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Abstract

The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool 

to produce free energy differences with the minimal errors. Given multiple simulations, WHAM 

obtains from the distribution overlaps the optimal statistical estimator of the density of states, from 

which the free energy differences can be computed. The WHAM equations are often solved by an 

iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for 

more rapid convergence to the solution. We find that the computational complexity of the iterative 

solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can 

be improved by using the method of direct inversion in the iterative subspace. We give examples 

from a lattice model, a simple liquid and an aqueous protein solution.

Keywords

free energy; WHAM; MBAR; DIIS

 1. Introduction

An important problem in computational physics and chemistry is to obtain the best estimate 

of a quantity of interest from a given set of data[1]. For free energy calculations, the multiple 

histogram method[2–5] or its generalisation, the weighted histogram analysis method 

(WHAM)[1, 6–17], is an effective tool for addressing such a problem. WHAM is 

statistically efficient in using the data acquired from molecular simulations, and it has 

become a standard free energy analysis tool, particularly popular for enhanced-sampling 

simulations, such as umbrella sampling[18, 19], and simulated[20, 21] and parallel[22–26] 

tempering.

Given several distributions collected at different thermodynamic states, WHAM obtains the 

optimal estimate of the free energies of the states. This problem arises in the calculation of 

potentials of mean force and a variety of free energy difference methods. The central idea of 

WHAM is to find an optimal estimate of the density of states, or the unbiased distribution, 

which then allows the free energies to be evaluated as weighted integrals. The optimal 

density of states is computed from a weighted average of the reweighted energy histograms 
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(hence the name of the method) from different distribution realisations or trajectories. The 

weights, however, depend on the free energies, so that the free energies and the density of 

states must be determined self-consistently.

WHAM can be reformulated[1, 17] in the limit of zero histogram bin width as an extension 

of the Bennett acceptance ratio (BAR) method[27]. This form, adopted by the multistate 

BAR (MBAR) method[1], avoids the histogram dependency[1, 6, 12].

The straightforward implementation of WHAM or MBAR, in which the equations regarding 

the free energies are solved by direct iteration, can suffer from slow convergence in the later 

stages[14, 16, 28]. Several remedies have been proposed[1, 14, 16, 28, 29]. For example, one 

may use the Newton-Raphson method, which involves a Hessian-like matrix, although the 

approach sometimes can be unstable[1]. Other more advanced techniques include the trust 

region and Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods[16].

An elegant non-iterative alternative is the statistical-temperature WHAM (ST-WHAM)[28, 

29], which determines the density of states through its logarithmic derivative, or the 

statistical temperature. In this way, the method estimates the density of states non-iteratively 

with minimal approximation. ST-WHAM can be regarded as a refinement of the more 

approximate umbrella integration method (UIM)[30, 31]. However, the extension to 

multidimensional ensembles, e.g., the isothermal-isobaric ensemble, can be numerically 

challenging[28].

Here, we discuss a numerical improvement of the implementation of WHAM and MBAR 

using the method of direct inversion in the iterative subspace (DIIS)[32–36]. DIIS shares 

characteristics with other optimisation techniques which use a limited (non-spanning) basis 

of vectors which produce the most gain towards the optimum. Although still iterative in 

nature, this implementation can often improve the rate of convergence significantly in 

difficult cases.

 2. Method

 2.1. WHAM

WHAM is a method of estimating the free energies of multiple thermodynamic states with 

different parameters, such as temperatures, pressures, etc. Below, we shall first review 

WHAM in the particular case of a temperature scan, since it permits simpler mathematics 

without much abstraction. Generalisations to umbrella sampling and other ensembles are 

discussed afterwards.

Consider K temperatures, labelled by β = 1/(kBT), as β1, …, βK. Suppose we have performed 

the respective canonical (NVT) ensemble simulations at the K temperatures, and we wish to 

estimate the free energies at those temperatures.

