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Abstract

Millions of people worldwide suffer from depression. Do commonalities exist in their nonverbal 

behavior that would enable cross-culturally viable screening and assessment of severity? We 

investigated the generalisability of an approach to detect depression severity cross-culturally using 

video-recorded clinical interviews from Australia, the USA and Germany. The material varied in 

type of interview, subtypes of depression and inclusion healthy control subjects, cultural 

background, and recording environment. The analysis focussed on temporal features of 

participants‘ eye gaze and head pose. Several approaches to training and testing within and 

between datasets were evaluated. The strongest results were found for training across all datasets 

and testing across datasets using leave-one-subject-out cross-validation. In contrast, 

generalisability was attenuated when training on only one or two of the three datasets and testing 

on subjects from the dataset(s) not used in training. These findings highlight the importance of 

using training data exhibiting the expected range of variability.

I. INTRODUCTION

Clinical depression is a mood disorder with high prevalence worldwide, which can result in 

unbearable pain and disabling conditions that impair an individual’s ability to cope with 

daily life. The World Health Organization (WHO) lists depression as the fourth most 

significant cause of suffering and disability worldwide and predicts it to be the leading cause 

in 2020 [1], [2]. The WHO estimates that 350 million people worldwide are affected by 

depression [2]. Although clinical depression is one of the most common mental disorders, it 
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is often difficult to diagnose because it manifests itself in different ways and because clinical 

opinion and self-assessment are currently the only ways of diagnosis. This risks a range of 

subjective biases. According to the WHO [2], the barriers to effective diagnosis of 

depression include a lack of resources and trained health care providers. Moreover, 

evaluations by clinicians vary depending on their expertise and the depression screening 

instrument used (e.g. Quick Inventory of Depressive Symptoms-Self Report (QIDS-SR) [3], 

Hamilton Rating Scale for Depression (HRSD) [4], Beck Depression Inventory (BDI) [5]).

We believe that recent developments in affective sensing technology potentially enable an 

objective assessment. While automatic affective state recognition has been an active research 

area in the past decade, methods for mood disorder detection, such as depression, are still in 

their infancy. Our ultimate goal is to develop objective multimodal affective sensing 

approaches that support clinicians in diagnosis and monitoring of clinical depression. The 

question of generalisation across datasets is an important issue in this development.

Previous studies on emotion recognition in general and detection of depression in particular 

have investigated single datasets. By using a single dataset, many intervening variables are 

kept constant, such as emotion labels and categories, recording settings and environment. 

Therefore, generalising an emotion recognition system to other corpora might not result in a 

comparable outcome. An important step towards generalisability of an approach is to apply 

it in a cross-corpus context.1 In general emotion studies, cross-corpus generalisation is a 

very young research area. To the best of our knowledge, only few studies have investigated 

method robustness on different environments [6], [7], [8]. Speech in particular is immensely 

affected by recording environment, such as varying room acoustics, and different 

microphone types and distances [8]. The video channel also has its obstacles regarding 

recording environment, such as illumination, cameras (focal point, type and distance), and 

video files (resolution, frame rate and dimensions). Therefore, when dealing with different 

datasets, several aspects have to be considered to control for variability between them.

The three datasets used in our study come from three different western cultures, which 

possibly introduces differences in nonverbal behaviour exhibited. They also differ in 

recording conditions and interviewers. Depression severity was assessed using either self-

report or clinician-administered interviews. Diagnosis, in the current study, was defined 

using standard thresholds on the severity measures (e.g. a score of 15 or higher on the 

clinician-administered HRSD). Standard thresholds were calibrated with the Diagnostic and 

Statistical Manual of American Medical Association (DSM IV or V) [9]. While nonverbal 

behaviour or interpersonal communication varies cross-culturally, symptoms of depression 

in western societies are similar [10], [11], [12].

