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Abstract

A central challenge in the field of metabolic engineering is the efficient identification of a 

metabolic pathway genotype that maximizes specific productivity over a robust range of process 

conditions. Here we review current methods for optimizing specific productivity of metabolic 

pathways in living cells. New tools for library generation, computational analysis of pathway 

sequence-flux space, and high-throughput screening and selection techniques are discussed.
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 Introduction

Microorganisms have the potential to produce many chemicals of use to society1,2. In some 

cases, production from heterologous microorganisms is more sustainable than purifying the 

chemical from natural sources. Examples include harvesting Pacific yew trees or Chinese 

wormwood for taxol3 or the anti-malarial artemisinin4, respectively. Additionally, the ability 

to create renewable and sustainable biofuels and biochemicals is increasingly attractive 

given concerns about climate change and peak oil5.

An organism producing a desired product may not exist, or a given strain may not be 

suitable for required economical processing conditions. Because of this, reconstructed 

pathways are often implanted into chassis microorganisms5. Some of these pathways include 

those specific for biofuels (ethanol5, isobutanol6, 1-butanol7, 1,4-butanediol8), polymer 

monomers (polylactic acid9, isoprene10, 3-hydroxypropionic acid11) and pharmaceutically 

active ingredients (precursors for taxol3 or opioids12). However, in many cases product 

toxicity or transport limits end titers, product recovery from aqueous fermentation broths is 
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inefficient, or the volumetric productivity is below that required for a cost-effective process. 

Combined, these limitations temper the promise of sustainable replacement of the palette of 

petrochemicals and naturally extracted specialty chemicals currently in use by society.

In particular, the specific productivities of most engineered metabolic pathways are far 

below that which is needed for industrial production. Some implanted pathways have limited 

flux because of substantial thermodynamic reversibility at key steps13. Additionally, 

pathway enzymes transplanted into heterologous hosts often have poor expression because 

of weak catalytic efficiency14, poor protein solubility, or membrane targeting issues12,15. 

Host-specific problems include cofactor accessibility16, siphoning of pathway intermediates, 

intermediate toxicity and post-translational flux regulation of key precursors12,17,18. 

Furthermore, the performance of a specific engineered metabolic pathway may differ 

between host strains19, media formulations12, temperatures and oxygen conditions20.

A grand challenge in the field of metabolic engineering is the accurate and efficient 

identification of a pathway genotype that maximizes specific productivity over a robust 

range of process conditions. Attempts to improve specific productivity have largely focused 

on screening individual pathway enzymes for activity or balancing gene expression by 

testing libraries of elements like promoters and ribosome binding sites (RBS)21–24. Error-

prone polymerase chain reaction (PCR) mutagenesis of pathway enzymes has also been used 

to find activity-improving mutations17,18. However, pathway optimization by total 

enumeration becomes unwieldy, as balancing activity at multiple nodes leads to a 

combinatorial explosion. Consider a plasmid-encoded pathway composed of a series of 

expression elements (e.g. promoters, RBS, terminators) and pathway gene variants (Fig. 1a). 

A pathway library comprised of a single enzyme of average length25 driven by 10 alternative 

promoter and 10 alternative RBS sequences can be covered by testing 102 variants. A library 

containing the above gene expression genotypes with all possible single non-synonymous 

mutations to the enzyme now contains 6 × 105 variants. Testing the same number of variants 

using a two-enzyme pathway requires a theoretical coverage of 3.6 × 1011 variants, which is 

too large a sequence space to cover under most conditions. The combinatorial problem only 

becomes more acute with more pathway enzymes. To partially circumvent this 

combinatorial intractability, modular pathway design has been used to partition individual 

enzymatic steps into reaction groups. Then, expression of the resulting modules are 

balanced, not individual enzymes12,26–28 (Fig. 1b). Alternative ways to explore sequence-

flux space include computational predictions from small training sets29–31 (Fig. 1c) or high-

throughput screening or selection techniques32–36 (Fig. 1d).

The focus of this review is on new technologies that identify highly productive and robust 

synthetic metabolic pathways. This review will not cover continuous evolution37, whole-

genome engineering38 or computational pathway design39 — the interested reader can find 

excellent reviews on some of these topics elsewhere40–43. We begin by describing pathway 

evaluation of isogenic cultures. We next describe computational approaches to predict high-

performing genotypes with a limited training set of pathway variants. Next, we consider 

high-throughput methods to assess metabolic pathways, including population-based screens 

or selections. New enabling techniques for DNA library construction, sequencing and 

evaluation will be described throughout.

