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Abstract

Protein hydroxylation is an emerging posttranslational modification involved in both normal 

cellular processes and a growing number of pathological states, including several cancers. Protein 

hydroxylation is mediated by members of the hydroxylase family of enzymes, which catalyze the 

conversion of an alkyne group at select lysine or proline residues on their target substrates to a 

hydroxyl. Traditionally, hydroxylation has been identified using expensive and time-consuming 

experimental methods, such as tandem mass spectrometry. Therefore, to facilitate identification of 

putative hydroxylation sites and to complement existing experimental approaches, computational 

methods designed to predict the hydroxylation sites in protein sequences have recently been 

developed. Building on these efforts, we have developed a new method, termed RF-Hydroxysite, 

that uses random forest to identify putative hydroxylysine and hydroxyproline residues in proteins 

using only the primary amino acid sequence as input. RF-Hydroxysite integrates features 

previously shown to contribute to hydroxylation site prediction with several new features that we 

found to augment the performance remarkably. These include features that capture 

physicochemical, structural, sequence-order and evolutionary information from the protein 

sequences. The features used in the final model were selected based on their contribution to the 

prediction. Physicochemical information was found to contribute the most to the model. The 

present study also sheds light on the contribution of evolutionary, sequence order, and protein 

disordered region information to hydroxylation site prediction. The web server for RF-

Hydroxysite is available online at http://bcb.ncat.edu/RF_hydroxy/.

 1. Introduction

Though it was first identified over fifty years ago as an essential component of collagen 

fibres, protein hydroxylation has only recently begun to emerge as an important 

posttranslational modification (PTM) involved in the etiology of a variety of diseases, 

including breast, stomach and lung cancers [1]. Protein hydroxylation is mediated by a 

family of approximately 70 hydroxylase enzymes that utilize the cofactors oxygen, Fe(II), 

ascorbate and 2-oxoglutarate to catalyze the conversion of specific lysine and proline 

residues on their target proteins to hydroxylysine (HyK) and hydroxyproline (HyP), 

respectively [2]. The hydroxylated residues are essential elements of collagen and 
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connective tissues, as well as precursors for subsequent PTMs, such as glycosylation. As a 

consequence, hydroxylation plays an important role in key physiological processes, such as 

tissue stability, molecular assembly, metabolism and oxygen-dependent regulation of 

hypoxia.

In order to gain a better understanding of the role of hydroxylation in normal cellular 

physiology and disease, it is important to identify hydroxylation sites in cellular proteins. 

This information can also help inform the development of pharmacological interventions for 

diseases associated with the dysregulation of protein hydroxylation. Experimental 

identification of hydroxylation sites is typically labor-intensive and time consuming, 

requiring expensive instrumentation, such as tandem mass spectrometers, and a high degree 

of technical expertise. Moreover, due to the large number of peptide fragments analyzed 

during a given experiment, standard approaches, such as shotgun mass spectrometry, may 

miss low abundance hydroxylation sites. Recently, three studies focused on the development 

of computational methods for hydroxylation site prediction have been reported. In the first 

study, Hu et al. combined support vector machines (SVMs) with position-specific scoring 

matrices (PSSM) and physicochemical properties to predict sites of hydroxylation in sliding 

windows of size of 9 [3]. The accuracies achieved using this approach were 76% and 82.1% 

for HyP and HyK, respectively. Importantly, this study was one of the first to demonstrate 

that evolutionary and physicochemical information can contribute to the prediction of 

hydroxylation sites. However, no web server or standalone software is currently available for 

this method. The second method, termed iHyd-PseAAC [4], incorporated dipeptide position-

specific propensity into amino acid composition (PseAAC) for a sequence window of size 

15 and used discriminant analysis for training and prediction. The reported average accuracy 

of iHyd-PseAAC was 79.5% and 83.34% for HyP and HyK, respectively. Most recently, Shi 

and colleagues developed PredHydroxy [5], which uses SVM to integrate position weight 

amino acid composition (PWAAC) information with 8 high-quality amino acid 

physicochemical property indices (HQI). Using this approach, the authors observed 

accuracies of 84.51% and 83.33% for HyP and HyK, respectively.

Though these studies have laid a solid foundation for hydroxylation site prediction, there is 

still room for improvement with respect to accuracy, efficiency and overall performance. 

Here, we describe a new method based on random forest (RF) that combines information 

about physicochemical, structural, evolutionary and sequence-order features to accurately 

predict sites of protein hydroxylation using the primary amino acid sequence as input. This 

method, which we term RF-Hydroxysite, benefits from the integration of several features, 

such as average cumulative hydrophobicity and position-specific entropy, that have not 

previously been used in hydroxysite prediction. Aside from their impact on hydroxysite 

prediction, these features may also offer important insights into the biochemical parameters 

underlying substrate recognition and subsequent hydroxylation by hydroxylase family 

members.
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 2. Material and methods

 A. Sequences and sequence preparation

The protein sequences used in this study, which are the same as those used during the 

development of PredHydroxy, were extracted from UniProtKB /Swiss-Prot database (version 

2014_1). The sequences correspond to known, experimentally-verified hydroxylation sites 

for both lysine (34 sequences) and proline (265 sequences). Similarly, sequences that 

contain lysine and proline residues that have been shown not to be hydroxylated under 

physiological conditions were downloaded from the UniProt database. These non-

hydroxylated sites served as negative controls during method development and evaluation. 

