the introduction of Fas agonists in mouse 

models rapidly resulted in acute lethal hepatotoxicity (Ogasawara et al., 1993). In 

mid-1990’s two groups independently described a third member of the TNF family with 

potent tumoricidal activity, which soon proved to be relatively non-toxic to normal cells and 

tissues in vivo (Ashkenazi et al., 1999; Walczak et al., 1999). A group at Immunex, led by 

Raymond Goodwin and Craig Smith, named this protein TNF-related apoptosis-inducing 

ligand, or TRAIL (Wiley et al., 1995), while the group at Genentech, led by Avi Ashkenazi, 

called their molecule Apo-2 ligand, or Apo-2L (Pitti et al., 1996).

Since its discovery, numerous reports have provided strong evidence showing that TRAIL 

plays a major role as a tumor suppressor protein. First, a variety of tumor cell lines exhibit 

exquisite sensitivity to TRAIL, compared to primary cells (Wiley et al., 1995; Griffith & 

Lynch, 1998; Walczak et al., 1999). Second, administration of recombinant TRAIL protein 

(or TRAIL cDNA using a recombinant adenovirus) was extremely effective in eliminating 

tumor cells in vivo (Walczak et al., 1997, 1999; Ashkenazi et al., 1999; Griffith & 

Broghammer, 2001). Third, stimulation of a variety of hematopoietic cells, including T cells, 

NK cells, B cells and monocytes, with types I and II IFN induces TRAIL expression and 

endows these cells with a potent anti-tumor activity (Zamai et al., 1998; Fanger et al., 1999; 

Griffith et al., 1999; Kayagaki et al., 1999; Sedger et al., 1999; Smyth et al., 2001; Takeda et 
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al., 2001; Kemp et al., 2003a; Kemp et al., 2004). In addition, neutrophils can release 

bioactive TRAIL from granule stores upon proper stimulation (Kamohara et al., 2004; 

Ludwig et al., 2004; Tecchio et al., 2004; Kemp et al., 2005; Cassatella et al., 2006; Simons 

et al., 2007, 2008). Forth, TRAIL deficiency in mice was associated with increased 

carcinogen-induced tumorigenesis and metastasis, particularly to the liver (Cretney et al., 

2002; Sedger et al., 2002). Fifth, TRAIL expression is down regulated in a variety of human 

cancers and restoration of TRAIL expression enhances in vitro tumor sensitivity to 

chemotherapeutic drugs (De Carvalho et al., 2011, 2013).

 2. TRAIL and TRAIL receptor signaling to apoptosis

TRAIL is a 281 amino acid type II transmembrane protein that shares homology with other 

members of the TNF superfamily via the so-called TNF homology domain (THD), a 

conserved sequence of approximately 150 residues located at the extracellular, carboxy 

terminal end of the molecules (Wiley et al., 1995; Pitti et al., 1996). Unlike FasL and TNF-

α, TRAIL is widely distributed and constitutively expressed in many tissues, such as small 

intestine, colon, placenta, and in most cells of the hematopoietic tissue (Wiley et al., 1995). 

Interestingly enough, murine and human forms of TRAIL are 65% identical at the amino 

acid level and completely cross-reactive. TRAIL interacts with five different receptors (Fig. 

1) that may act as transducers of signaling information into the target cells to induce cell 

death, or as regulators/decoys to preventing the signaling events that lead to death (Wajant et 

al., 2002). The TRAIL death receptors (DRs), DR4/TRAIL-R1 and DR5/TRAIL-R2, have 

an intracellular death domain (DD), a homodimerization module responsible for the 

aggregation of proteins that promote signaling transduction. DR4/TRAIL-R1 (Pan et al., 

1997b) and DR5/TRAIL-R2 (Chaudhary et al., 1997; MacFarlane et al., 1997; Pan et al., 

1997a; Schneider et al., 1997a; Screaton et al., 1997; Sheridan et al., 1997; Walczak et al., 

1997; Wu et al., 1997) are Type I transmembrane proteins with 58% identity. Tissue 

distribution of DR4/TRAIL-R1 and DR5/TRAIL-R2 mRNA by Northern blot analysis is 

broad, with expression in most normal human tissues (colon, esophagus, heart, kidney, liver, 

lung, ovary, pancreas, placenta, prostate, skeletal muscle, small intestine, spleen, stomach, 

testis, thymus, uterus) (Pan et al., 1997a,b; Walczak et al., 1997). Interestingly, all 

vertebrates, with the exception of human and chimpanzees, present only one TRAIL death 

receptor. Thus, the question whether DR4/TRAIL-R1 and DR5/TRAIL-R2 in humans and 

chimpanzees serve redundant function or have arisen in the need for fundamentally distinct 

signal transduction pathways and/or biological consequences may ultimately have 

implications for future development of receptor-specific targeting reagents (van Roosmalen 

et al., 2014).

In contrast to the TRAIL DRs, DcR1/TRAIL-R3 completely lacks an intracellular tail 

(suggesting it has no intracellular signaling ability) and is expressed on the cell surface via 

glycosyl-phosphatidylinositol linkage (Degli-Esposti et al., 1997b; MacFarlane et al., 1997; 

Pan et al., 1997a; Schneider et al., 1997a; Sheridan et al., 1997; Mongkolsapaya et al., 

1998). DcR2/TRAIL-R4, on the other hand, has a truncated intracellular domain missing 52 

of the 76 amino acids found in the DDs of DR4/TRAIL-R1 and DR5/TRAIL-R2 (Degli-

Esposti et al., 1997a; Marsters et al., 1997; Pan et al., 1998). These two TRAIL-binding 

proteins are unable to transduce signaling events that lead to cell death, and have 
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subsequently been defined as TRAIL decoy receptors (DcR). Despite being unable to signal 

for apoptosis, TRAIL ligation of DcR2/TRAIL-R4 does activate NF-κB (Degli-Esposti et 

al., 1997a). As NF-κB activation has been linked to increased resistance to apoptosis-

inducing cytokines, including TRAIL (Beg & Baltimore, 1996; Van Antwerp et al., 1996; 

Keane et al., 2000; Ravi et al., 2001; Karacay et al., 2004), it is possible that DcR2/TRAIL-

R4 protects against TRAIL-induced apoptosis through ligand sequestration and induction of 

proteins with anti-apoptotic activity. Tissue distribution of DcR1/TRAIL-R3 is much more 

restricted than DR4/TRAIL-R1 and DR5/TRAIL-R2, with mRNA found only in the heart, 

kidney, liver, lung, placenta, peripheral blood leukocytes, and spleen (Degli-Esposti et al., 

