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Summary

We propose a new class of models for making inference about the mean of a vector of repeated 

outcomes when the outcome vector is incompletely observed in some study units and missingness 

is nonmonotone. Each model in our class is indexed by a set of unidentified selection bias 

functions which quantify the residual association of the outcome at each occasion t and the 

probability that this outcome is missing after adjusting for variables observed prior to time t and 

for the past nonresponse pattern. In particular, selection bias functions equal to zero encode the 

investigator’s a priori belief that nonresponse of the next outcome does not depend on that 

outcome after adjusting for the observed past. We call this assumption sequential explainability. 

Since each model in our class is nonparametric, it fits the data perfectly well. As such, our models 

are ideal for conducting sensitivity analyses aimed at evaluating the impact that different degrees 

of departure from sequential explainability have on inference about the marginal means of interest. 

Although the marginal means are identified under each of our models, their estimation is not 

feasible in practice because it requires the auxiliary estimation of conditional expectations and 

probabilities given high-dimensional variables. We henceforth discuss estimation of the marginal 

means under each model in our class assuming, additionally, that at each occasion either one of 

following two models holds: a parametric model for the conditional probability of nonresponse 

given current outcomes and past recorded data, or a parametric model for the conditional mean of 

the outcome on the nonrespondents given the past recorded data. We call the resulting procedure 

2T-multiply robust as it protects at each of the T time points against misspecification of one of 

these two working models, although not against simultaneous misspecification of both. We extend 

our proposed class of models and estimators to incorporate data configurations which include 

baseline covariates and a parametric model for the conditional mean of the vector of repeated 

outcomes given the baseline covariates.
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 1 Introduction

Consider a follow-up study whose design prescribes measurements of an outcome of interest 

to be taken on n independent subjects at fixed time-points. The goal of the study is to make 

inference about the mean outcome vector possibly as a function of baseline covariates and 

time. The intended vector of outcomes is often not completely recorded because some 

subjects miss some study cycles. When, as usual, the mechanism leading to these outcomes 

being missing is unknown to the investigator, the expected outcome at each time-point is not 

identified from the observed data. Inference must then rely on unverifiable assumptions 

about the missing data.

The problem of missing data in follow-up studies has received much attention in the 

statistical literature, but most emphasis has been given to settings where the missing pattern 

is monotone, in which no subject returns to subsequent study cycles after missing previous 

cycles. Robins et al. (1999) described a model for monotone missing data patterns which 

requires the a priori specification of a selection bias parameter that encodes the residual 

association between the outcome vector and missingness at each occasion after adjusting for 

past recorded data. They showed that, regardless of the value of the selection bias parameter, 

the model is nonparametric (just) identified as it imposes no restriction on the observed data 

distribution and yet identifies the mean of the repeated outcomes. Since all values of the 

selection bias parameter determine the same model for the observed data distribution, the 

selection bias parameter is not identified. Robins et al. (1999) therefore recommended 

conducting inference about the mean of the outcome vector by repeating the estimation 

under different plausible values for the selection bias parameter as a form of sensitivity 

analysis. The goal of this paper is to extend the work of Robins et al. (1999) to the case in 

which the outcome vector is incompletely observed in some study units and missingness is 

nonmonotone.

Our interest in nonparametric identified models is motivated by the fact that other models 

fail to distinguish (i) the nonidentifiable, i.e. untestable, restrictions on the missing data 

process necessary to identify the full-data parameter of interest from (ii) additional 

identifiable restrictions that serve to increase the efficiency of estimation. The distinction 

between (i) and (ii) is not only conceptually important but can also be practically important. 

For example, when one has available a nonparametric identified model, one can first fit the 

model to the data. If the resulting uncertainty concerning the functionals of interest, such as 

the marginal means of the outcomes, is too large to be of substantive use, as measured for 

instance by the volume of a 95% confidence region, then, as in any inferential problem, to 

reduce uncertainty one can choose between fitting a nested submodel and refitting the same 

model after collecting data on additional subjects, where possible, to increase the sample 

size. Clearly, when logistically and financially feasible, the second option is to be preferred. 
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Thus, fitting a model that is not nonparametrically identified is tantamount to supplementing 

additional modelling restrictions for the unavailable additional data. Furthermore, follow-up 

studies routinely collect high-dimensional data and models that are not nonparametrically 

identified require assumptions to be imposed on the mechanism generating these high-

dimensional data. However, specification of realistic models is difficult, if not impossible. 

Nonparametric identified models meet the challenge posed by high-dimensional data 

because they only make assumptions about the missing data mechanism, thereby reducing 

the possibility of model misspecification.

Several available methods for the analysis of nonmonotone missing data assume that the 

data are missing at random (Laird & Ware, 1982; Shah et al., 1997; Andersson & Perlman, 

2001; Fairclough et al., 1998; Little & Rubin, 1987; Troxel, Fairclough, Curran & Hahn, 

1998). Although the missing at random assumption enables a fairly straightforward 

likelihood-based analysis without needing to model the missing process (Little & Rubin, 

1987), we will argue in §3.1 that this assumption is rarely realistic for nonmonotone missing 

data. A recent model discussed by Lin et al. (2003) and van der Laan & Robins (2003, Ch. 

6) relies on a more plausible assumption about the missingness process which nonetheless 

assumes no selection on unobservables for the marginal distribution of the responses. In §3.4 

we show that it can be viewed as a special case of the model presented in this paper, in 

which selection bias is absent.

Several proposals also exist for nonmonotone missing data where selection depends on 

unobservables. With the exception of the selection bias permutation missingness model of 

Robins et al. (1999), none of the available models is nonparametric identified. The currently 

available models rely on parametric assumptions for both the full data and the missing data 

mechanisms (Deltour et al., 1999; Albert, 2000; Ibrahim et al., 2001; Fairclough et al., 1998; 

Troxel, Fairclough, Curran & Hahn, 1998; Troxel, Lipsitz & Harrington, 1998) or on 

parametric assumptions for just the missing data process (Rotnitzky et al., 1998; Robins et 

al., 1995). The selection bias permutation missingness model generalizes the permutation 

missingness model of Robins (1997) and the sequential coarsening model of Gill & Robins 

(1997). This model differs from but is related to the nonparametric identified model we 

propose in the current paper. The two models are compared in §3.5.

 2 The formal setting

Consider a longitudinal study design that calls for measurements on a vector of variables Lit 

to be recorded at study cycles t = 0, …, T, for the ith of n independent subjects. The vector 

Lit, t = 1, …, T, includes an outcome of interest Yit as well as other variables Vit recorded 

for secondary analyses. The vector Li0 may include, in addition to Yi0 and Vi0, a baseline 

covariate vector Xi of interest.

