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Abstract

 Purpose of review—Precision cancer medicine, the use of genomic profiling of patient 

tumors at the point-of-care to inform treatment decisions, is rapidly changing treatment strategies 

across cancer types. Precision medicine for advanced prostate cancer may identify new treatment 

strategies and change clinical practice. In this review, we discuss the potential and challenges of 

precision medicine in advanced prostate cancer.

 Recent findings—Although primary prostate cancers do not harbor highly recurrent 

targetable genomic alterations, recent reports on the genomics of metastatic castration-resistant 

prostate cancer has shown multiple targetable alterations in castration-resistant prostate cancer 

metastatic biopsies. Therapeutic implications include targeting prevalent DNA repair pathway 

alterations with PARP-1 inhibition in genomically defined subsets of patients, among other 

genomically stratified targets. In addition, multiple recent efforts have demonstrated the promise 

of liquid tumor profiling (e.g., profiling circulating tumor cells or cell-free tumor DNA) and 

highlighted the necessary steps to scale these approaches in prostate cancer.

 Summary—Although still in the initial phase of precision medicine for prostate cancer, there 

is extraordinary potential for clinical impact. Efforts to overcome current scientific and clinical 

barriers will enable widespread use of precision medicine approaches for advanced prostate cancer 

patients.
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 INTRODUCTION

Precision cancer medicine, the use of genomic profiling at the point-of-care to inform 

treatment decisions (Fig. 1), is changing cancer care by enabling more accurate and efficient 
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prediction of therapies for individual cancer patients. This revolution is the result of 

numerous studies identifying key cancer drivers, their alterations, and therapies to 

specifically target these alterations [1]. More recently, multiple cancer landscape studies 

have provided further insight into the alterations within and between tumor types [2]. That 

success, along with the increased affordability and reliability of sequencing, and 

development of computational tools for clinical genomic analysis, has led to the integration 

of genome science directly into clinical practice. Tight networks and collaboration between 

clinicians, genome scientists, and pharmaceuticals companies will continue to advance 

precision medicine [3–5].

Prostate cancer is the most common solid tumor in men in the USA [6]. Prostate cancer is a 

hormone-dependent tumor, demonstrated by recurrent alterations in the androgen receptor 

and its pathway [7]. Castration-resistant prostate cancer (CRPC) is a lethal clinical state in 

which the tumor has developed resistance to androgen deprivation therapy. This occurs in 

the majority of advanced or metastatic prostate cancer patients. The genomic landscape of 

localized prostate cancer has been well defined [8–11,12■■,13–15]. Multiple studies have 

highlighted the lack of highly recurrent clinically actionable alterations, as well as the high 

level of tumor intraheterogeneity even in the primary setting [15,16]. In contrast with the 

primary prostate cancer genome, the extensive mutational landscape of metastatic CRPC 

lesions has exposed the possibility of targeted therapies and precision medicine in CRPC 

[17■■]. In this review, we discuss the potential of genomics to impact the clinical 

management of CRPC, and consider the challenges that must be overcome to enable wide 

implementation in the clinic.

 CURRENT THERAPEUTIC APPROACHES FOR CASTRATION-RESISTANT 

PROSTATE CANCER

In the CRPC setting, the primary successful therapeutic target remains the androgen 

receptor. The discovery of androgen receptor, along with the persistent unearthing of 

androgen receptor resistance mechanisms, has enabled additional effective treatments in 

CRPC patients [7,18–21]. Approved therapies in this space include new androgen synthesis 

pathway agents, such as abiraterone, and direct inhibitors of androgen receptor, such as 

enzalutamide [22–28]. However, the majority of CRPC patients ultimately develop 

resistance to androgen receptor-focused therapies, despite multiple new agents reaching the 

clinic. Furthermore, there are many patients who never respond to these therapies and 

manifest intrinsic resistance to this therapeutic approach. Generally, almost all patients with 

CRPC ultimately succumb to the disease.

 Genomics and lethal prostate cancer

Studies examining the genomic alterations involved in lethal prostate cancer from autopsy 

cohorts revealed the underlying biology behind the disease and the evolutionary processes 

driving advanced disease [29,30■■,31,32■■]. Despite these crucial insights, these studies 

did not have clinical cohorts to explore the landscape of potential clinically actionable 

targets. Recently, a study examined 150 metastatic site biopsies from living patients with 

CRPC through integrative whole-exome sequencing (WES) and whole transcriptome 
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sequencing [17■■]. A high number of targetable mutations, defined as predicting response 

or resistance to a therapy, or having a diagnostic or prognostic utility, were found in these 

patients, in contrast to localized prostate cancer. Not including androgen receptor, 65% of 

patients had a targetable mutation, many of which have been linked to ongoing clinical trials 

(Table 1). The details of these findings are described below.