1997a,b; Pan et al., 1997a). DcR2/TRAIL-R4 mRNA, in contrast to DcR1/TRAIL-R3, is 

found in a much broader range of human tissues, with it expressed in most of the same 

tissues as DR4/TRAIL-R1 and DR5/TRAIL-R2 (Degli-Esposti et al., 1997a,b; Pan et al., 

1998). The tissues where DcR1/TRAIL-R3 mRNA was detected are heavily vascularized, 

suggesting the possibility the mRNA present was coming from “blood contamination” and 

the actual organ tissue does not normally express DcR1/TRAIL-R3 mRNA. Interestingly, 

the genes for all four human TRAIL receptors map to chromosome 8p21 (Degli-Esposti et 

al., 1997a, b; Walczak et al., 1997), suggesting that they are the result of recent gene 

duplications. A fifth receptor, osteoprotegerin (OPG), is a soluble protein that interacts with 

TRAIL with low affinity (Emery et al., 1998), but the in vivo functional relevance of this 

event remains unclear.

In general terms, the signaling cascade initiated by TRAIL binding to its death receptors is 

similar to the signal generated after Fas/FasL interaction, and is known as the extrinsic 

pathway of apoptosis (Fig. 1) (Schulze-Osthoff et al., 1998; Amarante-Mendes & Green, 

1999; Barnhart et al., 2003). Binding of TRAIL to either DR4/TRAIL-R1 or DR5/TRAIL-

R2 results in receptor trimerization and further aggregation, allowing the recruitment of the 

death domain-containing protein FAS-associated death domain (FADD) to the receptors. 

FADD has a second domain called death effector domain (DED) capable of binding to the 

DED domains present on caspases-8 or -10. Recruitment of caspase-8 and/or -10 results in 

the formation of the death-inducing signaling complex (DISC) and activation a proteolytic 

signaling cascade. Depending on the cell type, high or low amount of caspase activation may 

result from the TRAIL death receptor engagement. In addition, the relative expression of X-

linked inhibitor of apoptosis protein (XIAP), an endogenous inhibitor of caspases, greatly 

impacts the outcome of caspase activation at the DISC. In Type I cells, the balance between 

caspase-8/10 activation and XIAP expression results in high levels of caspase activation and 

favors the direct activation of the executioner/effector caspases-3, 6- and -7 (Jost et al., 

2009). On the other hand, in Type II cells, the balance between DISC-induced caspases-8/10 

activation and XIAP expression allows only the formation of low levels of caspase activity 

and supports an amplification loop mediated by the activation of the BH3-only protein BID 

(BCL-2 inhibitory BH3-domain containing protein), which in turn engages the 

mitochondrial (intrinsic) pathway of apoptosis (Jost et al., 2009) (Fig. 1). The truncated form 

of BID migrates to the mitochondria where it activates BAX (Bcl-2 associated X protein) 

and BAK (Bcl-2 antagonist killer 1) to induce Mitochondrial Outer Membrane 

Permeabilization (MOMP) and the consequent release of pro-apoptotic factors, such as 

cytochrome c, Second Mitochondria-derived Activator of Caspases/Direct IAP Binding 
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protein with low pI (SMAC/DIABLO) [34, 35], and HtrA serine peptidase 2/serine protease 

OMI (HTRA2/Omi). In the cytosol, cytochrome c initiates the formation of a multimolecular 

complex called the Apoptosome, which is composed of cytochrome c, APAF-1 (Apoptosis 

Activating Factor-1) and caspase-9. Caspase-9 is activated by an “induced-proximity” 

mechanism and triggers the activity of caspases-3, -6 and -7 (Muzio et al., 1998; Boatright et 

al., 2003). The multiple active caspases go on to systematically disassemble the cell through 

cleavage of a range of intracellular proteins vital to cell structure and integrity.

 3. TRAIL-induced necroptosis

Besides apoptosis, and specifically in situations where caspase activity is artificially 

precluded through the use of caspase inhibitors, TRAIL (as well as FasL and TNF-α) can 

induce an alternative, Receptor-Interacting Protein Kinase (RIPK)-mediated form of cell 

death termed regulated necrosis or necroptosis (Holler et al., 2000; Kemp et al., 2003b; 

Galluzzi et al., 2014; Linkermann & Green, 2014; Vanden Berghe et al., 2014). This type of 

cell death depends on the activation of an amyloid-like molecular complex known as the 

necrosome (J. Li et al., 2012). Downstream of TRAIL death receptor engagement, 

particularly when either caspase-8 or cellular FLICE-inhibitory protein (cFLIP) is absent or 

inactivated, the necrosome is formed by the association of RIPK1 and RIPK3 via their RIP 

homotypic interaction motif (RHIM) domain (Cho et al., 2009; He et al., 2009; Orozco et 

al., 2014; X. N. Wu et al., 2014). At the necrosome complex, RIPK3 is activated by 

autophosphorylation and recruits and phosphorylates mixed lineage kinase-like (MLKL), a 

pseudokinase associated with the effector phase of necroptosis (Cai et al., 2014; X. Chen et 

al., 2014). At the necrosome, MLKL undergoes conformational change leading to the 

exposure of its 4-helical bundle domain (Murphy et al., 2013; Su et al., 2014). The 

molecular mechanism responsible for MLKL induction of necroptosis is still not completely 

understood, but recent data suggest MLKL may destabilize and mediate deformation of 

pores at the plasma membrane (Dondelinger et al., 2014; H. Wang et al., 2014; Su et al., 

2014).

Historically, apoptosis has been considered to be tolerogenic cell death while necroptosis is 

a highly immunogenic form of cell death that can activate both the innate and adaptive 

immune responses (Kaczmarek et al., 2013). While this general difference is largely 

accurate, inflammatory cytokines and chemokines are produced during TNF- and Fas-

induced apoptosis (Cullen et al., 2013; Kearney et al., 2013; Kearney et al., 2015). It remains 

to be determined whether there is a similar production of proinflammatory cytokines and 

chemokines during TRAIL-induced apoptosis or necroptosis. Thus, the type of cell death 

induced by TRAIL-related therapies should be carefully evaluated depending on the disease 

context. Although we will briefly touch on this point again below, the characteristics and 

consequences of immunogenic versus non-immunogenic forms of cell death are outside the 

scope of this manuscript. Therefore, we suggest the following articles as a supplementary 

literature (Ullrich et al., 2008; Green et al., 2009; Griffith & Ferguson, 2011).