Suppose that Li = (Li0, …, LiT) is not always fully recorded because some subjects miss 

some study cycles. In particular, for each t, Lit is either completely observed or completely 

missing and Li0 is always observed. Thus, for each t, the observed data for subject i is the 

vector Oit = (Rit,c (Rit,Lit)), where Rit is a response indicator which equals 1 if Lit is 

observed and is 0 otherwise, and where, for any random vector W, c (1, W) = W and c (0, 
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W) is set to zero by convention. Under our setting, the observed data Oi = (Li0, Oi1, …, OiT), 

i = 1, …, n, can be regarded as n independent realizations of the random vector O = (O0, O1, 

…, OT). Here and throughout O0 denotes L0. Furthermore, for any vector Z = (Z0, …, ZT), 

Z̅
t denotes the history (Z0, …, Zt) up to and including cycle t and Z(t) denotes the vector (Zt, 

…, ZT). Throughout we assume for each t that Yt is either a continuous or discrete random 

variable; for any random vector W, f (Yt|W) denotes a fixed version of the conditional 

density of Yt given W with respect to either Lebesgue measure or a counting measure and 

pr(Rt = 1|W) denotes a fixed version of the conditional probability that Rt equals 1 given W.

We assume that the nonresponse patterns are nonmonotone so that Rt = 0 does not imply that 

Rt+1 = 0. We additionally assume that no recorded past O̅
t−1 and no current outcome Yt can 

prevent the possibility of returning to study cycle t; that is,

(1)

Note that (1) would not hold in a study design where patients are withdrawn when they miss, 

say, four consecutive visits (Zeuzem et al., 2000) or when all individuals with extreme 

values of Yt are so physically impaired that clinic attendance at visit t is impossible. The 

methods we propose here are not applicable in such cases.

Condition (1) was also assumed in Lin et al. (2003) and van der Laan & Robins (2003, Ch. 

6) except that visits could be in continuous rather than in discrete times. These authors 

obtained identifiability by imposing the additional assumption of sequential explainability,

(2)

which we discuss in detail in §3.4. A conflict as to the number and type of variables to 

include in the components Vt of the full data vector Lt at each cycle t arises when one wishes 

to impose both assumptions (1) and (2): to make sequential explainability (2) plausible one 

would generally wish to choose Vt−1 to be high-dimensional; however, the positivity 

assumption (1) may be unrealistic for high-dimensional Vt−1, as Vt−1 may then well include 

covariates, such as for example the subject’s state of consciousness, certain values of which, 

e.g. being unconscious, preclude the possibility of being observed at occasion t. Since it will 

often be unrealistic to impose both (2) and (1), we propose to relax the assumption of 

sequential explainability: we will describe methods for conducting inference about the 

marginal mean E (Yt), t = 1, …, T, and the conditional mean given baseline covariates E (Yt|

X), t = 1, …, T, when (1) holds but (2) may fail.

 3 Identifying assumptions

 3.1 Preamble

Unless Rt = 1 with probability 1, the observed data O identify neither the distribution of Yt 

nor its conditional distribution given X because, as Theorem 1 below implies, many distinct 

conditional laws of Yt given O̅
t−1 are compatible with the observed data law. To identify 
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these distributions we must make unverifiable assumptions. We now review one popular 

such assumption, that the data are missing at random, and argue that it represents processes 

that are unlikely to generate nonmonotone missing data patterns in longitudinal studies. We 

then propose a class of unverifiable assumptions that are naturally suited to conducting 

sensitivity analysis of the investigator’s a priori belief about the process that generates the 

intermittent nonresponse in a follow-up study. In subsequent sections we discuss inference 

under any such assumption.

 3.2 Missing at random

Robins & Rotnitzky (1992) and Gill et al. (1997) showed that the distribution of the full data 

vector L is identified if the data are missing at random, provided that there is a positive 

conditional probability of observing the full data, i.e. pr(R̅
T = 1*|L) > 0 with probability 1, 

where 1* denotes the T × 1 vector of ones. The missing at random assumption states that

(3)

where L(r̅T) denotes the observed part of L when R̅
T = r̅T.

Under any model in which pr(R ̅
T|L) and f (L) are variation independent and the missing at 

random condition (3) is imposed, the likelihood factorizes into a part that depends on f (L) 

and another that depends on pr(R̅
T|L). Any method that obeys the likelihood principle then 

yields the same inference whether pr(R̅
T|L) is fully known, unknown or known to follow a 

model. As a result of this, many authors have proposed analyzing nonmonotone missing data 

using likelihood-based methods under models that assume missing at random. However, 

convenient as the missing at random assumption may be, the assumption should only be 

adopted if it is believed plausible. Following Robins & Gill (1997) we will now argue that 

missing at random mechanisms that could plausibly generate the observed data in follow-up 

studies with nonmonotone nonresponse are quite restrictive and would rarely be plausible.

Robins & Gill (1997) showed that the set of missingness probabilities pr(R̅
T|L) that satisfy 

missing at random can be divided into two disjoint subsets. The first set contains processes 

in which the observed data are generated as follows. The variable L0 is always observed. 

Then, with probability p00 possibly depending on L0, no further variable is observed. 

Otherwise one selects which of L1, …, LT to observe next by flipping a T-sided coin with 

probabilities p01, …, p0T that may depend on L0. One then observes nothing else with 

probability p10 that may depend on L0 and the most recently observed Lt. Otherwise one 

selects which of the T − 1 still unobserved Lt’s to observe next with probabilities p11, …, 

p1(T−1) that may depend on the already observed Lt’s, and so on. The second subset contains 

all remaining missingness processes that satisfy (3). Robins & Gill (1997) showed that the 

second subset is not empty. They also showed that to generate the observed data O according 

to a missingness mechanism in the second set it is required, in the course of the data-

generation procedure, to use information about the components of L that are not in L(R̅T), 

and thus are ultimately missing, in a subtle and often highly contrived manner to ensure that 

missing at random holds. In agreement with the discussion in Robins & Gill (1997), we 
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believe that such missing at random missingness mechanisms are often unrealistic. 

Consequently, the most reasonable missing at random processes with nonmonotone data are 

in the first set. Moreover, of the processes in the first set, the only plausible choices for 

longitudinal data are those in which, with conditional probability equal to 1, the next 

variable to be observed comes later in time than any variable already observed, as decisions 

today cannot affect attendance in the past. However, even these are rather unlikely processes 

when missingness is nonmonotone because they effectively imply for example that, if a 

patient chooses today to miss his next two visits and then to return, he will not reassess this 

decision based on evolving time-dependent covariates associated with the response. This is 

unlikely, as often the decision to miss a given study cycle is influenced by aspects of the 

subject’s health and psychological status that evolved during earlier missed study cycles.