In WHAM, we first estimate the density of states, g(E) = ∫ δ(ℰ(x) − E) dx, as the number 

density of configurations, x, with energy E, from
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(1)

where nk(E) is the unnormalised energy distribution observed from trajectory k, which is 

usually estimated from the energy histogram as the number of independent trajectory frames 

whose energies fall in the interval (E − ΔE/2, E + ΔE/2) divided by ΔE (we shall omit 

“independent” below for simplicity); thus, nk(E)/Nk is the normalised distribution with Nk 

being the total number of trajectory frames from simulation k; and finally,

(2)

with fk and Zk being the dimensionless free energy and partition function, respectively.

To understand Eq. (1), we first observe from the definition the single histogram estimate

(3)

where dk(E) ≡ Nk exp(−βkE + fk). That is, the observed distribution, nk(E)/Nk, should 

roughly match the exact one, g(E) wk(E), where wk(E) ≡ exp(−βkE + fk) is the normalised 

weight of the canonical ensemble. The values of Eq. (3) from different k can be combined to 

improve the precision, and Eq. (1) is the optimal combination[4, 5, 7, 12, 13]. To see this, 

recall that in an optimal combination, the relative weight is inversely proportional to the 

variance. Assuming a Poisson distribution so that var(nk ΔE) ≈ 〈nk〉 ΔE, we have 

 (here, 〈⋯〉 means an ensemble average). Averaging 

the values from Eq. (3) using (1/dk)−1 as the relative weight yields Eq. (1).1 Since for a fixed 

E, dk(E) is proportional to 〈nk(E)〉, several variants of WHAM may be derived by using 

nk(E) in place of dk(E) as the relative weight for g(E)[37] or related quantities[7, 28–31, 38, 

39].

From Eqs. (1) and (2), we find that fi satisfies

(4)

1We can also view Eq. (1) as the result of applying Eq. (3) to the composite ensemble of the K canonical ensembles[13], using the 

following substitutions: , and . 
The last expression is the normalised ensemble weight in the composite ensemble. Note that the composite ensemble is closely related 
to the expanded ensemble that underlies the simulated tempering method[20, 21]. However, in the latter case, one can show that the 
Nk in Eq. (1) should be replaced by the average, 〈Nk〉, and the combination 〈Nk〉/Zk is proportional to the weight exp(ηk) in the 
acceptance probability of temperature transitions, A(βk → βk′) = min{1, exp[ηk′ − ηk − (βk′ − βk)E]}. This variant is thus more 
convenient as it depends only on the known weight, ηk, instead of on the unknown fk.
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where i(f) denotes the integral on the right-hand side as a function of f = (f1, …, fK). Once 

all fi and g(E) are determined, the free energy at a temperature not simulated, β, can be 

found from Eq. (2) by substituting β for βk.

 Histogram-free form—The histogram dependency of WHAM [in using nk(E)] can be 

avoided by noticing from definition that[12]

(5)

where, ℰ(x) is the energy function, and  denotes a sum over trajectory frames of 

simulation k. Using Eq. (5) in Eq. (4) yields the histogram-free, or the MBAR, form[1, 6, 12, 

17]:

(6)

where qi(x) ≡ exp[−βi ℰ(x)]. The K = 2 case is the BAR result[27], and Eq. (6) also holds 

for a general setting, which permits, e.g., a nonlinear parameter dependence (see Appendix 

A for derivation). In this sense, MBAR is not only the zero-bin-width limit of WHAM[1, 

17], but also a generalisation[1]. As we shall see, the structural similarity of Eqs. (4) and (6) 

allows our acceleration technique to be applicable to both cases. Since both Eqs. (4) and (6) 

are invariant under fi → fi + c for all i and an arbitrary c, fi are determined only up to a 

constant shift.

 Extensions to umbrella sampling—We briefly mention a few extensions. First, for a 

general Hamiltonian with a linear bias

such that qi(x) = exp [−ℋ(x; λi)], we can show, by inserting 1 = ∫ δ( (x) − W) dW into Eq. 