Amarante-Mendes and Griffith Page 5

Pharmacol Ther. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 4. Resistance to TRAIL—mediated cell death

One of the most important aspects considered when designing therapeutic approaches using 

TRAIL receptor agonists is the diversity of mechanisms that can award resistance to TRAIL-

mediated cell death (So et al., 2015; Trivedi & Mishra, 2015; Twomey et al., 2015). We have 

already mentioned the existence of the Decoy Receptors (DcR1/TRAIL-R3, DcR2/TRAIL-

R4 and OPG), which can bind to TRAIL but are unable to activate either the apoptotic or 

necroptotic signaling cascade. Increased expression of DcR1/TRAIL-R3, DcR2/TRAIL-R4, 

or OPG can interfere with the action of TRAIL (Degli-Esposti et al., 1997a, b; Pan et al., 

1997a; Pan et al., 1998), leading to the hypothesis that expression of these receptors governs 

which cells are sensitive to TRAIL. The “decoy hypothesis” has received support from a 

number of studies correlating increased DcR1/TRAIL-R3 and/or DcR2/TRAIL-R4 

expression in human tumor samples to increased disease staging and decreased survival. 

Targeted DcR1/TRAIL-R3 or DcR2/TRAIL-R4 downregulation, in some settings, has 

proven to increase tumor cell sensitivity to TRAIL — lending some credence to the 

possibility that these receptors truly function as “decoys” and compete with DR4/TRAIL-R1 

and DR5/TRAIL-R2 for TRAIL. However, the vast majority of these studies have been 

conducted in vitro using easily manipulated established tumor cell lines. When staying at the 

cell surface, DR4/TRAIL-R1 or DR5/TRAIL-R2 downregulation has been associated with 

TRAIL resistance in human tumors (Horak et al., 2005a, b; Kurbanov et al., 2007; Jung et 

al., 2012; Yoon et al., 2013). In these cases, the use of drugs that increase DR4/TRAIL-R1 

and/or DR5/TRAIL-R2 expression has proven to be an important supporting strategy. 

However, mutation or methylation of the promoter region of these two genes in some 

circumstances may impose an extra level of complexity to the problem (Arai et al., 1998; Pai 

et al., 1998; Lee et al., 1999; Ozoren et al., 2000). In addition to the transcriptional 

regulation of DR4/TRAIL-R1 and DR5/TRAIL-R2, post-translation modifications, such as 

glycosylation and palmitoylation, receptor trafficking to the cell membrane, and receptor 

internalization, can modulate DR4/TRAIL-R1 and DR5/TRAIL-R2 activity (Wagner et al., 

2007; Yoshida et al., 2007; Rossin et al., 2009; Twomey et al., 2015). Moreover, the 

localization of DR4/TRAIL-R1 and DR5/TRAIL-R2 in lipid rafts within the cell membrane 

serves as another mechanism for efficient signaling after trimerization (Delmas et al., 2004; 

VanOosten et al., 2005b; Ouyang et al., 2013).

The likelihood that tumor cell sensitivity to TRAIL is solely regulated by TRAIL death 

and/or “decoy” receptor expression has been debated since the identification of the TRAIL 

receptor family in the late 1990’s. The next logical location to look for cellular regulation 

against TRAIL-induced death is within the cell. TRAIL-induced apoptosis combines many 

aspects of the extrinsic and intrinsic pathways (Fig. 1). One of the first suggestions that 

tumor resistance to TRAIL can be regulated within a cell came from the observation that 

treatment with transcription or translation inhibitors (e.g., actinomycin D or cycloheximide, 

respectively) increased TRAIL-induced death (Griffith et al., 1998; Thomas & Hersey, 1998; 

Mori et al., 1999; Wajant et al., 2000). These data suggested constitutively produced, but 

labile, proteins were inhibiting the intracellular signaling processes required for TRAIL-

mediated killing. TRAIL death receptor signaling can be inhibited at the level of the DISC 

by cFLIP (Schneider et al., 1997b; Thome et al., 1997; Griffith et al., 1998). As with 
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differential TRAIL receptor expression, cFLIP expression (or lackthereof) also does not 

appear to be the sole regulator of TRAIL sensitivity. A variety of reports have identified 

other anti-apoptotic molecules, including (but not limited to) anti-apoptotic members of the 

Bcl-2 family of proteins (e.g., Bcl-2 or Bcl-xL), inhibitors of apoptosis (IAP) proteins (e.g. 

cIAP, survivin, or XIAP), and Akt, with the potenital to protect against TRAIL-induced 

death (Hinz et al., 2000; Deng et al., 2002; Fulda et al., 2002; Griffith et al., 2002; Mitsiades 

et al., 2002; Ng & Bonavida, 2002; L. Li et al., 2004; Xu et al., 2010; Azijli et al., 2012; 

Finlay et al., 2014). When these pieces of information are taken into consideration, it is 

unlikely that a single mechanism for TRAIL sensitivity will be applicable for all tumor cell 

types, or even explain the profound TRAIL resistance possessed by normal cells throughout 

the body.

Based on the prevalence of multiple TRAIL resistance mechanisms, considerable effort has 

been spent identifying chemicals and natural compounds that can overcome these resistance 

mechanisms (Fulda, 2008, 2014; Dai et al., 2015). Among the thousands of compounds 

demonstrated to increase tumor cell susceptibility to TRAIL receptor agonists, some of the 

most striking effects have come from natural compounds mostly derived from plants. Many 

of these compounds (often called ‘nutraceuticals’) increase DR4/TRAIL-R1 and/or DR5/

TRAIL-R2 expression, but they can also interfere with a variety of cell survival pathways 

(e.g., NF-kB, MAPKs, p38, ERK1/2, PI3K/AKT, and STATs) that increase resistance to 

TRAIL. A recent review elegantly covers a number of natural compounds that can sensitize 

tumor cells to TRAIL receptor agonists (Dai et al., 2015). Of the drugs currently approved 

for cancer treatment, proteasome inhibitors have been investigated as possible combinatorial 

agents with TRAIL receptor agonists. Proteasome inhibition leads to decreased cFLIP 

expression, increased pro-apoptotic protein expression, and cell cycle inhibition — all of 

which can increase TRAIL sensitivity (Bonvini et al., 2007; Shanker et al., 2008; Seki et al., 

2010). Proteasome inhibitors, such as Bortezomib, also increase tumor cell sensitivity to 

TRAIL receptor agonists via TRAIL-R1/-R2 upregulation (Smith et al., 2007; Voortman et 

al., 2007). Histone deacetylase inhibitors (HDACi) are another class of attractive candidates 

for sensitizing tumor cells to TRAIL receptor agonists (Fulda & Debatin, 2005; Fulda, 

2008). HDACi increase histone acetylation, which epigenetically alters gene expression 