 3.3 Occasion-specific tilted models

Part (ii) of Theorem 1 below establishes that, when (1) holds for a fixed t, t = 1, …, T, the 

distributions f (Yt|X) and f (Yt) are identified under the following Assumption 1 which 

postulates that, among subjects with a given observed past O̅
t−1, the distribution of Yt in the 

nonresponders at cycle t is equal to the distribution of Yt in the responders at cycle t tilted by 

a known function.

Assumption 1. If

(4)

then

(5)

for some user-specified, i.e. known, function qt(O̅
t−1, Yt).

For ease of reference in the forthcoming discussion, we use t (q) ( (q)) to denote the 

model for the full data (L,R̅
T) defined by (1) and Assumption 1 for a fixed t, for all t = 1, …, 

T. Note that (q) is the intersection of models t (q), t = 1, …, T.

By Bayes rule, Assumption 1 is equivalent to

(6)

whenever f(Yt|O̅
t−1, Rt = 1) > 0,, where expit(․) = exp(․)/{1 + exp(․)} and

(7)
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From (6), we interpret each function qt(O̅
t−1, Yt) as quantifying, on the logistic scale, the 

magnitude of the residual association between the missingness probability at cycle t and the 

possibly missing outcome Yt, after adjustment for the observed past O̅
t−1. Thus, model (q) 

encodes the investigator’s a priori belief of the degree to which, for each t the decision to 

return to study cycle t is influenced by prognostic factors for Yt other than those included in 

the observed past, O̅
t−1. For example, the choice qt(O̅

t−1, Yt) = (1 − Rt−1) λYt encodes the 

belief that, for those that did not miss the prior cycle t − 1, the recorded variables Lt−1 at the 

prior cycle together with the observed past O̅
t−2 prior to cycle t − 1 are sufficient to explain 

missingness at cycle t, but, for those that missed cycle t − 1, the observed past O̅
t−2 is not 

sufficient to explain missingness at cycle t. The choice qt(O̅
t−1, Yt) = {(1 − Rt−1) λ1 + λ2} Yt 

additionally allows a residual dependence on the current outcome. In line with the 

terminology used in some of the missing data literature, we call qt(․) a selection bias 

function (Scharfstein et al., 1999).

Part (i) of Theorem 1 below establishes that model (q), and therefore t (q) for each t, 
places no restriction on the observed data law beyond the restriction that pr(Rt = 1|O̅

t−1) > 0 

for all t. As such, each choice of selection bias functions qt(O̅
t−1, Yt), t = 1, …, T, fits the 

data perfectly and cannot be rejected by any statistical test. Since there will never be any 

evidence from the data that can help determine the functions qt(O̅
t−1, Yt), the analyst should 

be reluctant to analyze the data solely under one choice of functions qt(O̅
t−1, Yt). Instead, he 

should pose a range of plausible selection bias functions and, as a form of sensitivity 

analysis to his prior beliefs about the missingness mechanism, repeat the analysis under each 

choice of qt(O̅
t−1, Yt). This raises the question of how to choose the selection bias functions 

in practice. We suggest that one chooses, as in the example above, a collection of simple 

selection bias functions indexed by one or two parameters that are to be varied in a 

sensitivity analysis. Ideally, the parameterization should satisfy the following properties: it is 

easily interpretable so that a plausible parameter range can be specified by subject matter 

experts; values of the parameters equal to zero correspond to the assumption of no selection 

bias for the outcomes; and nonparametric bounds are attained when the parameters go to 

±∞.

In the following theorem, proved in the Appendix, and throughout, if (4) holds we define

Furthermore, we define πt(O̅
t−1, Yt) ≡ 1 if (4) does not hold and

otherwise, where ht(O̅
t−1) satisfies (7).

Theorem 1. (i) Model (q) determines a model for the law of the observed data whose only 
restriction is pr(Rt = 1|O̅

t−1) > 0 with probability 1, for t = 1, …, T.
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(ii) The conditional density f(Yt|O̅
t−1) is identified under model t (q), and therefore under 

(q). Furthermore, under models t (q) and (q), E (Yt) is equal to the following 
functional of the observed data distribution:

(8)

(9)

Part (ii) of the Theorem implies the identifiability of the marginal density of Yt and its 

conditional distribution given X under model t (q) and therefore also under model (q). 

However, the theorem says nothing about the identifiability of the dependence among 

outcomes at different occasions. This is so because this dependence is generally not 

identified under model (q). In particular, under model (q) the correlations among the 

repeated outcomes are not identified for any choice of selection-bias function.

 3.4 Sequential explainability

The choice qt = 0 postulates the conditional independence of Yt and Rt given O̅
t−1. This 

assumption would hold if the observed past variables O̅
t−1 included all the predictors of Yt 

that explain missingness at cycle t. We therefore refer to the assumption that qt = 0 for all t 
as the assumption of sequential explainability. Lin et al. (2003) and van der Laan & Robins 

(2003) consider such processes except that visits occur in continuous time.

The assumption that qt = 0 is less restrictive than the missing at random condition

(10)

for t = 1, …, T, because (10) implies (6) with qt = 0 but the opposite is false. For example, 

(10) postulates the conditional independence given Ot̅−1 of Rt with the current components 

Lt, the future components L(t+1) and the components of L̅
t−1 corresponding to missed cycles. 

However, (6) says nothing about the dependence of Rt on future components L(t+1) and the 

components of L̅
t−1 corresponding to missed cycles. In fact, while assumption (10) imposes 

restrictions on the observed data distribution and hence is a testable assumption, this is not 

true for (6) by part (i) of Theorem 1. Note also that, under model (q) with qt = 0 for all t, 
nonresponse is nonignorable for inference about f (Yt), t = 1, …, T, in the sense that 

likelihood-based methods do not result in the same inference if pr(Rt = 1|O̅
t−1) is known, 

unknown or known to follow a model. This is because the likelihood of the observed data at 

each cycle t does not factorize into a part that depends on pr(Rt = 1|O̅
t−1) and another that 

depends on f (Yt).
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 3.5 Relationship between model (q) and the selection bias permutation missingness 
model

Members of the class of selection bias permutation missingness models of Robins et al. 

(1999) are indexed by permutations of the visit subscripts 1, …, T. One such model is 

particularly appropriate for longitudinal studies and is defined by the assumptions that, for 

each t,

with qt(O̅
t−1, Yt, Y(t+1)) known. It differs from model (q) only in that the future outcome 

history Y(t+1) is added to each conditioning event and to the function qt(O̅
t−1, Yt, Y(t+1)). 