 Androgen receptor

Numerous studies have addressed the androgen receptor and its pathway alterations in 

metastatic CRPC [7,29,30■■,31,32■■]. Despite reduced androgen circulation in CRPC, 

androgen receptor is still activated through various mechanisms, including androgen 

receptor amplification or overexpression, activating androgen receptor mutations, alterative 

androgen production, androgen receptor coactivator overexpression, and indirect androgen 

receptor activation [33]. Robinson et al. presented that 34% of CRPC patients still have only 

androgen receptor as a clinically relevant mutation, indicating they may be differentially 

sensitive to existing and novel androgen receptor-directed therapies. However, the clinical 

significance of these androgen receptor mutations for predicting response or resistance to 

these agents remains to be determined. Although several drugs have shown promise 

targeting androgen receptor in this space, including abiraterone and enzalutamide, most 

patients eventually develop resistance to these agents [23,25,26]. Recently, it was reported 

that patients with androgen receptor-V7 splice variant, in the transcriptomic data, may be 

resistant to enzalutamide but respond to galeterone, a novel androgen receptor therapy 

currently in phase III trials [34■,35], potentially demonstrating the first genomically driven 

therapy in CRPC. Furthermore, there are numerous experimental agents that target androgen 

receptor or its pathway in novel ways (Table 1) that may augment the ability to effectively 

inhibit this dominant pathway in patients with tumors that are still wholly dependent on 

androgen receptor signaling.

 DNA repair pathway

Beyond the androgen receptor pathway, the most striking result from clinical genomic 

profiling of CRPC patients was that 19% of patients have a DNA repair pathway alterations, 

including 12.7% of patients with a putative pathogenic BRCA2 germ line mutation [36,37]. 

Additional somatic and germ line DNA repair alterations were found in ATM, BRCA1, 
CDK12, FANCA, RAD51B, and RAD51C. Many of these alterations are associated with 

platinum response in other cancer types [38–40]. In addition, PARP inhibition demonstrated 

great efficacy in patients with BRCA2 mutations and other DNA repair alterations in CRPC 

and other tumor types [41■■]. Mateo et al. conducted a phase II trial of olaparib plus 

genomic correlates in 50 CRPC patients. A total of 16 of the 50 patients harbored DNA 

repair gene inactivation alterations, and 14 out of those 16 patients responded to olaparib 

[41■■], highlighting another potential genomically driven therapy in CRPC. Based on these 

findings there are currently multiple clinical trials testing the effects of PARP inhibitors with 

or without androgen receptor-targeted therapies in CRPC patients, demonstrating the rapid 

impact of this DNA repair genomic discovery on realizing precision medicine for prostate 

cancer.
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 Phosphoinositide 3-kinase pathway

The phosphoinositide 3-kinase (PI3K) pathway is recurrently mutated in CRPC, commonly 

through loss of PTEN, amplification of PIK3CA/B, and activating mutation of PIK3CA/B 
and AKT1 [42]. In Robinson et al., PI3K pathway was altered in 49% of patients, making it 

the second most frequently altered pathway after androgen receptor. In the past, many PI3K 
monotherapies have had a lack of efficacy, thought to be because of lack of specificity, 

coexisiting alterations, and signaling feedback [43■]. Recently, multiple inhibitors of 

specific PI3K isoforms have begun testing in clinical trials, potentially increasing the 

specificity of these agents. In CRPC, there are recurrent mutations in PIK3CB and frequent 

loss of PTEN, which may activate PIK3CB over PIK3CA [44], emphasizing the need for 

these specific PI3K isoforms inhibitors [45,46] to effectively clinically target this pathway. 

There has also been evidence that there is cross-pathway interaction between PI3K and 

homologous recombination pathway, indicating that patients with PI3K pathway alterations 

may respond to PARP inhibitors as well [47–49].

 WNT pathway

In Robinson et al., 18% of metastatic CRPC patient are presented with mutation in WNT 

pathway, including activating CTNNB1, APC, RNF43, RSPO2, and ZNRF3 mutations. 