(Johnstone, 2002). Treatment of tumor cells with HDACi increase TRAIL-R1/-R2 

expression, but it also increases the signaling efficiency after TRAIL death receptor ligation 

(VanOosten et al., 2005a; VanOosten et al., 2005b; VanOosten et al., 2006, 2007). In 

addition, the expression of pro- and anti-apoptotic proteins that regulate the TRAIL-induced 

death pathway is modulated after HDACi treatment. Increased expression/activation of 

caspase-8, Bid and Bax has been reported after HDACi treatment (Rosato et al., 2003; Inoue 

et al., 2004; Hacker et al., 2009; Fulda, 2012; Riley et al., 2013), as well as downregulation 

of cFLIP and anti-apoptotic Bcl-2 family proteins (Zhang et al., 2003; Watanabe et al., 2005; 

Gillespie et al., 2006). Besides proteasome inhibitors and HDACi, numerous studies have 

demonstrated the ability of standard chemotherapeutic drugs to increase tumor cell 

sensitivity to TRAIL receptor agonists (Mom et al., 2009; Newsom-Davis et al., 2009; 

Rajeshkumar et al., 2010; Cohn et al., 2013). It is also important not to discount the 

importance of the relationship between TRAIL resistance and the function of the 

endoplasmic reticulum, heat shock proteins, and other metabolic pathways commonly 
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deregulated in tumor cells (Samali & Orrenius, 1998; Zhuang et al., 2013; Trivedi & Mishra, 

2015). For examples, an exciting recent study by So et al. used RNA interference and cDNA 

overexpression to identify kinases that influenced TRAIL-induced apoptosis in DLD-1 

colorectal carcinoma cells (So et al., 2015). By assessing the kinome, several key “resistor” 

kinases were identified. These data demonstrate that use of systems biology and network 

modeling is revealing a vast new set of intracellular proteins that could be therapeutically 

targeted to increase TRAIL-induced apoptosis. Interestingly enough, TRAIL expression can 

be inhibited by PRAME/EZH2 complex in CML (chronic myeloid leukemia) patients, and 

restoration of TRAIL expression enhanced sensitivity to chemotherapeutic drugs (De 

Carvalho et al., 2011; De Carvalho et al., 2013).

While it is clear a variety of compounds can be used to sensitize tumor cells to TRAIL, the 

ability of these compounds to induce an antitumor immune response, when given alone, can 

be limited (Casares et al., 2005; Obeid et al., 2007; Zitvogel et al., 2008; Zitvogel et al., 

2011). Consequently, cancer therapies combining TRAIL receptor agonists with cytokine 

therapy or other immunomodulators to elicit antitumor immunity are being explored. For 

example, interferons (IFNs) can directly inhibit tumor cell function, leading to their use in 

the treatment of many types of malignancies (Vilcek, 2006; Ferrantini et al., 2007). While 

the mechanism of action of most (if not all) chemotherapeutics is to kill tumor cells, IFNs 

induce antitumor immunity (Dunn et al., 2006; Swann et al., 2007; Fuertes et al., 2011), as 

well as modulate the apoptosis signaling pathway (Kayagaki et al., 1999; Varela et al., 

2001). Pre-clinical studies combining TRAIL receptor agonists with IFN led to increased 

tumor cell death and inhibition tumor outgrowth in mice (Merchant et al., 2004). mAb 

against immune-stimulatory or -inhibitory receptors are another way to increase TRAIL 

receptor agonist efficacy (Mitsui et al., 2010). For example, the combination of anti-TRAIL-

R2 mAb with T cell activating mAb against CD40 and CD137 has been especially effective 

in preclinical mouse tumor models (Uno et al., 2006; Takeda et al., 2007; Westwood et al., 

2010).

 5. Cancer therapy using TRAIL receptor agonists

The promising preclinical data showing the potent tumoricidal activity of a number of 

TRAIL receptor agonists paved the way for clinical testing. Recombinant human TRAIL/

Apo-2L (Dulanermin) has been tested in phase I/II clinical trials in patients with range of 

cancer types (including solid and hematologic tumors), with most of the cancers being 

advanced in stage, and alone or in combination with traditional chemotherapeutics or 

biologics (Table I). All the clinical studies reported Dulanermin was well-tolerated by the 

patients, and most of the studies reported some clinical efficacy — mostly partial responses 

or stable disease. Unfortunately, Dulanermin did not demonstrate significant clinical efficacy 

when it came to complete responses, and a number of hypotheses were proposed to explain 

why — including short bioavailability and the potential to bind to death-inducing and — 

inhibiting TRAIL receptors. A variety of modified versions of TRAIL have been engineered 

with the intention of increasing the circulating half-life of the molecule without significantly 

altering function (van der Sloot et al., 2006; Tur et al., 2008; Wahl et al., 2013; Yu et al., 

2014). However, these TRAIL variants have only been tested preclinically. As an alternative 

to Dulanermin, agonistic monoclonal antibodies (mAb) specific for DR4/TRAIL-R1 and 
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DR5/TRAIL-R2 have been also explored as therapeutics for activating the TRAIL apoptotic 

pathway in cancer cells. The benefits of mAb therapy over soluble TRAIL include a longer 

in vivo half-life and the inability to binding to TRAIL decoy receptors. The agonistic anti-

mouse TRAIL-R-specific mAb, MD5-1, has demonstrated potent antitumor activity in 

mouse models of cancer (Takeda et al., 2004). Interestingly, MD5-1 was found to inhibit the 

growth of TRAIL-sensitive tumors as well as induce a tumor-specific immune response that 

could eradicate TRAIL-resistant variants. In vitro studies demonstrated the necessity for 

MD5-1 to be crosslinked for optimal activity (Takeda et al., 2004). In vivo crosslinking is 

accomplished via Fc receptor (FcR)-bearing immune cells (e.g., B cells and CD11c+ 

dendritic cells (DC)) (Haynes et al., 2010). Crosslinking MD5-1 also results in immune cell 

activation and leads to recruitment of other FcR-expressing cells to the tumor 

microenvironment. The apoptotic tumor cells are phagocytosed by the activated FcR-

expressing immune cells, which cross-present tumor antigens to T cells (Takeda et al., 2004; 

Haynes et al., 2010). This FcR dependence has been recapitulated with the anti-human DR4/

TRAIL-R1 mAb, drozitumab (Wilson et al., 2011). As a result of these and other studies, 

agonistic anti-human DR4/TRAIL-R1 and DR5/TRAIL-R2-specific mAb have been tested 

clinically (Table II). As with the Dulanermin trials, the majority of cancer patients receiving 

either anti-DR4/TRAIL-R1 or -DR5/TRAIL-R2-specific mAb had advanced disease, and 

many of the patients were also treated with another antitumor agent (chemotherapy or 

biologic). The general outcome of the clinical testing with the anti-TRAIL receptor mAb 

was that administration of mAb was well tolerated with minimal adverse events. 