We investigate generalising an approach to detect depression from nonverbal behaviour in a 

cross-cultural context.2 The approach extracts features from eye activity and head pose 

modalities, which are then investigated individually and when fused using both feature and 

1Cross-dataset generalisation is often also referred to as domain transfer.
2A common problem in this early stage of a fairly new research area is that it is not clear what terminology best suits the work 
presented in this paper. In the literature, “cross-corpus” (cross-dataset) is used when the investigated datasets have a similar data 
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hybrid fusion methods. We explore several approaches to generalisability by evaluating 

different training and testing combinations within and between datasets. We hypothesise that 

the approach has the ability to generalise within individual datasets and when the classifier is 

trained on varied observations.

II. BACKGROUND

A few studies in recent years have investigated the automatic detection of depression using 

pattern recognition techniques on either audio or video input, or multimodal input. Several 

studies investigated depressed speech characteristics and classifications using prosody 

features (e.g. [13], [14], [15], [16], [17]) and speech style (e.g. [18]) in adults. Recognising 

depression from video data has also been investigated, including facial activities and 

expressions (e.g. [15], [19], [20], [21]), general movements and posture of the body [22], 

[23], head pose and movement [20], [23], [24], and gaze and eye activity [22], [25]. 

Moreover, most previous studies on the automatic detection of depression have only 

investigated a single modality. Multimodal detection of depression is a new research area, 

with only a few studies investigating fusion techniques for this task [26], [27], [28], [29].

Using multiple depression datasets for generalisation is particularly hard to investigate due 

to challenging differences in recording environment, recording procedure and depression 

evaluation, not to mention ethical, clinical, and legal reasons regarding acquiring and sharing 

such datasets. To the best of our knowledge, only [13], [14] have used different datasets to 

collect their depression speech samples. In both studies, a preprocessing procedure was 

performed to compensate for possible differences in recordings. These studies raised 

concerns of such recording environment differences affecting the results even after feature 

normalisation methods. Each dataset was used as a separate class, which might affect the 

classification results, where the classifier might separate the classes based on their recording 

environment characteristics, not the actual class label.

III. Depression Datasets

Three datasets are used in this study: Black Dog Institute depression dataset (BlackDog) 

[30], University of Pittsburgh depression dataset (Pitt) [31], and Audio/Visual Emotion 

Challenge depression dataset (AVEC) [32]. The specifications and differences of these 

datasets are described here. For easier reference, Table I summarises and compares the 

selected subsets of each dataset.

The three datasets differ in several aspects that could affect the generalisation. We control 

for these differences by:

• Each dataset uses different depression screening instruments to measure 

depression severity. To use a common metric of depression, we converted 

the different metrics to their QIDS-SR equivalents using the conversion 

collection and purpose. However, the datasets used here have several differences that, in our opinion, make the use of such 
terminology debatable. We chose the term “cross-cultural” to emphasise not only the technical differences but also the possibility of 
differences in how depression symptoms present themselves.
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table from [33] and categorised subjects based on the severity level of 

depression.

• While the BlackDog dataset compares depressed patients with healthy 

controls, both Pitt and AVEC datasets aim to monitor depression severity 

over time. To overcome this issue, we categorised the subjects in these 

datasets into two groups for a binary classification task: severe depressed 

(all datasets) vs. low depressed (AVEC and Pitt) + healthy controls 

(BlackDog).

• The data collection procedure for each dataset differs. BlackDog uses 

structured stimuli to elicit affective reactions, which include an interview 

of asking specific open ended questions, where the subjects are asked to 

describe events in their life that had aroused significant emotions to elicit 

spontaneous, self-directed speech and related facial expressions, as well as 

overall body language. The Pitt data collection procedure was conducted 

by interviews using the HRSD questions, where patients were interviewed 

and evaluated by clinicians. On the other hand, the AVEC paradigm is a 

human-computer interaction experiment containing several tasks including 

telling a story from the subject’s own past (i.e. best present ever and sad 

event in the childhood). Therefore, in this study, we only analysed the 

childhood story telling from AVEC in order to match the interviews from 

the BlackDog and Pitt datasets.