(6), that

where  is understood to be the unnormalised distribution of 

the bias (x). Equation (4) is the special case of ℋ0(x) = 0, (x) = ℰ(x), and λi = βi. 

Another common example is a system under a quadratic restraint (umbrella) 

 for some reaction coordinate ξ ≡ ξ(x). In this case, 
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, and (x) = −βAξ. The configuration independent term, , can 

be added back to fi after the analysis.

 Extensions to other ensembles—Further, λi and W can be generalised to vectors as 

λi and W, respectively. For example, for simulations on multiple isothermal-isobaric (NpT) 

ensembles with different temperatures and pressures, we set λi = (βi, βipi) and W = (E, V) 

with pi and V being the pressure and volume, respectively. However, if the vector dimension 

is high, or if the Hamiltonian ℋ(x; λi) depends nonlinearly on λi, the histogram-free form, 

Eq. (6), is more convenient[1]. Besides, the factor exp(−βi E) can be replaced by a non-

Boltzmann (e.g., the multicanonical[40–42], Tsallis[43], microcanonical[44, 45]) weight for 

multiple non-canonical simulations[28].

 Solution by iteration—Numerically, the fi are most often determined by treating Eq. 

(4) as an iterative equation,

However, this approach, referred to as direct WHAM below, can take thousands of iterations 

to finish[14, 16, 28] (cf. Appendix B). In Secs. 2.3 and 2.4, we give a numerical technique to 

accelerate the solution of Eq. (4) or (6).

 2.2. ST-WHAM and UIM

For comparison, we briefly discuss two non-iterative alternatives, ST-WHAM[28, 29] and 

UIM[30, 31]. By taking the logarithmic derivative of the denominator of Eq. (1), we get,

where we have used Eq. (3) to make the final expression independent of dk(E), hence fk. So

This is the ST-WHAM result. In evaluating the integral, we may encounter an empty bin 

with , which leaves the integrand indeterminate. An expedient fix is to 

let the integrand borrow the value from the nearest non-empty bin [note, however, setting the 

integrand to zero would cause a larger error in g(E)]. ST-WHAM is most convenient in one 

dimension, and its results usually differ only slightly from those of WHAM[28]. In UIM[30, 

31], the distribution nk(E) is further approximated as a Gaussian. We note that ST-WHAM is 

difficult when we have more thermodynamic variables in the ensemble of interest. Below we 

show that WHAM with the DIIS method can handle such a case for the Lennard-Jones (LJ) 

fluid, readily.
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 2.3. DIIS

DIIS is a technique useful for solving equations[32–36], and we use it to solve Eq. (4) here. 

A schematic illustration is shown in Fig. 1. We first represent an approximate solution by a 

trial vector, f = (f1, …, fK), which is, in our case, the vector of the dimensionless free 

energies. The target equations can be written as

(7)

which is −log i (f) − fi in our case. The left-hand side of Eq. (7) also forms a K-

dimensional vector, R = (R1, …, RK), which is referred to as the residual vector. The 

magnitude ‖R‖ represents the error, and R(f) should optimally point in a direction that 

reduces the error of f.

If Eq. (7) is solved by direct iteration, f is replaced by f + R(f) in each time. This can be a 

slow process because the residual vector R does not always have the proper direction and/or 

magnitude to bring f close to the true solution f*. The magnitude of R, however, can be used 

as a reliable measure of the error of f. Thus, in DIIS, we try to find a vector f̂ with minimal 

error ‖R(f̂)‖, which would be more suitable for direct iteration.

Suppose now we have a basis of M trial vectors f1, … fM (where M can be much less than 

K), and the residual vectors are R1, … RM [where Rj ≡ R(fj) for j = 1, …, M], respectively. 

We wish to construct a vector f̂ with minimal error from a linear combination of the trial 

vectors.