Furthermore, a recent study of CRPC patients’ circulating tumor cells demonstrated an 

upregulation of WNT signaling in this clinical setting [50]. Historically, the WNT pathway 

has been extremely difficult to target because of the multitude of receptors, ligands, and 

downstream pathways [51]. The WNT pathway has many imperative biologic functions 

from embryonic development to tissue homeostasis and is activated by proteins secreted by 

tumor cells as part of an autocrine loop, or they may be produced by surrounding stromal 

cells, increasing the difficulty of targeting this pathway. The WNT pathway is also thought 

to be activated in cancer stem cells, which are thought to drive resistance to many therapies 

[52■]. Although it is known that the WNT signaling pathway is altered in CRPC, it is 

unknown whether an antagonist or agonist would work better to inhibit growth. There is 

contradicting evidence in multiple tumor types whether activation or repression of the 

pathway increases survival. Evidence also supports β-catenin signaling in dictating tissue-

specific predisposition to APC-driven tumorigenesis [53], helping to indicate whether a 

repressor or activator would work best. This is again demonstrated by the contradicting 

therapeutics currently in clinical trials (Table 1): Foxy-5 activates the WNT pathway, 

whereas OMP-54F28 inhibits the pathway. Efficacy data will inform their utility in this 

clinical setting. Additional preclinical and clinical studies are needed to determine how to 

best target this pathway in CRPC. It is also known that all of the WNT pathway therapeutics 

have had significant toxicities associated because of the wide range of functions of the WNT 

pathway [54].

 Cell cycle pathway

Loss of RB1 was seen in 21% of metastatic biopsies versus 1% in localized prostate cancer 

[15,17■■]. Less common cell cycle pathway alterations including mutations in CDKN2A/B, 
CDKN1B, and amplifications of CCND1, were seen. The major role of the cell cycle 

pathway is to stop mitosis to allow for DNA repair via the inhibition of cyclin-dependent 
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kinases (CDKs) and RB1 phosphorylation [55]. CDK4/6 inhibition can induce cell cycle 

arrest and cancer cell senescence. Currently, there is one CDK4/6 inhibitor approved in 

breast cancer, and multiple other CDK4/6 and pan-CDK inhibitors in clinical trials [56]. In 

CRPC, there are multiple trials for CDK4/6 inhibitors (Table 1). There are known resistance 

to these drugs, including Rb-negativity and a lack of codeletion of CDKN2A/CDKN2B in 

glioblastoma, indicating any trial with these compounds must be genomically driven and 

may be relevant in CRPC [57].

 Immunotherapy

The most mature effort for CRPC immunotherapy is sipuleucel-T, a cell-based 

immunotherapy, which is Federal Drug Administration approved [22]. It is created using 

mature, autologous antigen-presenting cells obtained from patients. However, this approach 

has thus far not resulted in clinical benefit in stratified patient subsets. In order to expand 

immunotherapy approaches in the setting of success in other tumor types, multiple 

checkpoint inhibitors have been testing in CRPC, although thus far, these therapies have had 

limited clinical results [58]. Notably, multiple studies have recently demonstrated a 

correlation between response to immune checkpoint inhibitors and mutational burden 

[59■■–61■■]. A subset of CRPC patients has a high mutation load because of alterations in 

mismatch repair genes, MLH1 and MSH2. Thus, CRPC patients with a high mutational 

burden may benefit greatly from immunotherapy, such as a checkpoint inhibitor, and future 

efforts geared toward determining whether this relationship holds across CRPC patients may 

inform the clinical utility of checkpoint inhibitors in the CRPC setting.

 TECHNOLOGIES FOR ENHANCING PRECISION MEDICINE IN 

CASTRATION-RESISTANT PROSTATE CANCER

Despite continuous advances in high-throughput genomic sequencing technologies and their 

utilization in cancer, there are several challenges in successful implementation of precision 

medicine in CRPC (Table 2). For example, access to tumor tissue for profiling is especially 

complicated because of the need to obtain metastatic biopsies, including bone metastasis 

[62] and the low percentage of cancer cells in many of these samples. Although it has been 

demonstrated that sequencing tumor from bone biopsies is feasible, these approaches are 

difficult and require much expertise [63■]. There is also the reality that not all patients can 

get a biopsy or that the capacity of interventional radiology facilities will permit biopsy 

sampling in all patients. Moreover, a single biopsy may not capture the extent of disease. As 

demonstrated in localized prostate cancer and by studying multiple metastatic sites from 

individual patients, there is significant intra-tumor heterogeneity in prostate cancer [30■■]. 