• While BlackDog records one session per subject, AVEC and Pitt have 

multiple sessions per subject (up to four). In this study, we only select one 

session for each subject, thereby splitting the subjects into two groups: 

severe depressed vs. low depressed + healthy controls. We also aim to 

have a balanced number of subjects in each class to reduce classification 

bias towards the larger classes; hence, the relatively small number of 

selected subjects, but this is a common problem in similar studies.

• The duration of segments for each subject in each dataset varied. 

Therefore, to reduce variability from the length of subjects’ segments, we 

extracted temporal features over the entire segments (Section IV-A).

• Recording environment and hardware differ for each dataset. The audio 

channel in particular is more vulnerable to the recording environment than 

the video channel (e.g. microphone distance, background noise, sampling 

rate). Therefore, we only focus on analysing nonverbal behaviour from eye 

activity and head pose.

IV. METHOD

In this section, a brief overview of the approach used to investigate the cross-dataset 

generalisation of depression detection is given. Fig. 1 shows the general design and 

individual components.
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A. Feature Extraction and Normalisation

1) Eye activity—To accurately detect eye activity (blinking, iris movements), the eyelids 

and iris must be located and tracked. To this end, we train and build subject-specific 74-

points Active Appearance Models (eye-AAM). For each eye, horizontal and vertical iris 

movement, and eyelid movement are extracted as low-level features per frame (30 fps), 

following [25]. A total of 126 statistical features (“functionals”) are calculated over the 

entire subject’s segment to reduce inter-subject differences in segment lengths:

• Maximum, minimum, mean, variance, and standard deviation for all 18 

low-level features mentioned earlier (5 × 18 features)

• Maximum, minimum, and average of duration of looking left, right, up 

and down, as well as of blink duration for each eye (3 × 2 eyes × 5 

features)

• Closed eye duration rate and closed eye to open eye duration rate for both 

eyes (2 eyes × 2 features)

• Blinking rate for both eyes (2 eyes × 1 feature)

2) Head pose—To extract head pose and movement behaviour, the face has to be detected 

and tracked before a 3 degrees of freedom (DOF) head pose could be calculated. We use an 

optimised strategy of constrained local models (CLM) [34]. The CLM used for face 

detection contains 64-points around the face, which are projected into a 58-points 3D face 

model following [24] to extract 3-DOF head pose features, as well as their velocity and 

acceleration, giving a total of 9 low-level features per frame. Over the duration of each each 

subject’s segment, a total of 184 statistical features are extracted, which are:

• Maximum, minimum, range, mean, variance, and standard deviation for 

all 9 low-level features mentioned earlier. (6 × 9 features)

• Maximum, minimum, range and average duration of head direction left, 

right, up and down, tilting clockwise and anticlockwise. (4 × 6 features)

• Head direction duration rate, and rate of different head directions for non-

frontal head direction for all directions mentioned above. (2 × 6)

• Change head direction rate for all directions mentioned above. (1 × 6 

features)

• Total number of changes of head direction for yaw, roll, pitch, and all 

directions. (1 × 4 features)

• Maximum, minimum, range, mean, variance, duration, and rate for slow, 

fast, steady, and continuous movement of yaw, roll, pitch. (7 × 3 DOF × 4 

features)

Moreover, inspired by [8], corpus normalisation is used to eliminate the differences of 

features from different datasets before their usage in combination with other corpora using 

min-max normalisation.
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B. Classification and Evaluation