Robins et al. (1999) showed that for each qt, t = 1, …, T, this model places no restriction on 

the distribution of the observed data and identifies the joint distribution of Y̅
T = (Y1, ․…, 

YT). Thus this model can be used instead of model (q) when the substantive question at 

issue depends on the joint law of Y̅
T rather than simply on the marginals Yt of Y̅

T. However, 

the ability to make inferences about the joint law comes at a price as it is more difficult to 

model f(Yt|O̅
t−1, Y(t+1), Rt = 0) than f(Yt|O̅

t−1, Rt = 0) both because the conditioning event 

(O̅
t−1, Y(t+1), Rt = 0) is of greater dimension than the event (O̅

t−1, Rt = 0) and because it is 

less natural to model the law of Yt given the observed past O̅
t−1 and the, possibly 

unobserved, future Y(t+1) than to model the law of Yt given only the observed past O̅
t−1.

 4 Estimation of the unconditional occasion-specific outcome means

 4.1 Nonparametric inference under model (q)

We now discuss inference about the marginal means  under models that assume 

(6) for user-specified functions qt(O̅
t−1, Yt), t = 1, …, T.

Models (q) and t (q) define the same model, i.e. the nonparametric model, for the 

observed data distribution. Furthermore, as established in part (ii) of Theorem 1, under either 

model,  is the same, unique, functional of the observed data law. Thus, inference about 

under either model is identical. In particular, the nonparametric maximum likelihood 

estimator β̂
NPML,t of  under either model is obtained by calculating the expressions in the 

right-hand side of (8) or (9) under the empirical distribution of O, i.e.

where ĥ(O̅
t−1)NPML,t = −∞ if En(Rt|O̅

t−1) = 1 and otherwise
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and where for random variables W and Z, 

.

Unfortunately, unless T is small and Lt is discrete with few levels, with the sample sizes 

found in practice the data available for estimating the required conditional expectations will 

be sparse and consequently the estimator β̂
NPML,t will be undefined. One could assume that 

the required conditional expectations are smooth in O̅
t−1 and use multivariate smoothing 

techniques to estimate them. However, when O̅
t−1 is high-dimensional, they would not be 

well estimated with moderate sample sizes because no two units would have values of Ot̅−1 

close enough to allow the borrowing of information needed for smoothing. Thus, in practice, 

because of the curse of dimensionality, we are forced to place more stringent dimension-

reducing modelling restrictions on the law of the observed data.

Two dimension-reducing strategies are suggested by expressions (8) and (9) for . The first 

strategy is to assume that the function ht(O̅
t−1) follows a parametric model,

(11)

where ht(O̅
t−1; αt) is a known function smooth in αt, and  is an unknown pt,h × 1 

parameter vector. The second strategy is to assume that mt (O̅
t−1) follows a parametric 

model,

(12)

where mt (O̅
t−1; θt) is a known function, smooth in θt, and  is an unknown pt,m × 1 

parameter vector.

We use ℬt (q) (ℬ (q)) to denote the model for the full data (L,RT̅) defined by the 

assumptions of model t (q) and the additional restrictions (4) and (11) specified just for a 

fixed t (for all t). Likewise, we use t (q) (  (q)) to denote the model for the full data (L,RT̅) 

defined by the assumptions of model t (q) and the additional restriction (12) specified just 

for a fixed t, for all t.
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Models (11) and (12) are not in themselves of scientific interest. However, in practice we are 

forced to impose one of the two models. Estimation of  under model ℬt (q) is not entirely 

satisfactory because the resulting estimators of  can be biased if model (11) is incorrect, 

and estimation under t (q) suffers from the same limitation if model (12) is incorrect. 

Luckily there is an alternative strategy for estimation of . This consists of computing an 

estimator that is consistent and asymptotically normal in the union model ℬt (q) ∪ t (q), 

i.e. an estimator of  that is consistent and asymptotically normal so long as one of the 

models ℬt (q) or t (q), but not necessarily both, is correctly specified. Following Robins 

(2000) and Robins & Rotnitzky (2001) we call such an estimator a doubly robust estimator 

in the union model ℬt (q) ∪ t (q) as it can protect against misspecification of either (11) or 

(12), although not against simultaneous misspecification of both. The following definition 

introduces a generalization of double robustness.

Definition. Given a collection {ℳu; u ∈  of models for a law F indexed by the elements of 
a finite set with K elements, we say that an estimator λ̂ of a parameter λ ≡ λ (F) is a K-
multiply robust estimator in the union model ∪u∈ ℳu if it is a consistent and 
asymptotically normal estimator of λ when one of the models ℳu, u ∈  but not necessarily 
more than one of them, holds.

 4.2 Doubly and 2T-multiply robust estimation

In this subsection we propose a doubly robust estimator of  in the union model ℬt (q) ∪ t 

(q) and a multiply robust estimator of β* in the union model ∪u∈ ℳu (q). Throughout, 

denotes the collection of T ×1 vectors u whose components are either 0 or 1. For each such 

vector u, ℳu = {∩t:ut=0ℬt (q)} ∩ {∩t:ut=1 t (q)}. Thus, a 2T-multiply-robust estimator of β* 

is consistent and asymptotically normal for  so long as at each t one of the 

models ℬt(q) or t(q), but not necessarily both, is correctly specified.

To construct the doubly and 2T-multiply robust estimators we reason as follows. Suppose 

that we have specified working models (11) and (12). For any constant column vector dt and 

conformable column vector functions ϕt (O̅
t−1) and ψt (O̅

t−1), define

(13)

(14)

where εt(βt) = Yt − βt and πt(O̅
t−1, Yt; αt) ≡ [1 + exp {ht(O̅

t−1; αt) + qt(O̅
t−1, Yt)}]−1. In the 

Appendix we show that, provided we choose ϕt(O̅
t−1) in (13) and ψt(O̅

t−1) in (14) to have the 

specific functional forms given by
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(15)

for any fixed θt, αt and βt, Ht(1, ϕθt,βt,t, βt, αt) and Mt(1, ψαt,t, βt, θt) are identical, where 1 is 

a scalar constant function equal to 1. We therefore write, for short,

In the Appendix we also show that if model (11) holds then, for any θt and regardless of 

whether or not model (12) holds,  has mean zero and therefore so does 

. Furthermore, if model (12) holds then, for any αt and regardless of whether 

or not model (11) holds,  has mean zero and therefore so does 

. These results suggest that we can construct a doubly robust estimator β̂
t of , 

throughout also denoted by β̂
t (ψt, ϕt), in model ℬt (q) ∪ t (q) by solving the scalar 

estimating equation

(16)

where θt̂ and α̂
t solve

using arbitrary pt,m × 1 and pt,h × 1 functions ψt(O̅
t−1) and ϕt(O̅

t−1) respectively. Theorem 2 

below establishes that β̂
t is doubly robust in model ℬt (q) ∪ t (q) and that β̂ = (β̂

1, …, β̂
T)′, 

throughout also denoted by β̂ (ψ, ϕ), is 2T-multiply robust in model ∪u∈ ℳu (q).