Unfortunately, patients with objective responses were in the minority. It remains to be 

determined why these reagents, which performed so well in preclinical studies, failed to 

achieve marked effects in humans.

It was surprising to see that Dulanermin or any of the agonistic receptor-specific mAb did 

not show better therapeutic activity when used in combination with chemotherapeutics or 

other drugs known for their ability to sensitize tumor cells to TRAIL. Perhaps one 

explanation may lie in the fact that many preclinical in vitro studies used established tumor 

cells lines, which may have evolved over the years to no longer faithfully represent the initial 

tumor from which it was derived. This idea is supported by data showing the majority of 

primary human tumor cells are resistant to TRAIL (or agonistic mAb)-induced death 

(Todaro et al., 2008). Another confounding factor may be that the patients enrolled in the 

clinical trials may had co-morbidities (such as obesity), which were not accounted for in the 

preclinical models, altering tumor susceptibility to TRAIL receptor agonists. A recently 

proposed possibility worth clinical investigation is the combination of multiple TRAIL 

receptor agonists, as suggested by recent preclinical studies demonstrating synergism 

between an agonistic anti-TRAIL-R2 mAb (conatumumab) and Dulanermin to kill primary 

ovarian cancer cells (Graves et al., 2014; Tuthill et al., 2014). Conatumumab binds a 

different epitope within TRAIL-R2 than Dulanermin, allowing concomitant binding of both 

reagents that enhances receptor crosslinking, enhanced DISC formation, and caspase-8 

activation. Work continues in the clinical testing of TRAIL receptor agonists, but not with 

the same enthusiasm as there was a decade ago. The continued development of drugs with 

high selectivity for targeting antiapoptotic proteins within cells keeps the door open for 

combination therapy with TRAIL receptor agonists against cancer.
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 6. Immunotherapy involving TRAIL receptor agonists in non-cancer 

settings

It is clear the lion’s share of data generated in regard to the TRAIL/TRAIL receptor system 

has come from studies examining the tumoricidal activity of TRAIL. As the reagents 

available for probing the function of TRAIL became more plentiful, it seemed logical that 

investigation of the physiological role of TRAIL in non-cancer settings would occur. The use 

of knockout mice and agonistic/antagonistic mAb to TRAIL or TRAIL receptor has 

expanded the physiological importance of TRAIL to a number of key clinical and 

pathological settings. Systemic administration of TRAIL receptor agonists during the 

treatment of cancer has the potential to have “off-target” complicating effects on other 

components of the immune system. The therapeutic benefit of engaging the TRAIL/TRAIL 

receptor system in non-cancer settings is only beginning to be investigated. The following 

sections highlight some of the pathological settings where the TRAIL/TRAIL receptor 

system plays key roles in either causing or preventing the disease state, demonstrating the 

points where therapeutic intervention may be beneficial.

 6.1. Immune tolerance and autoimmunity

Introduction of antigen (Ag) before maturation of the cellular constituents of the immune 

system engenders Ag-specific tolerance critical to the process by which individuals avoid 

autoimmunity. In addition, different mechanisms are responsible to maintain self-tolerance 

after the full maturation of the immune system. These mechanisms are divided into central 

and peripheral tolerance. Data for a role of TRAIL in central tolerance have been 

conflicting. Human thymocytes are susceptible to TRAIL-mediated apoptosis following 

activation, but activation-induced deletion of thymocytes is TRAIL independent (Simon et 

al., 2001). In contrast to thymocytes, peripheral human T cells remain resistant to TRAIL 

after activation, suggesting central and peripheral human T cells regulate susceptibility to 

TRAIL-induced apoptosis differently. Interestingly, a subsequent study using Trail−/− mice 

suggested a severe defect in thymocyte apoptosis that increased susceptibility to 

autoimmunity (Lamhamedi-Cherradi et al., 2003b). These data using Trail−/− mice were in 

contrast to a subsequent report (also using Trail−/− mice) showing no requirement for TRAIL 

in thymocyte negative selection (Cretney et al., 2008). Differences in the types of 

experiments done have been suggested as a reason for the contrasting claims of TRAIL’s 

involvement in thymocyte negative selection, and it has been suggested that TRAIL 

functions as a response modifier in the thymus for mitochondrial apoptosis instead of 

playing a direct role in thymic negative selection (Corazza et al., 2004). Importantly, these 

data suggest administration of TRAIL receptor agonists in the treatment of cancer would not 

adversely impact thymocyte development and selection.

There is increasing evidence, on the other hand, to suggest TRAIL is a key player in 

regulating peripheral tolerance. TNF superfamily members are well-characterized regulators 

of immune responses, with TNF and FasL being prime regulators of key immune system 

events such as auto-immunity, activation-induced cell death (AICD), immune privilege, and 

evasion of tumors from the immune system (Cerami & Beutler, 1988; Alderson et al., 1995; 

Griffith et al., 1995; L. Zheng et al., 1995; Hahne et al., 1996; Bonfoco et al., 1998; Elzey et 
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al., 2001). It was not a great surprise to then see data suggesting TRAIL could also play an 

important role in these same areas. For example, TRAIL is constitutively expressed on 

numerous structures within the eye, including the cornea and retina (Lee et al., 2002). Ocular 

tumors are rare, suggesting a potential role for TRAIL in tumor surveillance within the eye. 

TRAIL expression in the eye is restricted to sites of interaction between key internal ocular 

structures and the surrounding tissue, much like that for Fas ligand (Griffith et al., 1995; 

Stuart et al., 1997). TRAIL expression in the retina is also an important regulator of oxygen-

induced retinopathy (Hubert et al., 2009). Examination of the placenta, another immune 

privileged site, found TRAIL expression in syncytiotrophoblasts and Hofbauer cells, as well 

as a few other placental cell types (Phillips et al., 1999). Whether TRAIL actually 

contributes to immune tolerance during pregnancy remains to be determined, as inbred 

Trail−/− mice display no overt breeding defects (Sedger et al., 2002).