We use Support Vector Machine (SVM) classifiers, which are discriminative models that 

learn boundaries between classes. SVM has been widely used in emotion classification [35] 

and is often considered the state-of-the-art, as it provides good generalisation properties. The 

classification is performed in a binary (i.e. severe depressed vs. low-/non-depressed) subject-

independent scenario. LibSVM [36] is used for SVM implementation. To increase the 

accuracy of SVMs, the cost and gamma parameters are optimised via a wide range grid 

search for the best parameters using radial basis function (RBF) kernel. Selecting the 

training and testing sets for classification is performed by two methods:

1) Leave-one-subject-out cross-validation method—To mitigate the limitations of 

the relatively small amount of data and also to train the classifiers on varied observations 

(especially when using different dataset combinations), a leave-one-subject-out cross-

validation (test on one subject’s data, train on all other subjects’ data in each iteration, where 

the number of iterations is equal to the number of subjects) was used on individual dataset 

classification as well as the combinations of the datasets without any overlap between 

training and testing data. This method could overcome overfitting the model on the training 

set, especially as the final selected SVM parameters generalise to all training observations. 

In other words, the common parameters that give the highest average training accuracy of all 

training sets in the cross-validation are picked, hence the need for a wide range search. We 

believe that this method of selecting the parameters reduces overfitting issues on the training 

set and, therefore, assists in generalising to different observations in each leave-one-out 

cross-validation turn.

2) Separate train-test dataset method—In this method, one or two datasets are used 

for training and then the remaining dataset(s) for testing. The SVM parameters are selected 

based on the highest accuracy of the training set. This method could suffer from overfitting 

to the training set and might not generalise to the completely different testing set(s). We 

apply this method to investigate the generalisation ability of the depression detection method 

to unseen data. We hypothesise that when using different combinations of datasets, leave-

one-out cross-validation results in a higher performance than the train-test method, because 

it trains over varied samples of combined datasets, which reduces model overfitting to the 

training set. However, both methods are investigated to shed more light onto cross-corpora 

generalisation.

We measure the performance of the approach in terms of Average Recalls (AR), as it 

considers the correct recognition in both groups (severe depressed vs. low-/non-depressed) 

and is more informative than usually reported accuracy. The AR is also called “balanced 

accuracy” and is calculated as the mean of sensitivity and specificity.

C. Feature Selection

Since irrelevant features lead to a high data dimensionality and may affect the performance 

of a system, feature selection techniques can overcome this by selecting relevant features. 

Generally, a subset of features can be selected using statistical function methods, filter 
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methods, search strategies, etc. Since our classification is done in a binary manner, using a 

simple T-test threshold to perform feature reduction is sufficient. The T-tests are obtained as 

a two-sample two-tailed T-test, assuming unequal variances with significance p = 0.05. 

Features that exceeded a statistical threshold set in advance by a t-value corresponding to an 

uncorrected p-value of 0.05 (p < 0.05) are selected for the classification problem in two 

approaches.

1) Variable set of features exceeding the t-statistic based on the combined 
training data—Features that exceeded the t-statistic are identified from the combined 

training data and selected on the testing data. Thus, the selected features might vary with 

each individual and combination of datasets. However, in this approach, with leave-one-out 

cross-validation, common features that exceed the t-statistic in all turns are selected. That is, 

using the training subjects in each turn, we apply T-test to all extracted functional features, 

then only these that commonly exceed the t-statistic in every turn are selected. Then, these 

common features are fixed and used for all leave-one-out cross-validation turns in the 

testing. Acknowledging the risk of the feature selection being based on seeing all 

observations, a fixed number of features in each turn of the leave-one-out cross-validation 

ensures a fair comparison between turns. On the other hand, in the train-test classification 

method, the features that exceed the t-statistic in the training set are selected on the testing 

set.

2) Fixed set of features exceeding the t-statistic—Unlike the variable set of 

features, we seek to find a fixed set of features that commonly exceed the t-statistic on all 

individual datasets and combinations of the datasets. This fixed feature set is used on all 

individual and combinations of the datasets to ensure a fair comparison and also to conclude 

a set of features that can generalise for the task of detecting depression. This set of features 

is selected based on a majority agreement of features that exceed the t-statistic on all 

individual datasets and combinations of the datasets (see supplementary material for list of 

features).