If a patient has multiple metastatic sites, only sampling one, may not demonstrate the 

biology of the whole tumor. In addition, one must also consider the possibility of not finding 

any targetable genetic alteration in a patient’s tumor. With additional genomics research and 

novel therapeutics, this possibility will decrease.

A potential technology that may address difficulty in obtaining biopsies, and tumor 

heterogeneity in CRPC is the use of liquid biopsy techniques. One such approach involves 

the use of circulating tumor cells (CTCs) to identify genomic alterations of CRPC. CTCs 
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have been demonstrated to have a reasonable readout of the tumor genomic landscape in 

patients with CRPC [64]. Circulating tumor DNA (ctDNA) is another novel way to identify 

genomic alterations and track patient’s genomic landscape over time [65■]. In other tumor 

types, WES has been performed from ctDNA [66■■], indicating metastatic biopsies may not 

be needed in the future. These technologies may also help us identify patients who are 

developing resistance earlier than a radiological scan [64,67,68]. As seen in multiple other 

cancer types, the genomic profile of tumors after treatment is often very different [69■,70■]. 

From a clinical standpoint, early detection of resistance is crucial to optimizing therapy, and 

the use of ultradeep sequencing in multiple regions of a biopsy, together with monitoring of 

tumor evolution using ctDNA could provide this information [71■].

 CLINICAL STRATEGIES TO IMPLEMENT PRECISION MEDICINE

A major logistical challenge toward implementing precision medicine in CRPC and across 

cancer types is building an infrastructure for genomic sequencing in cancer, including 

collecting tissue, genomic alterations testing, genomic analysis, and reporting results back to 

patients [72■■,73■■,74–77]. Another limitation to genomic sequencing is cost. Although 

the cost of genomic sequencing is continuously decreasing, it is rarely covered by insurance 

[78], causing limited access to many patients [79]. In addition, once genomic alterations are 

identified, it is often difficult for patients to get access to affordable medication [80]. Finally, 

owing to the small percentage of patients with particular genomic alterations, new clinical 

trial schemas have been developed to support ongoing precision medicine therapeutics.

Two efficient ways to test the effects of multiple drugs is through a basket or umbrella trial 

(Fig. 2a and b). These trial schemas have been well demonstrated in lung cancer [81] and are 

currently a declared initiative of the National Institutes of Health (NIH). The National 

Cancer Institute program, a large basket trial initiative, will include 3000 patients with 

different types of cancer to find early signals of a response to targeted therapies. Basket trials 

test the effect of a single drug targeting a specific molecular alteration in a variety of 

cancers. This design not only allows for a faster identification of candidate patient, but also 

to assess the potential value of this targeted therapy across different tumor types. An 

umbrella trial assesses the effect of different drugs in different molecular alterations either in 

one or several tumors. This would involve sequencing the tumors of all men with CRPC, and 

placed in the appropriate slot based on the genomic profile. One additional challenge to 

umbrella trials is identifying the correct driver mutation. Ongoing efforts to identify and 

rank known driver mutations [72■■] should help place patients in the appropriate slot. These 

trial schemas will also help drug development for less common alterations. Implementing 

either of these trial schemas for CRPC will allow expedited identification of targeted 

therapies that work well in this setting.

 CONCLUSION

The concept of precision medicine driven by genomics for CRPC is appealing; however, it is 

in its infancy. We must continue to obtain additional genomic information and correlate this 

with therapeutic response. Developing catalogues of CRPC cancer-related genes, together 

assessments of pathway activation could enable a better identification of additional driver in 
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the future. The characterization of the genomic landscape of tumors and of the activated 

protein network will guide combination therapies to optimize therapeutic effects. Finally, 

logistics and operational challenges need to be addressed.
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KEY POINTS

• Precision medicine shows great promise in advanced prostate cancer, 

but it is still in the initial stages.

• Advancement in prostate cancer precision medicine is dependent on 

continuous research in prostate cancer genomics and correlation with 

response to current and novel therapies.