To do so, we first find the combination of the residual vectors , that minimises 

the error ‖R̂‖ under the constraint

(8)

Mathematically, this means that we solve for the ci simultaneously from Eq. (8) and

(9)

for all i, with λ being an unknown Lagrange multiplier that is to be determined from along 

with ci. Now the corresponding combination of the trial vectors, , should be 

close to the desired minimal-error vector. This is because around the true solution f*, Eq. (7) 

should be nearly linear; so the residual vector
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has the minimal magnitude. In other words, f̂, among all linear combinations of {fi}, is the 

closest to the true solution, under the linear approximation. Thus, an iteration based on f̂ 

should be efficient.

With M = K + 1 independent bases, one can show that it is possible to find a combination 

with zero R̂, which means that f̂ would be the true solution if the equations were linear. A 

particularly instructive case is that of two vectors (M = 2) in one dimension (K = 1)2. We 

then recover the secant method[46], as shown in Fig. 1(d). The number of bases, M, 

however, should not exceed K + 1 (or, in our case, K because of the arbitrary shift constant 

of fi) to keep Eqs. (9) independent, although this restriction may be relaxed by using certain 

numerical techniques[46].

We now construct a new trial vector f(n) as

where the factor α is 1.0 in this study (although a smaller value is recommended for other 

applications[35, 36]). The new vector f(n) is used to update the basis as shown next.

 2.4. Basis updating

In each iteration of DIIS, the basis is updated by the new trial vector f(n) from the above step. 

Initially, the basis contains a single vector. As we add more vectors into the basis in 

subsequent iterations, some old vectors may be removed to maintain a convenient and 

efficient maximal size of M.

A simple updating scheme[35] is to treat the basis as a queue: we add f(n) to the basis, if the 

latter contains fewer than M vectors, or substitute f(n) for the earliest vector in the basis. If, 

however, f(n) produces an error greater than Kr times the error of fmin, the least erroneous 

vector in the basis, we rebuild the basis from fmin. Here, the error of a vector f is defined as 

‖R(f)‖, and Kr = 10.0 is recommended[35].

We used the following modification in this study. First, we find the most erroneous vector, 

fmax, from the basis. If the new vector, f(n), produces an error less than fmax, we add f(n) into 

the basis or, if the basis is full, substitute f(n) for fmax. Otherwise, we remove fmax from the 

basis, and if this empties the basis, we rebuild the basis from f(n).

Since the DIIS process is reduced to the direct iteration if M = 1, the method is effective 

only if multiple basis vectors are used.

2This is the case for solving the BAR equation, because fi are determined up to a constant shift, the virtual dimension is 1.
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 3. Results

We tested DIIS WHAM and MBAR on three systems: Ising model, LJ fluid, and the villin 

headpiece (a small protein) in aqueous solution (see Secs. 3.2, 3.3, and 3.4, respectively, for 

details). We tuned the parameters such that direct WHAM and MBAR would take thousands 

of iterations to finish.

The main results are summarised in Fig. 2, from which one can see that DIIS can speed up 

WHAM and MBAR dramatically in these cases. The real run time roughly matched the 

number of iterations, suggesting a negligible overhead for using DIIS. This is unsurprising, 

for it is often much more expensive to compute the right-hand side of Eq. (4) or (6).

 3.1. Set-up

For simplicity, we assumed equal autocorrelation times from different temperatures (and 

pressures). The approximation should not affect the convergence behaviour of the methods.

In testing WHAM and MBAR, the initial free energies were obtained from the single 

histogram method:

where ΔAi ≡ Ai+1 − Ai, for any quantity A, and 〈…〉i+1 denotes an average over trajectory i 

+ 1. Then, . Iterations are continued until all |Ri| are reduced below a 

certain value.