D. Fusion

Multimodal fusion of different modalities could improve the classification results as it 

provides more useful information compared to using a single modality. Moreover, fusion can 

be performed as pre-matching (early) fusion, post-matching (late) fusion, or a combination 

of both (hybrid) [37]. In this work, we employ a hybrid fusion method that fuses individual 

modality results with the feature fusion result to obtain a final decision. Feature fusion is 

implemented here by concatenating the previously selected features. A hybrid fusion 

employs the advantages of both early and late fusion strategies. A majority voting method is 

used for the hybrid fusion in a single stage. We strongly believe that hybrid (high-level) 

fusion overcomes classification errors from individual and feature (low-level) fusion 

modalities. Since the final hybrid fusion decision relies on the majority agreement of the 

classification decisions of the fused modalities, outlier classification errors are reduced and 

the confidence level of the final decision is increased. Moreover, feature fusion also relies on 

the correlation of the features that are fused. Lack of correlation might affect the final 
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feature fusion, even if individual modalities had high classification result, which hybrid 

fusion overcomes.

The following comparisons are presented: (1) variable vs. fixed feature set, (2) leave-one-out 

cross-validation vs. train-test classification, and (3) individual modalities (eye activity and 

head pose) vs. fused modalities (feature fusion and hybrid fusion). These are tested on 

different combinations of datasets and then compared with individual datasets. The 

classification results of individual datasets are shown in Table II and combined datasets in 

Table III and Fig. 2.

V. RESULTS

A. Classification Results of Individual Datasets

Datasets were used for the classification individually to test the generalisation ability of the 

approach (see Fig. 1) and to establish a baseline for each dataset to compare their individual 

results with dataset combination results.

All three dataset classifications performed an average of 80% AR for both feature selection 

methods, considered to be high, as classification results for all modalities are significantly 

above chance level. The classification results for each modality of the three datasets are 

comparable, which supports our hypothesis that the approach used has the ability to 

generalise when applied individually to each dataset. Comparing feature selection methods, 

using the variable feature set performed significantly better in most cases than when using 

the fixed feature set.

For the eye activity modality, the classification results are consistently high for all three 

datasets, which implies that eye activity is a strong characteristic to differentiate severe 

depressed from low-/non-depressed behaviour. Similar to BlackDog and Pitt, the lowest 

result in the AVEC dataset was obtained for the head pose modality. While for both 

BlackDog and Pitt it performed at 80% AR, for AVEC it performed at 69% AR. This is 

expected as the task is based on a human-computer interaction scenario with limited head 

movements. Interestingly, the performance of the head pose modality decreased significantly 

for BlackDog when using the fixed feature set. The decrease is due to the set of fixed 

features containing only two features out of seven that exceed the t-statistic for the 

BlackDog dataset for head modality.

Feature fusion classification performances varied when comparing with the fused modalities. 

Feature fusion results either were similar or slightly improved from individual modality 

results in most cases. Two exceptions were found for the AVEC dataset, where feature fusion 

(1) decreased from the higher result for the variable feature set and (2) had a catastrophic 

result where the fusion result was lower than the lowest individual modality for the fixed 

features. This variation in feature fusion performance is not statistically significant. It could 

be due to several reasons, such as differences in signal quality, depression diagnosis or data 

collection procedure. Further investigations are needed.
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Like feature fusion, hybrid fusion using majority voting of decisions from individual 

modalities and from feature fusion had a slightly varied outcome compared to the modalities 

that it fuses for each dataset. In most cases, hybrid fusion results were either similar or 

slightly lower than the highest modality result, with one exception of a slight improvement 

(Pitt dataset with fixed features). This variation could imply varied decisions for each subject 

in the investigated modalities. That is, modalities had varied agreement/disagreement for the 

same subject. However, as with feature fusion, the classification results of the hybrid fusion 

were not catastrophic, giving a stronger confidence in the hybrid fusion decisions compared 

to individual modality decisions.