The immune system is continuously exposed to self-Ag derived from dead cells throughout 

an organism’s life. While cells can be induced to die by various insults (e.g. death receptor, 

toxicity, radiation, etc.), there are two main categories of cell death — apoptotic and necrotic 

(Wyllie et al., 1980; Cohen, 1993; Vaux & Strasser, 1996). The way the immune system 

responds to antigens associated with the dying/dead cells can have a major impact on 

immune tolerance and autoimmunity. In the context of a multicellular organism and its 

immune system, one can view the cell death decision molecular switches as part of a cell 

disposal program encompassing not only the dying cell but also the cells responsible for its 

recognition and removal (Pereira & Amarante-Mendes, 2011). In this regard, apoptotic cells 

are swiftly removed via the reticuloendothelial system or neighboring cells in the tissue, 

without notice by the immune response. This rapid clearance of apoptotic cells minimizes 

the release of inflammatory cellular components and prevents autoimmune reactions to self-

proteins. The induction of tolerance by apoptotic cells has been attributed to a number of 

mechanisms, including the production of immunosuppressive cytokines from phagocytic 

cells (Fadok et al., 1998), production of inhibitors from the dead cell itself (Gao et al., 1998; 

W. Chen et al., 2001), and effects on the maturation of DC (Steinman et al., 2000; Albert et 

al., 2001), and inactivation of Damage-Associated Molecular Patterns (DAMPs) (Kazama et 

al., 2008). In addition, apoptotic cells are thought to enter the cross-presentation pathway 

and promote tolerance, while necrotic cells do not (Ferguson et al., 2002; Ferguson et al., 

2003). In recent years, the pivotal role played by CD4+ T cells in the induction of CD8+ T 

cell responses has been highlighted (Bennett et al., 1997; Schoenberger et al., 1998; Albert 

et al., 2001; Janssen et al., 2005), where most CD8+ T cell-mediated responses depend on 

concomitant CD4+ T cell priming. In contrast, CD8+ T cell priming in the absence of CD4+ 

T cell help leads to their deletion, an effect that can be overcome by supplying help during 

the initial priming phase (Kurts et al., 1996). The priming of CD8+ T cells in the absence of 

CD4+ T cell help also alters CD8+ T cell programming, which is only revealed after 

restimulation. Specifically, CD8+ T cells activated without CD4+ T cell help express TRAIL 

and undergo AICD upon secondary Ag stimulation (Janssen et al., 2005; Wolkers et al., 

2011; Feau et al., 2012; Wolkers et al., 2012). Immune unresponsiveness associated with the 

generation of such TRAIL-expressing ‘helpless’ CD8 T cells has been reported in a number 

of experimental models and clinical settings (Hamilton et al., 2006; Griffith et al., 2007; 

Kuerten et al., 2008; Gurung et al., 2010; Unsinger et al., 2010; Griffith et al., 2011; Gurung 
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et al., 2011), but this concept has proven to be more tenuous in some models of infection 

(see below) (Badovinac et al., 2006; Sacks & Bevan, 2008). However, apoptosis does not 

always result in tolerance, as it seems to be the case of lymphocyte apoptosis. Lymphocytes 

are cytokine factories that can cause significant, nonspecific cellular damage if their contents 

are released to the rest of the immune system. During an infection when significant 

lymphocyte apoptosis occurs, immunity can be directed away from the pathogen toward self, 

thereby contributing to autoimmunity.

A loss of peripheral tolerance can influence a number of immunological parameters, 

including the susceptibility to autoimmune disease. Trail−/− and Dr5−/− mice do not 

spontaneously develop autoimmunity, but their use (as well as anti-TRAIL blocking mAb or 

soluble TRAIL receptor:Fc fusion protein) in a number of autoimmunity models has 

revealed that TRAIL inhibits diabetes (in NOD mice or induced by cyclophosphamide and 

streptozatocin), EAE, and autoimmune arthritis (Song et al., 2000; Hilliard et al., 2001; 

Lamhamedi-Cherradi et al., 2003a; Mi et al., 2003; Cretney et al., 2005). Moreover, 

therapeutic administration of recombinant TRAIL will delay the onset and reduce the 

severity of MOG-induced EAE (Cretney et al., 2005) or experimental autoimmune 

thyroiditis (S. H. Wang et al., 2005), while administration of dendritic cells engineered to 

express TRAIL can inhibit collagen-induced arthritis (Liu et al., 2003). It is also possible the 

increased TRAIL expression, as a result of some other condition, results in the increased cell 

death (and increased generation of self Ag) driving the initiation of autoimmunity. For 

example, data from several reports show increased TRAIL in the circulation of patients with 

autoimmune diseases, such as systemic lupus erythematosis, multiple sclerosis, ankylosing 

spondylitis, psoriatic arthritis, and Sjogren’s syndrome (Matsumura et al., 2002; Wandinger 

et al., 2003; Lub-de Hooge et al., 2005; Hofbauer et al., 2006; Zai-Xing et al., 2008). 

Similarly, neuronal death in a T cell-induced EAE model is TRAIL mediated, and 

administration of soluble TRAIL-R2:Fc reduced clinical symptoms (Aktas et al., 2005). 

Thus, administration of a TRAIL neutralizing agent may reduce the clinical symptoms of 

autoimmunity, much like TNF neutralization in rheumatoid arthritis. It is also tempting to 

speculate that alterations in OPG expression may partially contribute to the development of 

autoimmune and other diseases (especially vascular pathologies) (Baud’huin et al., 2013). 

Together, these data suggest selective signaling or disruption of the TRAIL/TRAIL receptor 

pathway may prove to be a viable treatment option for a number of autoimmune diseases.

 6.2. TRAIL and infection

Toll-like receptor (TLR) recognition of pathogen-associated molecular patterns triggers a 

cascade of signals alerting the immune system to the presence of an invading organism. 

Interferon (IFN) is among the multitude of cytokines produced after TLR stimulation 

(McNab et al., 2015), and IFN (both type I and II) is a potent inducer of TRAIL expression 

(Q. Wang et al., 2000). TRAIL receptor expression is also sensitive to IFN (Griffith et al., 

1999; Sedger et al., 1999). Thus, the potential for the TRAIL/TRAIL receptor system in the 

immune response to pathogen infection has received significant attention in recent years. For 

example, infection with influenza A virus (IAV) generates a strong IFN response, and 

TRAIL is one of several effector mechanisms used by IAV-specific T cells to protect against 

infection (Ishikawa et al., 2005; Hamada et al., 2013). IAV-specific CD8 T cells express 
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TRAIL during infection, and IAV-infected lung alveolar epithelial cells upregulate DR5 

expression (Brincks et al., 2008). Interestingly, Trail−/− mice are unable to clear an IAV 

infection as well as wild-type mice, and Trail−/− mice are more susceptible to death from 

immunopathology after IAV infection (Brincks et al., 2008; Brincks et al., 2011). Additional 

data report increased TRAIL expression after infection with Dengue virus, hepatitis virus, 

human immunodeficiency virus, measles virus, respiratory syncytial virus, and West Nile 

virus contributes to both viral clearance and immunopathology (Bem et al., 2010; Stegmann 

et al., 2010; van Grevenynghe et al., 2011; Barblu et al., 2012; Shrestha et al., 2012; 

Abdullah et al., 2013; Gandini et al., 2013; Gras et al., 2013; Werner et al., 2013; Brost et 

al., 2014; Limonta et al., 2014).