To state the asymptotic properties of β̂
t and β̂ in Theorem 2, we define

where for any random vector function K (τ, η) of a parameter (τ, η), Iτ,K (τ, η) denotes E 
{∂K (τ, η)/∂τ} and ∂K (τ, η)/∂τ is a derivative matrix with (i, j) entry equal to ∂Ki (τ, η)/∂τj. 

In what follows and throughout, we use a hat to indicate expectations calculated under the 

empirical distribution of the observed data and evaluation at (βt, θt, αt) = (β̂
t, θ̂t, α̂

t); for 

example,
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and Û =(Û1, …, ÛT)′, where Îαt,Qt = En{∂Qt (β̂
t, θ̂

t, αt)/∂αt|αt=α̂t}, and so on.

Parts (i) and (iii) of Theorem 2, proved in the Appendix, state the asymptotic distribution of 

β̂
t and β̂ under models ℬt (q) ∪ t (q) and ∪u∈ ℳu (q), respectively. Parts (ii) and (iv) state 

that the asymptotic variance of β̂
t and β̂ under these models remains the same regardless of 

the choice of the functions ψt and ϕt used to compute the estimators θ̂
t and α̂t of , 

when in fact the true data-generating process satisfies models ℬt (q) ∩ t (q) and 

, respectively. In practice, the choice of functions ψt and ϕt should 

therefore have little impact on the efficiency of β̂
t and β̂ when the models ℬt (q) and t (q), t 

= 1, …, T, cannot be rejected using efficient goodness-of-fit tests. In what follows, for any 

matrix A, A⊗2 denotes AA′.

Theorem 2. Suppose that the regularity conditions stated in the Appendix hold.

(i) Under model ℬt (q) ∪ t (q),  in distribution, where

and  are the probability limits of θ̂
t and αt̂. The matrix Γt can be consistently 

estimated with

(ii) Let  be two pairs of distinct pt,m × 1 and pt,h × 1 functions 

(ψt, ϕt) of O̅
t−1. Then, under the intersection model ℬt (q) ∩ t (q), 

.

(iii) Under model ∪u∈ ℳu (q), √n (β̂ − β*) → N (0, Γ) in distribution, where

and θ0 and α0 are the probability limits of θ̂ = (θ̂
1, …, θ̂T)′ and α̂ = (α̂

1, …, αT̂)′. The matrix 

Γ can be consistently estimated with .

(iv) Let (ψ(1), ϕ(1)) and (ψ(2), ϕ(2)) be two distinct sets of functions {(ψt (O̅
t−1), ϕt (O̅

t−1)), t = 

1, …, T}. Then, under the intersection model 

.
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It is possible to show that, at the intersection model ℬt (q) ∩ t (q), every doubly robust 

estimator β̂
t (ψt, ϕt) has asymptotic variance that attains neither the semiparametric variance 

bound for estimation of  under model t (q) nor, except when qt = 0, the semiparametric 

variance bound for estimation of βt under model ℬt (q). In our opinion, the hope to control 

bias is more important than efficiency concerns, and we therefore recommend using doubly 

or 2T-multiply robust estimators of  and β*, respectively.

So far, we have not allowed the parameters αt in model (11) and θt in model (12), 

respectively, to be shared across occasions. When we are faced with sample sizes that are not 

large enough to yield well-behaved estimators of  at each occasion t, two 

dimension-reducing strategies can be envisaged. The first strategy is to reduce further the 

dimension of models (11) and (12) at each t. The second strategy is to allow parameters αt 

and θt, respectively, to be shared across occasions and to compute an estimator of β* that is 

consistent and asymptotically normal so long as at least one of 

holds. Denote by α and θ the resulting ph × 1 and pm × 1 parameter vectors indexing models 

(11) and (12) respectively, for all occasions t. Then such an estimator β̃ of β* can be obtained 

by solving estimating equations (16) at each occasion t, in which θ̂t ≡ θ̂ and α̂
t ≡ α̂ now 

solve En {M(ψ, θ)} = 0 with  and En {H(ϕ, α)} = 0 with 

, where ψ and ϕ are vectors of pm × 1 functions ψt(O̅
t−1) and 

ph × 1 functions ϕt(O̅
t−1), t = 1, …, T, respectively. Parts (iii) and (iv) of Theorem 2 continue 

to hold for the resulting estimator β̃ if we replace model ∪u∈ ℳu (q) by 

, β̂ by β̃ and U (β, θ, α) by

 5 Estimation of the occasion-specific conditional outcome means given 

baseline covariates

Suppose now that we are interested in inference about a parameter, which we denote again 

by β*, indexing a regression model for the conditional mean of Yt, t = 1, …, T, given 

baseline covariates X; that is, for t = 1, …, T,

(17)

where gt(X; β) is a known function that is smooth in β and β* ∈ Θ ⊆ IRr is unknown. Denote 

by * (q) the model for (L,R̅
T) defined by the restrictions of model (q) and the additional 

restriction (17) for all t = 1, …, T.

Part (i) of Theorem 1 is no longer true if model (q) is replaced with model * (q), i.e. 

* (q) does not determine a nonparametric model for the observed data law. Hence, in 

principle, under (17) the postulated functions qt may sometimes be subject to an empirical 

test. Moreover, β* and qt, t = 1, …, T, may be jointly identified under (17). However, there 
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would generally be very limited independent information about β* and qt, t = 1, …, T, and 

therefore their joint estimation would require very large sample sizes. In fact, it follows from 

Proposition B1, Part 6, of Rotnitzky et al. (1998) that, when pr (R1 = … = RT = 0|L) > σ > 0 

with probability 1 and both ht and qt, t = 1, …, T, in (6) are unknown, β* cannot be 

estimated at rate√n. Thus, we continue to recommend that one regard the functions qt, t = 1, 

…, T, as fixed and known when estimating β* and then vary these functions in a sensitivity 

analysis.

As was the case for estimation of the marginal means E (Yt), unless T is small and Lt is 

discrete with few levels, inference about β* requires placing dimension-reducing 

assumptions on either ht or mt, in addition to the restrictions of model * (q). We therefore 

consider, for each t = 1, …, T, models  defined like models ℬt (q) and t 

(q) respectively but with the additional restriction (17). Furthermore, we let  be 

defined like ℳu (q) in §4.2 but with  instead of ℬt (q) and t (q) so that 

the union model  stands for the model in which at each t either 

holds, but not necessarily both. In this section we consider estimation of β* under the union 

model .