In general, applying the approach on the datasets individually had high performance, which 

(1) implies that eye and head modalities and their fusion results had distinguishing 

characteristics to detect severe depression from low or no depression, and (2) supports the 

hypothesis the approach is able to generalise to different datasets. Moreover, using the 

variable feature set, where features that exceed the t-statistic (p < 0.05) are selected on each 

dataset individually, performed better than using a fixed feature set selected based on the 

majority of features that exceed the t-statistic on dataset combinations.

B. Classification Results of Combination of Datasets

The goal here is to investigate the generalisation ability of the approach to combinations of 

datasets that differ in several aspects (see Table I), assessing the flexibility and scalability of 

the approach. Classifications on dataset combinations are performed in two methods: leave-

one-subject-out and train-test methods (cf. Section IV-B). Classification results are presented 

in Table III and Fig. 2, respectively.

1) Leave-one-subject-out cross-validation of dataset combinations—Comparing 

classification results from individual datasets (see Table II) with the results for dataset 

combinations (Table III), none of the dataset combination results showed an improvement. 

Moreover, all classification results of dataset combinations are catastrophic (i.e. statistically 

lower than the lowest classification results of individual datasets) when using the variable 

feature set. On the other hand, when using a fixed set of features, the classification results of 

the dataset combinations were higher than the lowest result of the individual datasets in most 

cases (three exceptions: eye activity modality for both BlackDog + AVEC and all three 

datasets, and head pose modality with AVEC + Pitt). This finding suggests that the fixed 

feature set has a stronger generalisation ability than the variable feature set. A reduction or at 

least no improvement was expected. Moreover, having higher results from dataset 

combinations than the lowest result of individual datasets (not catastrophic) is considered a 

good performance given the differences between the datasets, which supports the 

generalisability claim of the approach and the selected features.

Several combinations of the three datasets were used for classifying severely depressed 

subjects from low-/non-depressed subjects to identify, which combination of datasets 

generalises best. In general, the classification results of dataset combinations in the leave-

one-out method are high, performing on average at 70% AR, which implies that this method 

generalises to different combinations of datasets. The combination of BlackDog + AVEC 
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performed the lowest in most modalities for both feature selection methods. On the other 

hand, the combinations of BlackDog + Pitt, AVEC + Pitt and all three datasets had 

reasonably comparable classification results. That could imply that the Pitt dataset, the 

common dataset in these three combinations, has stronger generalising characteristics.

Comparing feature selection methods, the fixed feature set performed better than when using 

the variable feature set in most cases. Three exceptions for this finding (eye activity modality 

for BlackDog + Pitt, head pose modality for AVEC + Pitt, and feature fusion for all three 

datasets) where using the variable feature set was slightly better than the fixed feature set. 

That suggests that even when the features are selected based on the specific dataset 

combination (using the variable feature set), they have a lower generalisation ability in the 

classification problem when combining two or more datasets than when using a fixed feature 

set. Moreover, since the fixed feature set is selected based on the majority of features that 

exceed the t-statistic in all individual and combined datasets, it has more generalisation 

power for the classification problem when combining two or more datasets than using the 

variable feature set.

For the eye activity modality, similar to individual datasets, the classification results of 

dataset combinations in the leave-one-out cross-validation are consistently high, especially 

when using the fixed feature set. This finding supports, once again, our claim that eye 

activity has strong distinguishing characteristics in depression detection. On the other hand, 

the head pose modality performed lower than the eye activity modality, yet the classification 

results were above chance level in all but one case of dataset combinations. This finding 

implies that head pose holds useful information for the depression classification task.