For comparison, we also computed fi from three approximate formulae. The first is[16, 48]

(10)

where Āi ≡ (Ai+1 + Ai)/2. The second is an improvement by the Euler-Maclaurin 

expansion[49–52]:

(11)

where 〈δE2〉k ≡ 〈(E − 〈E〉k)2〉k for k = i and i + 1. The third formula is derived from the 

same expansion but using E instead of β as the independent variable (after integration by 

parts, ∫ E dβ = E β − ∫ β dE):

(12)

Zhang et al. Page 8

Mol Simul. Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 3.2. Ising model

The first system is a 64 × 64 Ising model. We used parallel tempering[22–26] Monte Carlo 

(MC) for eighty temperatures: T = 1.5, 1.52, …, 3.08,

To study the accuracy, we generated a large sample with 109 single-site MC steps for each 

temperature. Figure 3 shows that DIIS and direct WHAMs produced identical dimensionless 

free energies. The differences between the ST-WHAM and WHAM results were subtle, 

whereas the approximate UIM produced more deviation in the results, especially around the 

critical region.

To study the rate of convergence, we generated independent samples with 107 MC steps at 

each temperature. Figure 4 shows a faster decay of the error in DIIS WHAM than in direct 

WHAM.

 3.3. LJ fluid

We tested the DIIS method on the 256-particle LJ fluid in the isothermal-isobaric (NpT) 

ensemble. This is a case for the two-dimensional (p and T) WHAM, which can be difficult 

for ST-WHAM[28]. The potential interaction between particles was cutoff at half the box 

size. We simulated the system using parallel tempering MC. We considered the system at NT 

× Np = 6 × 3 conditions, with temperatures T = 1.2, 1.3, …, 1.7, and pressures p = 0.1, 0.15, 

0.2. The bin sizes for energy and volume were 1.0 and 2.0, respectively.

As shown in Fig. 2, DIIS WHAM effectively reduced the run time, although the efficiency 

of DIIS does not always increase with the number of basis set members, M.

 3.4. Villin headpiece

We tested the methods on a small protein, the villin headpiece (PDB ID: 1VII), in aqueous 

solution. This is a well-known test system[55]. The protein was immersed in a dodecahedron 

box with 1898 TIP3P water molecules and two chloride ions. The force field was 

AMBER99SB[56, 57] with the side-chain modifications[58]. Molecular dynamics (MD) 

simulations were performed using GROMACS 5.0[59–65], with a time step of 2 fs. Velocity 

rescaling[66] was used as the thermostat with the time constant being 0.1 ps. The electronic 

interaction was handled by the particle mesh Ewald method[67]. The constraints were 

handled by the LINCS method[68] for hydrogen-related chemical bonds on the protein and 

by the SETTLE method[69] for water molecules.

We simulated the system at 12 temperatures T = 300 K, 310 K, …, 410 K, each for 

approximately 200 ns. The energy distributions were properly overlapped, as shown in Fig. 

5(e). The energies of individual trajectory frames were saved every 0.1 ps, so that there were 

about 2 million frames for analysis at each temperature.

As shown in Fig. 2, direct WHAM suffered from slow convergence, while the DIIS 

methodology again delivered a speed-up of two orders of magnitude, in the number of 

iterations or in real time. The MBAR case was similar, although MBAR was slower than 

WHAM as it did not use histogram to aggregate data.
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To compare the errors of the methods, we prepared two types of samples of different sizes. 

A larger sample was randomly selected from roughly r = 1% of all trajectory frames from 

every temperature. In a smaller one, r was reduced to 0.01%. The reference values of fi were 

computed from all trajectory frames using MBAR, which is the zero-bin-width limit of 

WHAM[1, 17]. In terms of accuracy [Figs. 5(a) and 5(c)], WHAM, MBAR, BAR, ST-

WHAM, Eqs. (11) and (12) were comparably good; UIM was slightly inferior for the larger 

sample; Eq. (10) was the worst. The accuracy was largely independent of the sample size. In 

terms of precision [Figs. 5(b) and 5(d)], the differences were small. Generally, WHAM was 

insensitive to the bin size, whereas ST-WHAM was slightly affected by a small bin size for 

the smaller samples.