Although, as shown in the Appendix, the restrictions defining t (q) for each fixed t, and 

indeed simultaneously for all t, are guaranteed to be compatible, the same is not true for 

. To be specific, for each t, given a function qt the function mt (O̅
t−1) and the 

conditional mean function E (Yt|X) are not variation independent; that is, fixing one restricts 

the range of possible functions for the other. Thus, it may happen that there exists no joint 

distribution of (L,R̅
T) of which the marginal of O is the observed data distribution and that 

satisfies simultaneously (5), (12) and (17). Furthermore, even if such incompatibility is not 

present, it may still happen that the parameter space for β* under  is much smaller 

than that under * (q). This is clearly undesirable because any reasonable dimension-

reducing strategy should not, a priori, eliminate values of β* regarded plausible under the 

model of scientific interest. The following simple example illustrates these points.

Example. Suppose that T = 1, L0 = X and Y1 is binary. Suppose that in (17) we assume that 

logit pr (Y1 = 1|X) = β0 + β1X, q1 (Y1, X, V) = λY1 with λ > 0 and logit pr (Y1 = 1|R1 = 0, 

X) = θ0 + θ1X. Under this model logit pr (Y1 = 1|R1 = 1, X) = λ + θ0 + θ1X and hence pr (Y1 

= 1|R1 = 1, X) > pr (Y1 = 1|R1 = 0, X). Therefore, since

it must be that pr (Y1 = 1|R1 = 0, X) < pr (Y1 = 1|X) < pr (Y1 = 1|R1 = 1, X). This implies 

that logit pr (Y1 = 1|X) = λ* + θ0 + θ1X for some 0 < λ* < λ. In particular, β1 = θ1. It follows 

that the parameter space for β may be more restricted once we impose the restrictions on pr 

(Y1 = 1|R1 = 0, X). For example, if the model for pr (Y1 = 1|R1 = 0, X) restricts θ1 to lie in a 

strict subset of the real line and the model for pr (Y1 = 1|X) leaves β1 unrestricted, then, once 

the model for pr (Y1 = 1|R1 = 0, X) is imposed, the parameter space for β1 is reduced to that 
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for θ1. The models would even become incompatible if a probit regression were considered 

for pr (Y1 = 1|X) and a logistic regression for pr (Y1 = 1|R1 = 0, X).

In the Appendix we show that , and indeed , impose restrictions that are 

always compatible.

When model  is incompatible with model (17) then an estimator of β* that is 

consistent under the union model  actually converges in probability to β* 

only if the working model  holds and hence the estimator is not really doubly robust. 

We do not regard this theoretical difficulty to be of concern in practice since it is ameliorated 

if one postulates a richly parameterized model (12). To see this note that, when no restriction 

is placed on mt (O̅
t−1), model  becomes model  defined like t (q) but with the 

additional restriction (17). As shown in the Appendix, the restrictions defining model 

are always compatible. Consequently, if (17) is correctly specified then a flexible model for 

mt (O̅
t−1) should result in a nearly correctly specified model . In order to highlight the 

possibility of model incompatibility, we refer to estimators that are consistent and 

asymptotically normal under model  as generalized 2T-multiply robust 

estimators.

In agreement with the discussion in Robins & Rotnitzky (2001), we recommend estimating 

β* with generalized 2T-multiply robust estimators because such estimators are expected to 

have small asymptotic bias if, at each t = 1, …, T, at leats one of the models 

 is approximately correct.

We construct generalized 2T-multiply robust estimators of β* in model  as 

follows. Redefine Ht(dt, ϕt, βt, αt), Mt(dt, ψt, βt, θt) and ϕθt,βt,t(O
̅
t−1) as in (13), (14) and (15) 

but with εt(βt) replaced by εt(β) = Yt − gt(X; β), mt (O̅
t−1; θt) − βt by mt (O̅

t−1; θt) − gt (X; β) 

and with dt= dt(X) an arbitrary conformable vector function of X. With these redefinitions, it 

is true that Ht(dt, dtϕθt,β,t, β, αt) = Mt(dt, dtψαt,t, β, θt) for any arbitrary r × 1 vector function 

dt(X). We therefore write

Similarly to §4.2, we construct generalized 2T-multiply robust estimators β̂ of β*, also 

denoted throughout by β̂ (d, dθ, ψ, dα, ϕ), in model  by solving an r × 1 

estimating equation of the form

(18)

where , d (X) = (d1 (X), …, dT (X)) for arbitrary r × 1 

vector functions dt (X), t = 1, …, T, and where θ̃ = (θ̃1, …, θ̃
T)′ and α̃ = (α̃

1, …, α̃
T)′ solve

Vansteelandt et al. Page 16

Biometrika. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively, for t = 1, …, T, using arbitrary collections of functions,

Parts (iii) and (iv) of Theorem 2 remain valid if we replace ∪u∈ ℳu (q) by , β̂ 

(ψ(j), ϕ(j)) by , j = 1, 2, Qt (β, θt, αt) by Qt (dt, β, θt, αt) and we use 

the redefinition , where

with dt = dt(X), dtα = dtα(X) and dtθ = dtθ(X).

Theorem 3 below, proved in the Appendix, provides the optimal r × T matrix function dopt 

(X) = (d1,opt (X), …, dT,opt (X)) in the sense that, among all estimators β̂ (d, dθ, ψ, dα, ϕ) that 

solve (18) using an arbitrary r × T matrix functions d (X) and fixed collections of functions 

dθ, ψ, dα and ϕ, the estimator with the smallest asymptotic variance is the one that uses d = 

dopt. In particular, since under laws in the intersection model  the 

limiting distribution of β̂ (d, dθ, ψ, dα, ϕ) does not depend on the choice of dθ, ψ, dα and ϕ, 

we conclude that the estimator that solves (18) using d = dopt has the smallest asymptotic 

variance among all estimators β̂ (d, dθ, ψ, dα, ϕ) under any law in . In 

the following theorem, Γ (d, dθ, ψ, dα, ϕ) denotes the variance of the limiting normal 

distribution of √n {β̂ (d, dθ, ψ, dα, ϕ) − β*} under model 

, where each 

 is defined as Ut (β, θt, αt) but with the r × 1 function dt(X) replaced by the 

constant real valued function dt (X)≡1. Also, θ0 and α0 denote the probability limits of θ̃ 
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and α̃. In addition, for any pair of conformable square matrices A and B, A ≥ B indicates 

that A − B is positive semidefinite.