• Expansion of liquid biopsy techniques, such as circulating tumor cells 

or cell-free DNA, may be especially impactful in precision medicine 

for CRPC.
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FIGURE 1. 
Precision medicine in advanced prostate cancer revolves around the ability to take a tumor 

sample, ideally metastatic tumor, sequence the tumor, and assign therapy to the patient. This 

involves biopsy of tumor tissue, DNA/RNA extraction, WES/WGS/Transcriptome 

sequencing, bioinformatics interpretation of results, and assignment of treatment based on 

therapeutic profile. This process may be repeated as needed when patients progress. WES, 

whole-exome sequencing; WGS, whole genome sequencing.
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FIGURE 2. 
Basket trials (a) and umbrella trials (b) are two approaches to precision medicine with novel 

therapeutics in advanced prostate cancer. (a) Basket trials take patients with multiple 

different tumor types with the same genetic alteration to test a single therapeutic. This allows 

for fast identification of potential patients and tests the drug/alteration across different 

diseases quickly. (b) Umbrella trials test the effect of different drugs on different genetic 
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alterations within the same disease type. This allows for increase accrual of all advanced 

prostate patients and tests multiple drug/genomic alteration combinations at the same time.
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Table 1

Ongoing clinical trials in advanced CRPC with potential precision medicine applications

Gene Potential therapeutic Current clinical trials/therapies* Phase

Androgen receptor Androgen receptor Mifepristone (RU-486) NCT00140478 Phase 2

Mifepristone/enzalutamide NCT02012296 Phases 1, 2

Galeterone NCT02438007 Phase 3

GTx-758 NCT01615120 Phase 2

VT-464 NCT02445976 Phase 2

Trilostane NCT00181597 Phase 2

AZD3514 NCT01162395 Phase 1

Orteronel (TAK-700) NCT00569153, NCT01809691,
 NCT01809691

Phases 1, 2, 3

Triamcinalone NCT00186108 Phase 1

Immunotherapy Ipilimimab + ADT NCT01377389 Phase 2

AR DNA Vaccine NCT02411786 Phase 1

Ipilimimab NCT00170157 Phase 2

BNIT-PR-001 Phase 1

PIK3CA PIK3CA Buparlisib (BKM120) NCT02487823 Phase 1

PIK3CB AZD8186 NCT01884285 Phase 1

PIK3CB GSK2636771/enzalutamide NCT02215096 Phase 1

PIK3CB GDC-0068/abiraterone NCT01485861 Phase 2

Cell Cycle BCL-2 Navitoclax/abiraterone NCT01828476 Phase 2

CDK4/6 Ribociclib NCT02555189 Phases 1, 2

CDK4/6 PD 0332991 NCT02059213 Phase 2

DNA damage PARP Niraparib/enzalutamide NCT02500901, NCT00749502 Phase 1

Olaparib/enzalutamide NCT01972217 Phase 2

BMN 673 NCT01286987 Phase 1

Veliparib NCT00892736 Phase 1

WNT WNT Foxy-5 NCT02020291 Phase 1

OMP-54F28 NCT01608867 Phase 1

*
List collected October 2015.
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Table 2

Logistical and scientific challenges in CRPC precision medicine initiatives

Challenge Description Potential solutions

Logistical challenges Genomic testing
 infrastructure

Setting up genomic testing in a hospital
 requires infrastructure with pathology,
 clinician, bioinformatics, information
 systems, and many more

Have key academic centers for testing
 and distribute results to community
 centers

Cost of genomic testing In nonacademic centers, genomic testing
 is run by private companies

Allow testing to be covered by
 insurance or make low cost testing
 available

Metastatic biopsies Biopsy is not feasible in all patients Collection and sequencing of CTCs

Testing target therapeutics
 in CRPC

Although we know there are therapeutics
 that work with many of these targets in
 other diseases, these therapeutics must
 be testing in CRPC

Designing basket and bucket trials to
 test multiple targets or therapeutics
 at the same time

Scientific challenges Tumor intraheterogeneity CRPC is known to have a lot of
 heterogeneity in the primary specimen,
 by biopsying one metastatic lesion, it
 is unknown if we see the entire
 genomic picture.

Future studies should focus on
 heterogeneity in the metastatic
 setting

Lack of targetable
 mutations

Not all patients will have an oncogenic
 driver because of a low number of
 genes screened

Perform WES, RNA or protein based
 assays on these patients

Secondary resistance Although patients may respond to a
 targeted therapy, most will develop
 resistance. Posttreatment biopsy tumor
 samples may have a different genomic
 profile than pretreatment

Track patient progress using ctDNA or
 CTCs. Test and provide combination
 therapy for patients

Identification of driver
 mutation

Some patients may present with multiple
 targetable mutations

Use heuristic and predictive modeling
 to determine which mutation is best
 to initially target.

CRPC, castration-resistant prostate cancer; CTCs, circulating tumor cells; ctDNA, Circulating tumor DNA; WES, whole-exome sequencing.
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