Klesmith and Whitehead Page 2

Technology (Singap World Sci). Author manuscript; available in PMC 2016 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Evaluation of Isogenic Cultures

One way to evaluate pathway variants is through the use of isogenic cultures. In a typical 

set-up, a library containing a combinatorial library of expression elements or enzyme 

variants is created, and clonal variants are tested individually. Lu et al. optimized a xylose 

fermentation pathway in Saccharomyces cerevisiae by shuffling promoters of various 

strength in front of each pathway enzyme44. Different promoter combinations were made 

and tested individually for ethanol productivity and enzymatic activity. Solomon et al. tested 

different expression levels of glucokinase (glk) and galactose permease (galp) to enable 

glycolytic uptake in Escherichia coli independent of the phosphotransferase system45. 

Carbon flux was modulated by controlling expression of glk and galp under control of 

synthetic constitutive promoters. Juminaga et al. constructed a pathway for L-tyrosine 

production in E. coli MG1655 by modifying plasmid copy numbers, promoter strength, gene 

codon usage, and placement of genes in operons46. The best pathway variant had a 

volumetric productivity of 55 mg L-tyrosine/L/hr, representing 80% of the theoretical yield. 

Ajikumar et al. optimized a pathway for overproduction of taxadiene, a key taxol precursor3. 

The authors used a modular approach by separating the pathway into two operons, with one 

containing the methylerythritolphosphate pathway and the other containing genes encoding 

the downstream terpenoid-producing enzymes. The promoter strength in front of each 

operon was systematically varied and taxadiene product measured. Notably, the taxadiene 

production landscape was highly non-linear in response to operon expression.

Similar isogenic approaches can be used to engineer key rate-determining enzymes or 

transporters in implanted metabolic pathways. Zhang et al. used site-directed mutagenesis of 

active site residues of the enzymes KivD and LeuA47. Fermentations of E. coli harboring 

pathways with different combinations of KivD/LeuA variants were tested for quantification 

of desired alcohol products. Leonard et al. generated combinatorial mutations in the 

downstream enzymes geranylgeranyl diphosphate synthase and levopimaradiene synthase to 

tune the selectivity and increase the productivity of levopimaradiene production in E. coli48. 

The best strain had a maximum volumetric productivity of 7.3 mg levopimaradiene per L per 

h. Lee et al. improved xylose utilization in S. cerevisiae by directed evolution of xylose 

isomerase49. After three rounds of error-prone PCR and screening they isolated a mutant 

with a 61-fold improvement in aerobic growth rate and an eight-fold improvement in ethanol 

production and xylose consumption. Screening pathway variants is not only limited to 

enzymes. Young et al. demonstrated the tunability of yeast sugar transporters through a 

combination of motif-based design and saturation mutagenesis50. This approach was used to 

identify xylose-specific fungal molecular transporters, which when expressed improved 

xylose utilization by S. cerevisiae.

 Computational Predictions Using Empirical Training Sets

Adjusting the right balance of enzyme specific activities within a pathway is crucial as the 

fitness cost of protein expression51, catabolism of pathway intermediates, and off-product 

reactions can all lower specific productivities. While there have been many admirable 

attempts to forward engineering biological systems and parts22,24,52–54 and analytical 

equations describing pathway flux have been formulated55, tuning metabolic pathways is 
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largely still an empirical exercise. Because of this, predictive computational models have 

been used to predict high productivity portions of sequence-flux space given sparse flux 

datasets resulting from testing isogenic cultures. Lee et al. used a linear regression model 

trained on empirical data to relate enzyme expression levels to product titers in a violacein 

biosynthetic pathway29. This simple model could accurately predict promoter combinations 

resulting in the production of violacein or one of the three alternative products. Another 

approach to computationally model and improve pathway performance is to correlate 

targeted proteomics and metabolite data. George et al. generated isopentenol pathway 

variants with differing promoters, operon organization, and codon-usage30. They then used 

HPLC and LC-MS to quantify glucose, organic acids, and pathway intermediates and used 

selected reaction monitoring mass spectrometry to quantify all proteins in their pathway. 