We fuse eye activity and head pose modalities via feature and hybrid fusion. Feature fusion 

improves the classification results compared to the individual modality results that it fuses in 

all but one case. This combination is BlackDog + Pitt where the classification result was 

slightly lower than the highest modality but not catastrophic. The improvements in feature 

fusion results suggest that eye activity and head pose modality features are correlated and 

complement each other on the task of detecting depression. Hybrid fusion employs early and 

late fusion by combining the decisions from individual modalities with decisions from 

feature fusion (Fig. 1), which increases the confidence level of the final decision. In dataset 

combinations using the leave-one-out cross-validation, hybrid fusion either keeps or slightly 

improves the classification results from the individual modality results that it fuses in most 

cases, especially for a fixed feature set. The exception for this is when using the variable 

feature set, the hybrid fusion classification results slightly decreased form the highest 

individual modality results. These findings suggest that fusing individual modalities 

increases both the recognition rate and the confidence level of the final decision.

In general, the classification results on dataset combinations in leave-one-out performed 

considerably better, even with the dataset differences. We believe that is due to the classifier 

learning from varied observations from each dataset, reducing the effect of overfitting the 

model to specific observation conditions. We also believe that the extracted temporal 
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features in general, and the selected features in particular, are robust to different recording 

conditions.

2) Separate train-test classifications of dataset combinations—Since the fixed 

feture set performed better than using the variable feature set for the generalisation to dataset 

combinations with the leave-one-out method, only the fixed feature set is used for the train-

test method. The classification results of generalisation using the train-test method and a 

fixed set of features are shown in Fig. 2.

In general, the classification results when using one or two datasets for training and using 

the remaining dataset(s) for testing are mostly at or lower than chance level with a few 

exceptions. That is expected as, unlike the leave-one-out cross-validation method with 

dataset combinations, the classifier on the train-test method is trained on certain observations 

of dataset(s), which risks overfitting that reduces the classifier’s ability to generalise to 

separate and different dataset observations (unseen data).

Comparing different train-test dataset combinations, the only combination that has a 

reasonably above chance level classification result is the AVEC + Pitt dataset combination 

used for training and the BlackDog dataset for testing. This indicates that when using AVEC 

+ Pitt datasets, the classifier is trained on varied observations where the model is able to 

generalise to the BlackDog dataset observations. These variations might be due to (1) the 

classification problem for both AVEC and Pitt being to classify severe depression from low 

depression and, therefore, the model is trained on wide depression ranges, which might 

reduce the effect of overfitting, (2) the number of females in the AVEC + Pitt combination is 

more than half the total number of subjects (47 females out of 70 subjects). It has been 

reported that women amplify their mood when depressed [38] and, therefore, the AVEC + 

Pitt combination model is trained on easily distinguishable observations, or (3) the 

differences in recording conditions and collection procedures, which made it flexible to 

generalise to the BlackDog recording conditions.

Eye activity classification results were higher than the classification results of the head pose 

modality in the train-test combinations in all cases with one exception. This finding suggests 

a higher ability for the eye activity to generalise to different datasets than the head pose 

modality, which supports our view that eye activity has strong distinguishing characteristics 

to detected depression.

As with previous classification problems, feature and hybrid fusion were investigated with 

the train-test dataset combinations. Feature fusion improves the classification results from 

the highest classification result of individual modalities in most cases of classifying different 

train-test dataset combinations. This finding suggests that eye activity and head pose features 

are correlated and, therefore, complement each other. On the other hand, hybrid fusion led to 

no improvement on classification results from the individual modalities that it fuses in most 

train-test combination classifications, yet the results were not catastrophic.

To summarise, generalising using the train-test method for classification of dataset 

combinations performed very low compared to the leave-one-out method, which might be 
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caused by overfitting, as the model is trained on specific conditions that prevent it from 

generalising to different observations.