Theorem 3. For every fixed collection of functions dθ, ψ, dα and ϕ, we have that Γ (dopt, dθ, 

ψ, dα, ϕ) ≤ Γ (d, dθ, ψ, dα, ϕ), where

 6 Simulation study

We conducted two simulation experiments. The first compares the behaviour in finite 

samples of the 2T-multiply robust estimators of marginal means with competitors that are 

not 2T-multiply robust, and the second evaluates the behaviour of generalized 2T-multiply 

robust estimators of parameters of regression models for the marginal means. Each 

experiment was based on 1000 replications of random samples of size 500 generated as 

follows. In both experiments, for t > 1, Lt comprised just the outcome Yt. In the first 

experiment L0 was standard normal and, for t = 1, …, 4, given (L̅
t−1, R̅

t−1), Rt was generated 

from

and then Lt was generated as Lt = 2t + 3L0 + Rt−1 + 2Rt−1εt−1 − γRt + εt for the choices γ = 0 

and γ = −0.5, where ε1, …, ε4 are four independent standard normal variates. It is easy to 

check that the law of our simulated data satisfies the restrictions of ℬ (q) and  (q) with 

qt(O̅
t−1, Yt) = γYt, ht(O̅

t−1; αt) = αt0 + αt1L0 + I(t > 1)(αt2Rt−1 + αt3Rt−1Yt−1) and mt(O̅
t−1; 

θt) = θt0 + θt1L0 + I(t > 1)(θt2Rt−1 + θt3Rt−1Yt−1) for specific vector values αt and θt.

In the second experiment, given a standard normal variate X, we generated a 4 × 1 

multivariate normal vector (Y1, …, Y4) with E (Yt|X) = β1t + β2X, β1 = 2, β2 = 3, var(Yt|X) 

= 5 and cov(Yt, Yt′|X) = 4, t ≠ t′. Then we generated R̅
4 given Y̅

4 iteratively for t = 1, …, 4 

from

where εt = Yt − β1t − β2X and γ = 0 or γ = −0.5. Under our data-generating process, model 

ℬ (q) holds for qt(O̅
t−1, Yt) = γYt and ht(O̅

t−1; αt) = αt0 + αt1X + I(t > 1)(αt2Rt−1 + 

αt3Rt−1Yt−1) for a specific value of αt. Since the functional form of mt(O̅
t−1) is complicated 

we have considered an approximate working model for it, given by mt(O̅
t−1; θ) = θt0 + θt1X 

+ I(t > 1) {θt2Rt−1 + θt3Rt−1X + θt4Rt−1Yt−1}, and thus computed a generalized 2T-multiply 

robust estimator of (β1, β2) such that, at each t, model t (q) assumes that mt (O̅
t−1) = 

mt(O̅
t−1; θ) for some θ.

Under the data-generating process of the first experiment, the probability of not missing the 

outcome is 84.4, 69.0, 60.5 and 53.7 at the four occasions, respectively, for both γ = 0 and γ 
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= −0.5. In the second experiment, these probabilities are 84.4, 60.1, 61.5 and 56.5 for γ = 0. 

The values when γ = −0.5 are similar.

Table 1 summarizes the results for estimation of β3 = E (Y3) and β4 = E (Y4) in the first 

experiment for the following methods: inverse probability weighted estimators, i.e. those 

solving En {Ht(1, 0, βt, α̂t)} = 0, labelled ‘IPW’; conditional mean imputation estimators 

solving En {Mt(1, 0, βt, θ̂t)} = 0, labelled ‘CM’; and 2T-multiply robust estimators, labelled 

‘MR’. The estimators were computed under various conditions: correctly specified working 

models ht(O̅
t−1; αt) and mt(O̅

t−1; θt) as defined above for all t, labelled ‘None’; models 

m3(O̅
2; θ3) and h4(O̅

3; α4) that incorrectly set a priori to zero the coefficients multiplying the 

term Rt−1Yt−1, labelled ‘ 3&ℬ4’; and models ht(O̅
t−1; αt) and mt(O̅

t−1; θt) that for all t 
incorrectly set a priori to zero the coefficients multiplying the term Rt−1Yt−1, labelled ‘All’.

The results for the 2T-multiply robust estimators in the first simulation study are as predicted 

by the theory: they are nearly unbiased and the Wald confidence intervals centred at them 

cover roughly at the nominal 95% level when, at each occasion, none or one of the working 

models, but not both, is incorrect. In contrast, and also as expected, the inverse probability 

weighted estimators of β3 are nearly unbiased but those of β4 are not unbiased when the 

model for h3(O̅
2) is correctly specified but that of h4(O̅

3) is incorrectly specified. The reverse 

occurs for the conditional mean imputation estimators. No estimator is unbiased when all 

working models are misspecified. In addition, as predicted by theory, when qt = 0, the 2T-

multiply robust estimator is more efficient than the inverse probability weighted estimator 

when all working models are correct, but is less efficient than the conditional mean 

imputation estimator. Interestingly, the 2T-multiply robust estimators of β3 and β4 are also 

more efficient than the corresponding inverse probability weighted estimators when qt = 

−0.5Yt, and both working models are correct even though this cannot be deduced from the 

theory. Note also that the 2T-multiply robust estimator of β3 is less efficient than the inverse 

probability weighted estimator when ℬ3 is correct but 3 is incorrect.

Table 2 summarizes the results from the second simulation for the generalized 2T-multiply 

robust estimators of β1 and β2 solving the equations (18) that use, instead of d(X), the vector 

function of X and β,

where Q* (β, θ, α) = (Q1 (1, β, θ1, α1), …, QT (1, β, θT, αT))′. It can be shown that using d* 

(X; β) in (18) results in generalized 2T-multiply robust estimators that, under the union 

model , are asymptotically equivalent to those that solve (18) with d (X) = d* 

(X; β*). The estimators were computed under various conditions: the correct working model 

ht(O̅
t−1; αt) and the approximately correct model mt(O̅

t−1; θ), labelled ‘None’; the same 

models as in the previous case except that the coefficients corresponding to Rt−1Yt−1 of 

h2(O̅
1; α2), h4(O̅

3; α4) and m3(O̅
2; θ3) were set to 0, labelled ‘ℬ2, 3 and ℬ4’; and the same 

models as in the first case but with the coefficients of Rt−1Yt−1 equal to 0 for all t and for all 

models, labelled ‘All’. The results confirm that the generalized 2T-multiply robust estimators 
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perform well even if the model for mt(O̅
t−1) is incorrectly specified provided, as in our 

simulations, the model is richly parameterized.
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 Appendix

 Proofs

Proof of Theorem 1. Every observed data distribution is defined by a given collection of 

conditional densities and probabilities, {f(Lt|O̅
t−1, Rt = 1), pr(Rt|O̅

t−1) : t = 1, …, T}. Thus, 

to show that (q) is a model for the observed data law restricted only by pr(Rt = 1|O̅
t−1) > 0 

for t = 1, …, T, it suffices to show the following: (a) given {f(Lt|O̅
t−1, Rt = 1), pr(Rt|O̅

t−1) : 

pr(Rt = 1|O̅
t−1) > 0, t = 1, …, T}, there exists a distribution f* (L̅

T,R̅
T) satisfying the 

restrictions of (q) and such that, for t = 1, …, T,

(A1)

and (b) pr*(Rt = 1|O̅
t−1) > 0 for every joint distribution f* (L̅

T,R̅
T) that satisfies the 

restrictions of model (q).