Spearman rank correlations were calculated from values of protein area and metabolite 

concentrations. Based on these relationships, individual variants were reconstructed and 

tested in time-course experiments to test model predictions. While this method may not 

capture complex regulatory interactions like feedback inhibition, other methods like 13C 

metabolic flux analysis studies are more than capable of doing so56,57. In one example, Feng 

et al. tested different xylose reductase, xylitol dehydrogenase and xylulose kinase variants in 

a yeast xylose pathway and used 13C metabolic flux analysis to determine if the different 

cofactor requirements of the enzyme variants had any effect on growth and/or ethanol 

production58. They found that production of ethanol was unaffected by the cofactor 

requirements of the xylose pathway. However, the cofactor balanced xylose pathway allowed 

growth under a wider variety of conditions. Farasat et al. developed a sequence-expression-

activity mapping method to find optimal expression conditions with desired activity for a 

carotenoid biosynthetic pathway31. In a first step, an RBS calculator is used to make a 

library that spans a large range of protein expression space. Next, a subset of the library is 

tested for activity and used as a training set for a computational model. A new library is then 

constructed with targeted expression within a narrow window specified by the model. 

Zelcbuch et al. performed an iterative assembly of three fluorescent reporters, each with an 

associated RBS, into an operon59. This initial search reduced the expression search space for 

a balanced astaxanthin pathway. In a clever approach, they were able to haplotype the 

individual non-local RBS sequences included within the operon by sequencing a 

downstream barcode built using iterative restriction and ligation steps.

 Enabling DNA Construction Methods

New genetic modification methods like DNA Assembler60, Golden Gate assembly61, Gibson 

cloning62, SLIC63, site-specific recombination or VEGAS assembly64 enable efficient 

construction of pathway variants with an array of different enzymes, promoters and RBS 

sequences. Smanski et al. utilized Gibson cloning62 and Golden Gate assembly61 to refactor 

the Klebsiella oxytoca nitrogen fixation gene cluster32 by systematically varying the 

expression levels of individual genes in the complete 16-gene pathway. Performance of their 

clusters was assessed by RNA-seq for expression levels and nitrogenase activity assays. The 

best of the 122 full-length pathways tested resulted in recovery of 57% of the wild-type 

activity. Layton and Trinh used Gibson cloning to make ester fermentative pathways in E. 
coli33. Their modular design of their pathway allowed quick replacement of RBS and 
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promoter sequences. Oliver et al. improved 2,3-butanediol production in cyanobacteria by 

using SLIC to swap different RBS sequences in front of each pathway enzyme34. Colloms et 
al. used serine integrase site-specific recombination to rank gene order and RBS sites for a 

more efficient production of violacein and lycopene35. Du et al. used S. cerevisiae native 

homologous recombination to swap promoters of various expression strength in front of 

relevant genes65. This was used to improve xylose and cellobiose utilization pathways. Kim 

et al. used a similar approach to balance the flux of a xylose utilizing pathway for biofuel 

production36. Importantly, the optimal pathway was strongly dependent on both the host 

genotype but also the sugar composition of the growth medium. Latimer et al. 
combinatorially tested promoters of the eight-gene pathway for xylose utilization in 

Saccharomyces cerevisiae20. Library plasmids were made with Golden Gate assembly. 

Similar to results above, they found that the enrichment of specific yeast promoters in their 

library after selection was dependent on the number of genes expressed, the culture media 

conditions, and the cofactor dependence of the enzymes.

 Alternative High-Throughput Screening Methods

Many of the above examples utilized medium-throughput plate-based screening or a growth 

based selection in order to sort variants. There have been recent developments to employ 

fluorescence-activated cell sorting (FACS) or microfluidic sorting technology in cases 

without an observable growth phenotype. For example, Wang et al. cultured xylose-

consuming strains in droplets and microfluidic sorting based on the fluorescence of oxidized 

extracellular metabolites66. Michener et al. utilized FACS to screen improved variants of 

caffeine demethylase using a designed RNA biosensor67. The RNA biosensor is a 

combination of ribozyme and aptamer located in the 3′ UTR of a fluorescent reporter gene. 