By investigating the generalisability of the approach to different dataset combinations using 

the leave-one-out cross-validation and train-test methods for classification, we conclude that 

when the classifier is trained on varied observations, the effect of overfitting, which is the 

main obstacle for cross-dataset generalisation, could be reduced and, therefore, the model 

has a better ability to generalise to new observations than a classifier trained on specific 

observations. That is, the more variability in the training observations, the better the 

generalisability to the testing observations.

VI. CONCLUSIONS

Intending to ultimately develop an objective multimodal system that supports clinicians in 

diagnosis and monitoring of clinical depression, we investigated generalisability of an 

approach that extracts nonverbal temporal patterns of depression to cross-cultural datasets. 

Assuming similar depression symptoms, we apply a depression detection approach on three 

different datasets (BlackDog, Pitt, AVEC) individually and combined to investigate 

generalisability and scalability.

These three datasets differ in several aspects including collection procedure and task, 

depression diagnosis test and scale, cultural and language background, and recording 

environment. To reduce the differences (1) similar tasks of the collection procedure in each 

dataset were selected, containing spontaneous self-directed speech, (2) the classification 

problem was cast as a binary problem (i.e. severe depressed vs. low depressed/healthy 

controls), (3) functional features were extracted over the entire duration of each subject’s 

segment to reduce duration variability, (4) nonverbal behaviour from eye activity and head 

pose modalities were investigated because they are less dependent on the recording 

conditions, and (5) normalisation of the extracted features was applied to reduce recording 

environment and setting differences.

Although, the eye activity modality has performed better than the head modality for both 

individual and combined datasets, fusing these modalities in feature and hybrid fusion 

improved the AR in most cases. We conclude that the eye activity modality has a 

distinguishing characteristic for detecting depression and also suggest that the two 

modalities are correlated and complement each other.

In general, applying the approach on individual datasets and their combinations in a leave-

one-out cross-validation led to considerably high performance. This supports the hypothesis 

of the generalisability of the approach to dataset combinations even with the several 

differences between the datasets. Moreover, we believe that the extracted temporal features 

are robust to different recording conditions. However, the performances of using one or two 

datasets for training and the remaining dataset(s) for testing were at chance level, which 

might be due to overfitting to the training set. We conclude that when the classifiers are 

trained on varied observations, they have a stronger ability to generalise to new observations 

than when trained on observations with less variability.
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In future work, we will extend the analysis to include datasets from non-western cultures, 

e.g. Arabic cultures, to further investigate cultural differences in depression expression, 

which is relevant to evaluating automated depression analysis approaches in different 

cultural settings.
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Fig. 1. 
Approach to classify depressed from low-/non-depressed subjects
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Fig. 2. 
Classification results of combinations of datasets using the train-test method and fixed 

feature exceeding the t-statistic
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TABLE I

Summary of the three datasets specification used in this research

Dataset BlackDog Pitt AVEC

Language English (Australian) English (American) German

Classification Severely Depressed/Healthy Control Severe/Low depression Severe/Low depression

Number of subjects per 
class

30 19 16

Males-Females 30-30 14-24 9-23

Procedure open ended questions interview HRSD clinical interview human-computer interaction 
experiment (story telling)

Symptom severity measure QIDS-SR HRSD BDI

Mean score (range) 19 (14–26) Severe:22.4 (17–35)/Low:2.9 (1–7) Severe:35.9 (30–45)/Low:0.6 (0–3)

Equivalent QIDS-SR Score 
[33]

19 (14–26) Severe:17 (13–26)/Low:2 (1–5) Severe:20 (16–22)/Low:1 (0–2)

Total Duration (minutes) 509 355.9 33.2

Average duration/subject (in 
min)

8.4 (± 4.4) 9.4 (± 4.3) 1.0 (± 0.8)

Hardware 1 camera + 1 microphone 4 cameras + 2 microphones 1 web camera + 1 microphone

Audio sampling rate 44100 Hz 48000 Hz 44100 Hz

Video sampling rate 30 fps 30 fps 30 fps
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