Viral immune evasion can occur by a variety of mechanisms, primarily through the down-

regulation of proteins on infected cells that alert the immune system. It should not be 

surprising to see a number of viruses have evolved means to prevent cellular apoptosis by 

modulating TRAIL and/or TRAIL receptor expression. The adenoviral E3 complex can 

decrease TRAIL receptor expression in infected cells to enable persistent infection (Benedict 

et al., 2001; Tollefson et al., 2001; Lichtenstein et al., 2004). Cytomegalovirus (CMV) 

infection also leads to a significant modulation of TRAIL and/or TRAIL receptor. Human 

CMV infection during pregnancy can lead to serious complications, and one means by 

which this may occur is through placental up regulation of TRAIL via an IFN-mediated 

mechanism to evade responding immune cells (Andrews et al., 2007). Studies with mouse 

CMV (MCMV) have revealed a number of interesting aspects of how this virus modulates 

TRAIL/TRAIL receptor expression to elude cellular immunity. First, MCMV infection leads 

to decreased DR5 expression, which is mediated by m166 protein (Verma et al., 2014). 

Second, NK cells up regulate TRAIL following MCMV infection and play an important role 

in the clearance of MCMV-infected cells (Cortez et al., 2014; Schuster et al., 2014). TRAIL-

expressing NK cells also mediate the deletion of CD4+ T cells in the salivary glands of 

MCMV-infected mice, which is important in preventing autoimmune reactions within this 

tissue (Cortez et al., 2014).

Viruses are not the only pathogens to modulate the TRAIL/TRAIL receptor system during 

an infection. Bacterial pathogens stimulate a wide range of responses in the cells they infect, 

commonly leading to inflammation. Bacterially infected cells frequently initiate the 

apoptotic death mechanism to limit the spread of the infection. For some bacterial species, 

inhibiting inflammation and cell death is critical for allowing them to evade the immune 

system and establish an infection. For other species, the induction of cell death in the 

infected cell permits pathogen spread and (ultimately) survival. It has become evident in 

recent years that the TRAIL/TRAIL receptor system is a key player in both sides of that 

equation. For example, the pathogenesis seen during a number of bacterial infections is the 

result of increased TRAIL-induced death of the infected cells. A strong inflammatory 

response within the gastric mucosa is associated with Helicobacter pylori infection, which as 

been linked to chronic gastritis, ulcers, and carcinoma (Penta et al., 2005). H. pylori 
infection induces a Th1 CD4 T cell response, and H. pylori-infected gastric epithelial cells 

are highly sensitive to TRAIL-induced apoptosis as a result of decreasing cFLIP expression 

(Lin et al., 2014). Human DR4/TRAIL-R1 SNPs and murine DR5 negatively regulate the 

immune response against chlamydial infection (Al-Kuhlani et al., 2014). Interestingly, 
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TRAIL can also promote Chlamydia respiratory infection-induced pathology and 

inflammation, which may be the result of increased expression of type I IFNs (Qiu et al., 

2008), that subsequently lead to impaired lung function (Starkey et al., 2014). These data 

suggest therapeutic blockade of TRAIL would improve the health of Chlamydia-infected 

patients. Similar findings have been reported in mouse model of listeriosis, where wild-type 

mice had increased Listeria monocytogenes loads and decreased survival compared to 

Trail−/− mice (S. J. Zheng et al., 2004). In contrast, therapeutic administration of TRAIL or 

agonistic anti-DR5/TRAIL-R2 (MD5-1) mAb can improve the survival of Streptococcus 
pneumoniae-infected mice (Steinwede et al., 2012). In this setting, neutrophil-derived 

TRAIL induces apoptosis in DR5/TRAIL-R2-expressing macrophages, allowing for the 

early killing of S. pneumoniae. These data suggest TRAIL receptor agonist therapy may 

prove beneficial for immune compromised patients infected with S. pneumoniae. Similarly, 

TRAIL expression is critical for limiting the host immune response in bacterial meningitis, 

and therapeutic administration of TRAIL intrathecally decreased inflammation (Hoffmann et 

al., 2007). We realize this is not an exhaustive listing of instances where the TRAIL/TRAIL 

receptor system participates (in either a good or bad way) during bacterial infection, but it 

does provide a sense of the types of pathogens where targeting the TRAIL could improve 

clinical outcomes.

 6.3. TRAIL and cardiovascular health

Innate and adaptive immunity, along with inflammation, play important roles in 

atherogenesis. Vascular smooth muscle cells (VSMCs) and cardiomyocytes express 

functional TRAIL receptor, while vascular endothelial cells express low amounts of TRAIL 

receptor (Secchiero et al., 2003; Secchiero et al., 2004; Spierings et al., 2004). The role of 

TRAIL in atherogenesis has been examined in vitro and in vivo using Trail−/−ApoE−/− mice, 

yielding variable results. Soluble and membrane-bound TRAIL can induce apoptotic death 

in endothelial cells (Li et al., 2003; Pritzker et al., 2004; Chen & Easton, 2008; Chen & 

Easton, 2010). In line with this data is the observation that coronary artery disease patients 

have CD4+ T cells with elevated TRAIL expression (Sato et al., 2010). TRAIL-mediated 

tissue destruction and plaque destabilization is thought to occur in this setting. Conversely, 

there is also a significant amount of data supporting a protective role for TRAIL in 

cardiovascular disease. Circulating TRAIL levels are reduced in patients with acute coronary 

syndromes, coronary artery disease, diabetes, and myocardial infarction (Michowitz et al., 

2005; Schoppet et al., 2006; Volpato et al., 2011; Bisgin et al., 2012). The protective nature 

of TRAIL is further supported in rodent models of atherosclerosis (Secchiero et al., 2006; Di 

Bartolo et al., 2011; Di Bartolo et al., 2013), pulmonary hypertension (Hameed et al., 2012) 

and diabetes (Di Bartolo et al., 2011). TRAIL-mediated anti-apoptotic effects on endothelial 

cells have been seen (Secchiero et al., 2004; Kavurma & Bennett, 2008; Kavurma et al., 

2008). In vitro stimulation of VSMCs with physiologically relevant concentrations of 

TRAIL stimulates their proliferation and migration (Kavurma et al., 2008; Azahri et al., 

2012). A similar effect of TRAIL on VSMCs has been reported in vivo, where vascular 

injury in Trail−/− mice results in reduced proliferation of VSMCs and intimal thickening 

(Chan et al., 2010). Interestingly, atherosclerotic plaque development is accelerated in 

Trail−/−ApoE−/− mice (Di Bartolo et al., 2011; Di Bartolo et al., 2013; Cartland et al., 2014). 