When the aptamer is bound to a desired ligand, the ribozyme misfolds leading to lower RNA 

cleavage rates and increasing the fluorescent output. Tang et al. utilized FACS to screen for 

E. coli clones with enhanced triacetic acid lactone (TAL) production using a an engineered 

TAL fluorescent reporter68. Jha et al. used a FACS screen to identify E. coli clones with 

increased enzymatic production of 3,4 dihydroxy benzoate69. In these above examples, the 

limitation is developing a fluorescent reporter that is coupled to intracellular concentrations 

of a target metabolite.

 Population-Based Measurements

One limitation of high-throughput screening is the inability to haplotype a unique pathway 

sequence to an output phenotype. Typically, only a few “winners” of the selection are 

sequenced. This is sub-optimal for two reasons. First, the winner variants depend strongly on 

the exact selection or screening conditions used, and so a selection must be repeated for each 

change of fermentation condition or host genotype. This limitation precludes use of multi-

objective optimization (Pareto optimization) techniques into pathway redesign. Recent 

contributions from the Salis lab show the utility of Pareto optimization to improve 

translation elongation rates and mRNA stability of a single construct across multiple 

bacterial species70,71. Secondly, high-throughput methods do not allow coverage of a 

complete sequence-flux space for even moderate-length pathways, and losing crucial 

genotypic information of the pathway makes it impossible to use the powerful computational 
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analyses and prediction tools that have been demonstrated for low-throughput pathways. We 

envision population-based measurements that can more thoroughly search sequence-flux 

space and also identify Pareto optimal genotypes that are robust to different processing 

conditions (Fig. 2).

Recent advances in deep sequencing technology allow the ability to track tens of thousands 

of pathway variants in a high throughput screen. Most of such methods rely upon 

“barcoding” individual cells with a short unique identifier DNA sequence (Fig. 2a). A 

growth selection is performed, and these populations are deep sequenced at the barcode 

locus. The change in frequency of an individual barcode can be related to the fitness of that 

unique variant72,73. While in principle such techniques could be used to track individual 

metabolic pathway variants, most demonstrations have been for studies on evolution. Smith 

et al. developed a barcode sequencing method (Bar-seq), which they validated by performing 

growth selections of a mixed culture containing yeast deletion strains74. The barcode 

abundance after selection was determined for each deletion strain by deep sequencing the 

entire population. More recently, Levy et al. barcoded 500,000 lineages of Saccharomyces 
cerevisiae and used a growth selection to track time-dependent changes in fitness among the 

population75. Chubiz et al. introduced FREQ-Seq, a method to barcode and determine allele 

frequencies from a mixed population72. FREQ-Seq was used to map seven variants of the 

enzyme Tet(X2), conferring tetracycline resistance, in ten different evolving populations76.

Frequency analysis of variants within a population can be used to assess if a single variant 

improves, reduces, or has no effect on function. This approach has been used for evaluation 

of yeast translation initiation sites77 and bacterial promoter strengths21 by coupling these 

upstream elements to fluorescent reporter proteins. Subsequently, populations are sorted by 

FACS. In fact, massively parallel sequence-function mapping is now commonplace in 

determining the sequence effects on function for proteins78. For example, this methodology 

has been used to improve the affinity of engineered protein binders to Influenza79. The 

question remains how to leverage impressive deep sequencing technology to improve 

implanted metabolic pathways.

In principle, high-throughput sequence-function mapping can be used to determine 

metabolic pathways supporting higher or lower flux, provided that it is coupled to a 

selectable phenotype like growth. A new approach called FluxScan was recently reported80 

that maps the sequence determinants of flux in living cells (Fig. 2b). First, a selection is 

designed to allow growth if and only if flux is routed through the implanted pathway. A 

mutational library is then created and transformed into the strain of interest. After a growth 

selection is performed for 4–10 generations, the entire population is deep sequenced and 

compared with the population before selection. The frequency change of each variant can be 

calculated and converted to a flux value. To demonstrate this method, Klesmith et al. 
determined the effect of flux for over 8,000 single-point mutants in a pyrolysis oil catabolic 

pathway80. One designed pathway incorporating 15 beneficial mutations identified from 

FluxScan supported a 15-fold improvement in growth rate on levoglucosan, a chief pyrolysis 

oil constituent.
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One significant technical challenge with FluxScan and related deep sequencing approaches 

is the inability to cover the complete length of metabolic pathways: current long read lengths 

of the Illumina platform are approximately 300 bp, whereas full operons can exceed 10 kb. 