 4. Conclusions

In this work, we showed that the DIIS technique can often significantly accelerate WHAM 

and MBAR to produce free energy difference. The technique achieves rapid convergence by 

an optimal combination of the approximate solutions obtained during iteration. DIIS does 

not require computing the Hessian-like matrix, −∂R(f)/∂f, and is numerically stable with 

minimal run time overhead. Compared to other advanced techniques[1, 16], DIIS is 

relatively simple and easy to implement. However, methods based on Hessian matrices may 

further accelerate the solution process for final stages. Other related free energy methods[7, 

37–39] may also benefit from this technique.

There are some non-iterative alternatives to WHAM, although they may be less general 

and/or accurate in some aspect. The use of DIIS makes scanning more than one 

thermodynamic state variable or a nonlinear variable computationally convenient. This was 

demonstrated here in the NpT LJ fluid case. Problems with only one thermodynamic 

variable to scan, such as temperature, are amenable to the non-iterative ST-WHAM, or the 

more approximate UIM.
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 Appendix A

 Probabilistic derivations of Eq. (6)

Here we give some derivations of Eq. (6). First, we show that Eq. (6) is a generalisation of 

Eq. (4) from the energy space to the configuration space. We follow the probabilistic 

argument[8–11, 16, 17] for simplicity. We assume that the system is subject to an unknown 
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underlying configuration-space field, g(y), such that the distribution of state k is wk(y) ≡ 

g(y) qk(y)/Zk[g], with

(A1)

We now seek the most probable g(y) from the observed trajectory. Given a certain g(y), the 

probability of observing the trajectories, {x}, is given by

This is also the likelihood of g given the observed trajectory, {x}. Thus, to find the most 

probable g(y), we only need to maximise log p ({x}|g) by taking the functional derivative 

with respect to g(y) and setting it to zero, which yields

(A2)

where we have used δ log g(x)/δg(y) = δ(x − y)/g(y), and δZk[g]/δg(y) = qk(y).3 Using Eq. 

(A2) in Eq. (A1), and then setting g to 1.0 yields Eq. (6).

We can also show Eq. (6) without introducing the configuration-space field [thus, g(x) = 1 

below]. Instead, we now assume that each trajectory frame x is free to choose the state i 
according to the Bayes' rule[70, 71]: since the prior probability of state i is Ni/Ntot, and the 

conditional probability of observing x in state i is wi(x) ≡ qi(x)/Zi, the posterior probability 

of x being in state i is given by[11]

Summing this over all trajectory frames x (no matter the original state j) yields the expected 

population of state i,

(A3)

3We can also show Eq. (A2) by considering the composite ensemble of the K states. The number of visits to a phase-space element at 

y is given by the product of the total sample size, , the distribution of the composite ensemble 

, and the volume dy. This gives , and it is expected to match 

the observed number of visits to the element, , regardless of the state j.
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where . If we demand N̂
i to be equal to the Ni, Eq. (6) is recovered. 

Alternatively, by following the argument used in the expectation-maximisation algorithm[11, 

71–74], we can view Eq. (A3) as the result of maximising the probability of observing the 

trajectory {x},

with respect to variations of Ni under the constraint .

 Appendix B

 Models for the convergence of direct WHAM

Here, we use simple models to study the convergence of direct WHAM. We shall show that 

slow convergence is associated to a wide temperature range, especially with a large spacing.

 B.1. Linearised WHAM equation

Consider K distributions, ρi(E), at different temperatures, βi (i = 1, …, K), normalised as ∫ 

ρi(E) dE = 1. For simplicity, we assume equal sample sizes, Ni. Then, Eq. (4), can be written 

in the iterative form as

(B1)

Around the true solution, , the equation can be linearised as

where , and

(B2)

with . In matrix form, we have δf(new) = A δf(old).

The elements of matrix A are positive, i.e., Aij > 0, and normalised, i.e.,
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(B3)

The latter can be seen from Eq. (B1) with . Besides, A is symmetric:

(B4)

Thus, A can be regarded as a transition matrix[4]. Each left eigenvector c = (c1, …, cK) of A 
is associated to a mode of δf and the eigenvalue λ gives the rate of error reduction during 

iteration. That is,  decays as λn asymptotically with the number of iterations, n.