The atherosclerotic plaques in the Trail−/−ApoE−/− mice have reduced VSMC and collagen 
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content, large necrotic cores, thin fibrous caps, and significantly increased macrophage 

accumulation in the vulnerable regions of the plaque (Di Bartolo et al., 2011). Collectively, 

these data demonstrate TRAIL has the potential to exert a variety of beneficial and 

deleterious biological effects when it comes to the health of the cardiovascular system. It is 

likely the differences seen in the various in vitro and in vivo studies relate to the 

concentration of TRAIL used in the assays and target cells being investigated. Regardless, 

these data strongly suggest many of the same therapeutic approaches used in the other 

physiological settings described earlier to engage or block the TRAIL/TRAIL receptor 

system could be employed to improve cardiovascular health in patients dealing with 

cardiovascular anomalies.

 7. Conclusions

It has been 20 years since Wiley and colleagues and Pitti and colleagues first described 

TRAIL (Wiley et al., 1995; Pitti et al., 1996). Over the subsequent two decades, 

investigation into the natural function of TRAIL in a broad range of diseases and therapeutic 

potential of TRAIL receptor agonists has yielded a bountiful amount of useful data. While 

many once viewed TRAIL as that “magic bullet” for treating cancer, it is clear this initial 

rosy perception has darkened with the underwhelming clinical data exploring TRAIL 

receptor agonists against cancer. However, hope should not be lost as exciting work 

continues to be published keeping TRAIL-based cancer immunotherapy a viable future goal. 

The identification of new drugs that sensitize tumor cells to TRAIL receptor agonists, as 

well as continued testing of TRAIL receptor agonists with approved drugs, is opening new 

doors for the treatment of tumors. Caution must be maintained, however, to limit any 

potential augmentation in TRAIL sensitivity in normal cells and tissues. It is also important 

not to overlook the knowledge gained from the preclinical and clinical testing of TRAIL 

receptor agonists with respect to the potential use of the same TRAIL agonists and 

antagonists in “non-cancer” diseases. Likewise, the concentrated efforts in using TRAIL 

receptor agonists have dwarfed the number of studies demonstrating the importance in 

inhibiting TRAIL/TRAIL receptor signaling. TNF is a good example of a protein once 

thought to be an ideal cancer therapy to one whose presence can be detrimental to health, 

and the drugs that neutralize TNF have improved the lives of millions with rheumatoid 

arthritis. We should not limit our studies of TRAIL to those testing its antitumor activity. 

Let’s hope the next 20 years of TRAIL research will build on the first 20 years, and allow us 

to add TRAIL receptor agonists to the growing toolbox of immunotherapeutics for cancer 

and beyond.
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Fig. 1. 
TRAIL/Apo2L, its receptors and cell death signaling pathways. TRAIL/Apo2L is a trimeric 

protein able to associate with five different proteins that may act as transducer of cell death 

and other signals (DR4/TRAIL-R1 and DR5/TRAIL-R2) or non-signaling, decoy receptors 

(DcR1/TRAIL-R3, DcR2/TRAIL-R4 and OPG) that act as inhibitory molecules. Binding of 

TRAIL/Apo2L to trimeric forms of DR4/TRAIL-R1 or DR5/TRAIL-R2 at the cell 

membrane leads to a high molecular weight receptor cluster formation responsible for 

recruitment of FADD and pro-caspase-8/10 to assemble the Death-Inducing Signaling 

Complex (DISC). Active caspase-8 can subsequently cleave the effector caspases-3/-6/-7 in 

Type I cells or process the BH3-only member BID in Type II cells. The truncated form of 

BID (tBID) translocates to the mitochondria and, via BAX and BAK, induces Mitochondria 

Outer Membrane Permeabilization (MOMP) and consequent release of apoptogenic factors 

to the cytosol. Cytochrome c catalyzes the assembly of the Apoptosome, a multimolecular 

platform comprised of APAF-1 and procaspase-9. Similarly to caspase-8, caspase-9 

processes and activates the effector caspases, culminating in apoptosis. The release of 

SMAC/Diablo from the mitochondria to the cytosol results in inactivation of members of the 

Inhibitor of Apoptosis Protein (IAP) family, particularly XIAP, an endogenous inhibitor of 

caspases, thereby facilitating apoptosis. TRAIL-induced apoptosis can be blocked at the 

DISC by cFLIP, a caspase-8/10 homologous protein that lacks enzymatic activity. Under 

particular circumstances, such as deficiency in caspase-8, an alternative cell death-inducing 
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complex called necroptosome and composed by RIPK1, RIPK3 and the pseudokinase 

MLKL is formed, leading to necroptosis.
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Table I

Clinical use of Dulanermin.

Clinical trial phase Cancer (number of 
patients) treated

Combination Reported effect References

I Lymphoma (7) Rituximab 1 partial response/2 
complete responses

Yee, et al., 2007

I Colorectal (30) Irinotecan/cetuximab or FOLFIRI Safely combined with 
irinotecan-based 
regimens

Yee, et al., 2009

I Advanced solid tumors or 
NHL (71)

None Well-tolerated; 2 partial 
responses

Herbst, 
Eckhardt, et al., 
2010

I Advanced NSCLC(24) Paclitaxel, carboplatin, and 
bevacizumab

Well-tolerated; 13 partial 
responses/1 complete 
response

Soria, et al., 
2010

I Metastatic colorectal (27) FOLFIRI +/−bevacizumab Well-tolerated; 6 partial 
responses/17 stable 
disease/3 progressive 
disease/1 no tumor 
assessment

Kasubhai, et al., 
2012

I Metastatic colorectal (23) Modified FOLFOX6 and bevacizumab Well-tolerated; 13 partial 
responses/7 stable 
disease/3 progressive 
disease

Wainberg, et al., 
2013

II NHL (26) Rituximab Well-tolerated; no 
improvement in objective 
response rates

Belada, et al., 
2010

II NSCLC (50) Paclitaxel/carboplatin ± bevacizumab Well-tolerated; addition 
of Dulanermin did not 
improve efficacy

Blackhall, et al., 
2010; Soria, et 
al., 2011
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