One method to escape this limitation is to sequence small contiguous regions of sequence (a 

gene tile) able to fit on a single read. This “tiling” is then repeated along the length of the 

entire gene encoding sequence81. Other potential solutions to extend deep sequencing 

include coupling a pre-defined barcode sequence to a given pathway variant using clever 

DNA construction approaches32,59 or to utilize the next generation of long-read, highly 

accurate haplotype sequencing technologies82,83.

The ideal outcome of any experiment should be to find Pareto optimal pathway sequences 

that are robust and transferrable to any process condition. Single isogenic culturing 

conditions are not suited for this task as each pathway variant would individually have to be 

tested under each process condition to determine the resulting phenotype. Therefore, high-

throughput population-based measurements are more capable to resolve the fitness of each 

sequence variant under each process condition (Fig. 2c) provided that they are performed 

under diverse conditions. Sequence variants from current high-throughput genomic methods 

that originate from different process conditions highlight this open problem. Gall et al. used 

the SCALEs method to map the gene expression in E. coli that conferred an advantage in the 

presence of 1-naphthol84. They show that genes with enhanced expression depend on the 

type of culturing method used. Only 25% of clones that were reproducibly enriched in serial 

transfer cultures were similarly enriched in single batch cultures. Similarly, Warner et al. 
used TRMR and found differential gene expression that was dependent on the four different 

growth conditions under evaluation85. While these examples highlight gene expression on 

the genomic scale, the problem also applies to expression and gene variants on the individual 

pathway level. An example of this is from the aforementioned FluxScan study where the 

enrichment of individual mutations from the enzyme levoglucosan kinase was strongly 

dependent on the biophysical properties of the starting enzyme variant from each 

selection80. Being able to measure the pathway phenotype from different expression 

elements and individual gene variants under different growth conditions should allow the 

elucidation of pathway sequences that are optimal over a range of diverse conditions and 

determine why other sequences fail when these conditions change. If implemented, these 

high-throughput population-based measurements can help train computational models by 

providing empirical data and similarly computational models can help reduce the sequence 

search space for a more targeted population-based screen.

 Outlook

In the near future we believe that robust, high performing pathways can be efficiently 

identified. New DNA assembly technologies allow for construction of large libraries of 

pathway variants covering a large range of protein expressions and activities. The number of 

unique pathway variants that can be made far exceeds that which can be accurately validated 

using existing technology. In this review, we have covered current methods to reduce the 

search space.
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There is no general method that can assess any metabolic pathway, as there are limitations to 

each of the main approaches. There are two practical limitations that must be surmounted. 

First, the relationship between gene expression and pathway flux is highly non-linear. 

Second, a specific genotype may only support high productivity in a narrow range of process 

conditions. We suggest that marrying computational modeling with empirical datasets 

resulting from population-based measurements will allow a more efficient discovery of 

Pareto optimal gene encoding, expression, or regulatory sequences.
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Figure 1. 
There are three main strategies to sample sequence-flux space in metabolic pathways. (a) A 

model pathway. Each arrow represents a different reaction chemistry used to convert an 

initial substrate into a value-added product. Expression elements like promoters and 

ribosome binding sites (RBS) facilitate expression of the enzyme-encoding gene sequences. 

(b) Individual reaction chemistries are grouped into modules. Expression of these modules is 

varied, reducing the combinatorial search space. (c) Given a training set of different 

sequences with a given output, models can be harnessed to predict optimal pathway 

expression levels. (d) Advanced DNA assembly methods can be used to create unique 

pathway variants that are then assessed using high-throughput screens or selections.
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Figure 2. 
Population-based measurements of pathways enable thorough search of flux space. (a) DNA 

barcoding methods allow long DNA constructs to be uniquely identified by short sequences. 

(b) Deep mutational scanning quantifies the enrichment of individual DNA variants after a 

selection. The enrichment relating the change in frequency of an individual variant can be 

related to specific productivity. (c) Comparing the fitness of individual variants between 

different selection conditions allows one to find Pareto optimal pathway sequences. This 

enables the identification of pathways supporting high specific productivity under robust 

processing conditions.
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