The largest eigenvalue is λ0 = 1.0, and its eigenvector c = (1, …, 1) corresponds to a uniform 

shift of all δfi, which is unaffected by the iteration, i.e., , as a 

consequence of Eq. (B3). The next largest eigenvalue, λ1, determines the rate of convergence 

of the slowest mode, and a larger value of 1 − λ1 means faster convergence. Below, we 

determine λ1 in a few solvable cases.

 B.2. Exact distribution approximation (EDA)

To proceed, we assume that the observed distributions are exact, and thus the solution, 

, is also exact. Then, for any k, we have

(B5)

with g(E) being the density of states. This simplifies Eq. (B2) as

(B6)

 B.3. Gaussian density of states

Further, we approximate g(E) as a Gaussian[14]. With a proper choice of the multiplicative 

constant of g(E), we have,

(B7)

It follows
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(B8)

and

Thus, the distribution at any temperature is a Gaussian of the same width . The 

inverse temperature βi affects the energy distributions only as a linear shift to the distribution 

centre. It follows that both the origin of β and that of E, represented by Ec, can be set to any 

values that help calculation, without affecting the value of Aij.

 B.4. Two-temperature case

For the two-temperature case, the matrix A has only one free variable because of Eqs. (B3) 

and (B4), and it can be written as

Thus, the second largest eigenvalue is λ1 = 1 − 2 A12.

Under EDA, we have, from Eqs. (B5) and (B6),

where the equality is achieved only for identical distributions. Geometrically, A12 represents 

the degree of overlap of the distributions, as shown in Fig. B1(a), and it decreases with the 

separation of the two distributions, from the maximal value, 1/2, achieved at β1 = β2.
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Figure B1. (a) A12, which determines the rate of convergence in the two-temperature case, as 

a measure of overlap of the two energy distributions. (b) Comparison of the rates of 

convergence in the two-, three-, and continuous-temperature cases, Eqs. (B9), (B10), and 

(B12), respectively. Here, σβ is the standard deviation of the β distribution; σE is that of the 

energy distribution at any temperature. A larger value of 1 − λ1 means faster convergence.

By further assuming a Gaussian density of states, we can, without loss of generality, set β1 = 

− σβ, β2 = σβ, and Ec = 0. Then, from Eqs. (B6), (B7) and (B8), we have

(B9)

where , and we have used 1/cosh x ≈ exp(−x2/2)(1 + x4/12). This model shows a 

rapid decrease in the rate of convergence of direct WHAM with the temperature separation.

 B.5. Three-temperature case

Similarly, for three evenly-spaced temperatures, we can, without loss of generality, set β1 = 

−Δβ, β2 = 0, and β3 = Δ β, with . Then,4

(B10)

4For A12, we set Ec = −Δβ/(2 a), and , with
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where

 B.6. Continuous-temperature case

If there are a large number K of temperatures in a finite range, we can approximate them by 

a continuous distribution, w(β). In this case, the sum over temperatures can be replaced by 

an integral: .

The eigenvalue λl and eigenvector cl(β) are now determined from the integral equation

(B11)

where A(β, β′) is Aij with βi → β and βj → β′.

Equation (B11) can be solved in a special case, in which we assume EDA, Eq. (B6), a 

Gaussian density of states, Eq. (B7), and a Gaussian β distribution:

with width . The physical solution is

where . The parameter u should be 5/2 to match the small Δβ behaviour, although the overall 
accuracy can be improved by a value of u ≈ 2.11.
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where Hl(x) is the Hermite polynomial[49–51], generated as . 