We prove (a) by constructing a joint distribution f* (L̅
T,R̅

T) that satisfies (A1) iteratively as 

follows. For t = 1, Rt−1 is nil and f*(L̅
t−1) = f (L0). For each t = 1, …, T, we define f*(Lt,Rt|

L̅
t−1, R̅

t−1) equal to f*(Lt,Rt|O̅
t−1), where f*(Lt,Rt|O̅

t−1) is defined by f*(Lt|O̅
t−1,Rt = 1) = 

f(Lt|O̅
t−1,Rt = 1) and pr*(Rt = 1|O̅

t−1) = pr(Rt = 1|O̅
t−1), and when (4) holds f*(Lt\Yt|

Yt,O̅
t−1,Rt = 0) is equal to an arbitrary law and f*(Yt|O̅

t−1,Rt = 0) is equal to the right-hand 

side of (5). By construction, f*(L̅
T,R̅

T) satisfies (1) and Assumption 1 for t = 1, …, T, and 

thus is in model (q), and additionally satisfies (A1), thus proving (a). Part (b) holds 

because it is implied by (1). This concludes the proof of part (i). To show part (ii), note that, 

under model t(q),

where qt(O̅
t−1, Yt) is defined arbitrarily if pr(Rt = 0|O̅

t−1) = 0. Thus, f (Yt|O̅
t−1) is identified 

under t(q) because the right-hand side of the last display is determined by the observed 

data law. To show that (8) holds, we use expression (7) and note that, under models t(q) 

and (q), the right-hand side of (8) equals
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From

under model t(q), it follows that the right-hand side is equal to E(Yt). The proof of (9) is 

now immediate.

Proof that the restrictions imposed by models *(q), ℬ*(q), ℬ(q), (q) and 

 are compatible. To show that the restrictions of ℬ*(q) are compatible 
we will exhibit a joint law f* (L̅

T,R̅
T) satisfying the restrictions defining ℬ*(q). We 

construct such a law recursively as follows. We define f*(L0) as an arbitrary law and set R0 

as nil. Then, having defined f*(L̅
t−1,R̅

t−1) for t = 1, …, T, we define f*(Lt,Rt|L̅
t−1,R̅

t−1) as 

follows. The density f* (Yt|L̅
t−1,R̅

t−1) satisfies  and the integral is taken with 

respect to the counting dominating measure for R̅
t−1 and the adequate dominating measures 

for  and Yt. This ensures that (17) holds. Next, we define f*(Lt \ Yt|Yt,Rt,O̅
t−1) as an 

arbitrary law. Finally, for a given fixed function , we set 

, 

which ensures that (5) and (11) hold. Thus, by construction, f* (L̅
T,R̅

T) satisfies the 

restrictions defining ℬ*(q). Since ℬ*(q) is more restrictive than ℬ(q) and *(q), this 

implies that the restrictions of ℬ(q) and *(q) are compatible.

We next recursively construct a law f* (L̅
T,R̅

T) that satisfies the restrictions imposed by the 

intersection model . We define f*(L0) as an arbitrary law and set R0 as 

nil. Then, having defined f*(L̅
t−1,R̅

t−1) for t = 1, …, T, we define f*(Lt,Rt|L̅
t−1,R̅

t−1) as 

follows. Given fixed functions , for each t = 1, …, T, we 

define f* (Yt|L̅
t−1,R̅

t−1,Rt = 0) = f*(Yt|Rt = 0,O̅
t−1), where f*(Yt|Rt = 0,O̅

t−1) is any law that 

satisfies . Next, we define pr*(Rt = 1|L̅
t−1,R̅

t−1) = 

pr*(Rt = 1|O̅
t−1) by the identity
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and we define f* (Yt|L̅
t−1,R̅

t−1,Rt = 1) = f*(Yt|O̅
t−1,Rt = 1), where

Finally, we choose f*(Lt \ Yt|Yt,L̅
t−1,R̅

t−1) to be an arbitrary law. By construction, f* (L̅
T,R̅

T) 

satisfies for each t, (12), and hence model t(q), as well as (5) and (11), and hence model 

ℬt(q). This is seen because, for the chosen law,

We conclude that f* (L̅
T,R̅

T) satisfies the restrictions of model  and 

therefore also those of (q).

Proof that Ht(1, ϕθt,βt,t, βt, αt)=Mt(1, ψαt,t, βt, θt). We have

Now, suppose that (11) and (4) hold. Then

and
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because

Thus, under (11) and (4),  for any θt. Next, suppose (12) holds. 

Then , where E (Yt|O̅
t−1,Rt = 0) is 

defined arbitrarily if (4) does not hold, and hence 

. Also,

because . Thus, under model 

(12),  for any αt.

Proof of Theorem 2. To prove part (i) of the theorem, we assume that the regularity 

conditions 1–9 of Appendix B of Robins et al. (1994) hold with Ut(βt, θt, αt) and 

replacing their Hi(γ) and γ0 respectively, and their regularity condition 3 being replaced by 

the assumption that pr (Rt = 1|O̅
t−1, Yt; αt) > σ > 0 with probabaility 1 for some σ and 

arbitrary αt in the parameter space. By standard Taylor expansion arguments we have that 

, where op(1) 

denotes a random variable converging to 0 in probability. Furthermore, because 

 under model ℬt(q) ∪ t(q), another Taylor expansion gives

When, as in regularity condition 6 of Robins et al. (1994),  is nonsingular, 

this is equivalent to
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The asymptotic distribution of  under model ℬt(q) ∪ t(q) follows from the 

previous equation by Slutsky’s Theorem and the Central Limit Theorem. The consistency of 

the variance estimator follows from the Law of Large Numbers. This proves part (i). Since 

αt and θt, for t = 1, …, T, are variation independent parameters, it also follows that 

 is the influence 

function corresponding to the 2T-multiply robust CAN estimator for β* under model 

. This proves part (iii).

At the intersection model ℬt (q) ∩ t (q),  and hence 

. It follows that the estimators 

 have the same influence functions at the intersection 

model ℬt (q) ∩ t (q). This proves part (ii). Part (iv) is similarly proved.

Proof of Theorem 3. By definition,  and, by analogous 

arguments to Theorem 2 for estimators β̂ (d) ≡ β̂ (d, dθ, ψ, dα, ϕ), the variance matrix of the 

limiting distribution of √n {β̂ (d) − β*} is equal to Γ (d) = Ψ (d) Ω (d) Ψ (d)′, where

That Γ (dopt) ≤ Γ (d) follows after applying the Cauchy-Schwarz inequality.
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