Thus, for the second largest eigenvector, we have

(B12)

which decreases with increasing temperature range, σβ, albeit more slowly than the two- and 

three-temperature values, as shown in Fig. B1(b). Thus, Eq. (B12) only gives a upper bound, 

and nonzero spacing between temperatures can further slow down the convergence. Besides, 

sampling error, which is ignored in the above calculation, may also slow down the 

convergence.
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Figure 1. 
Schematic illustrations of the method of direct inversion of the iterative subspace (DIIS). (a) 

As an iterative method, DIIS solves the equation, R(f) = 0, by a feedback loop. When the 

equation is applied to a trial solution, represented by vector fi, we get a residual vector Ri ≡ 

R(fi), whose magnitude indicates the error. Ideally, if fi were the true solution, Ri would be 

zero. In the feedback step, we correct fi using Ri. The task of DIIS is to construct from a few 

previous vectors accumulated during the iteration an optimal trial vector f̂ with hopefully the 

smallest error ‖R̂‖ to help the next round of iteration. (b) and (c) Given a basis of M (two 
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here) trial vectors, DIIS seeks the combination  that minimises the magnitude 

‖R̂‖ under the constraint  [panel (c)]. The corresponding combination of the trial 

vectors, , is expected to be close to true solution, f*. Then, we construct the new 

trial vector as f(n) = f̂ + R̂ and use it to update the basis for the next round of iteration. (d) If 

the vectors are one-dimensional (i.e., scalars), it is possible to find a vanishing R̂, and DIIS 

is equivalent to the secant method.
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Figure 2. 
Number of iterations and run time versus the number of bases, M, in DIIS. The four test 

cases are (1) WHAM on the Ising model, (2) WHAM on the LJ fluid in the NpT ensemble, 

(3) WHAM on the mini-protein villin headpiece in the NVT ensemble (with the bin width of 

energy histograms being 1.0), and (4) MBAR on the same protein system. The M = 0 points 

represent direct WHAM. The run times are inversely scaled by a factor τ for better 

alignment with the numbers of iterations. The scaling factors τ for cases 1–4 are 12.5, 1.87 × 

103, 14.3, and 260 seconds, respectively. The results were averaged over independent 

samples for the Ising model and LJ fluid. For the villin headpiece, the results were averaged 

over bootstrap[4, 15, 47] samples for WHAM, or over random subsamples with about 1% of 

the trajectory frames for MBAR. To mimic the correlation in the trajectories, each data point 

in the bootstrap sample is either randomly drawn from the trajectory, or the same as the 

previous one (if any) with probability exp(−ΔtMD/tact), where ΔtMD and tact are the time step 

of molecular dynamics and the autocorrelation time of the potential energy, respectively. 

Here, the error tolerance max{|Ri|} is 10−8. The lines are a guide for the eyes.
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Figure 3. 
Errors of (a) the dimensionless free energies, fi, and (b) the logarithmic density of states, log 

g(E), for the N = 64 × 64 two-dimensional Ising model (plotted with an energy spacing of 

200). Here, ε(a) ≡ a − aref, and the reference values for fi and g(E) were computed using the 

methods in Refs. [53] and [54], respectively. The bin size of the energy histograms is Δ E = 

4. Lines are a guide for the eyes.
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Figure 4. 
Convergence error, max{|Ri|}, versus the number of iterations in direct and DIIS WHAMs 

for the 64 × 64 two-dimensional Ising model. Results were geometrically averaged over 

independent samples.
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Figure 5. 
Accuracy [(a) and (c)] and precision [(b) and (d)] of the dimensionless free energies, fi, from 

WHAM, BAR, ST-WHAM, UIM, and approximate formulae for the villin headpiece in 

solution. Two types of samples were used. A large sample [(a) and (b)] and a small sample 

[(c) and (d)] contain roughly 1% and 0.01% of all trajectory frames, respectively. The results 

were averaged over random samples. The MBAR results computed from all trajectory 

frames were used as the reference. fi at T = 300 K is fixed at zero. The lines are a guide for 

the eyes. (e) Energy histograms collected with bin width ΔE = 1.0.
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