To minimize the possibility that some negative sites may be reported as positive sites in the 

future, Rvp-net [6] was used to filter any negative site with absolute surface area more than 

40%. To eliminate redundancies in the datasets, the sequences that share more than 40% 

sequence identity were removed using the CD-HIT standalone program [7] from both 

datasets. From the remaining unique sequences, windows of length 7, 9, 11, 13, 15, 17, and 

19 amino acid residues were prepared with positive or negative lysine/proline residues in the 

center of the window. The various windows lengths were then used to identify the one that 

yielded the best performance of the model. The number of windows with positive 

hydroxylated sites used in this study is 97 for lysine and 719 for proline. The same numbers 

of windows with non-hydroxylated lysine and proline residues were selected randomly as 

unbiased negative controls to balance the positive windows. Finally, before training was 

initiated, 10% of the dataset was drawn randomly and put aside to serve as an independent 

sample for testing.

 B. Sequence features

Protein sequences are represented with 11 feature types reflecting evolutionary, 

physiochemical, sequential, structural, and functional information. The features include 

position weight amino acid composition (PWAA), high-quality physicochemical property 

indices (HQI), type I entropy (ENT1), type I relative entropy (RE1), type I information gain 

(IG1), overlapping properties (OP), average cumulative hydrophobicity (ACH), protein 

disordered region features (PDR), type II entropy (ENT2), type II relative entropy (RE2), 

and type II information gain (IG2).

 1-Position weight amino acid composition—Position weight amino acid 

composition (PWAA) is used to extract position information about amino acid residues 

surrounding potential hydroxylation sites in a protein sequence fragment [5]. There are 20 

PSWAA features, with each one representing the position weight of an amino aai =(A, C, D, 

E, F, G, H, I, K, L, M, N, P,Q, R, S, T, V,W, Y) where i denotes the position index in the 

amino acid list. In a protein sequence window of length 2n+1, in which the potential 

hydroxylation site is in the center at position n+1, the surrounding amino acid position 

weights are given by

(1)
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where n denotes the number of downstream or upstream residues from the center of the 

window, j denotes the position of the amino acid relative to the center (−n ≤ j ≤ n), and xij =1 

if the amino acid aai is found in position j of the sequence window or xij = 0 otherwise.

 2-High quality physicochemical indices—High quality physicochemical indices 

(HQI) as described in PredHydroxy [5] are the indices of eight physicochemical properties 

that represent the eight group identified by clustering the 544 correlated amino acid 

properties in the AAindex1 database [8]. The properties are propensity (BLAM930101) [9] 

(HQI1), information value for accessibility (BIOV880101) [10] (HQI2), normalized 

frequency of alpha-helix (MAXF760101) [11] (HQI3), volumes including the 

crystallographic waters (TSAJ990101) [12] (HQI4), amino acid composition of MEM of 

multi-spanning proteins (NAKH920108) [13] (HQI5), composition of amino acids in 

intracellular proteins (CEDJ970104) [14] (HQI6), conformational preference for all beta-

strand (LIFS790101) [15] (HQI7), and optimized relative partition energies (MIYS990104) 

[16] (HQI8). HQI features are extracted by representing the amino acid residues surrounding 

the hydroxylation site by a property of a corresponding index. The number of HQI features 

for a sequence window of size n is 8×(n−1).

 3-Type I entropy—Type I entropy (ENT1) is calculated using probabilities of the 

individual amino acids in the window to generate one numeric feature. It is calculated as

(2)

where pi is the probability of an amino acid i=(A, C, D, E, F, G, H, I, K, L, M, N, P,Q, R, S, 

T, V,W, Y) in the sequence and it is computed as the total number of amino acids, i, divided 

by the length of the window, assuming that the probability of any amino acid that does not 

exist in the window is zero. Entropy ranges between zero, where only one type of residue in 

the entire sequence is found, and 3.17, where all types of amino acids have equal occurrence 

in the window.

 4-Type I relative entropy—Type I relative entropy (RE1) of the distribution pi of an 

amino acid and its random distribution, p0, is calculated as

(3)

where p0=1/n, the probability that all amino acids have equal occurrence in the window of 

size n. RE is always non-negative and becomes zero if and only if pi = p0. Like entropy, the 

relative entropy is represented by one feature for each window. We again assumed that the 

probability of any amino acid that does not exist in the window is zero.

 5-Type I Information gain—Type I information gain (IG1) is computed by subtracting 

RE1 from H1. It measures the transformation of information in a sequence fragment 

influenced by a grouping factor.
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(4)

 6-Overlapping properties—Overlapping properties (OP) captures information from 

common physicochemical properties shared by the amino acids in a protein fragment [17, 

18]. The amino acids were classified based on ten physicochemical properties: polar 

(NQSDECTK-RHYW), positive (KHR), negative (DE), charged (KHRDE), hydrophobic 

(AGCTIVLKHFWYM), aliphatic (IVL), aromatic (FYWH), small (PNDTCAGSV), tiny 

(ASGC), and proline (P). An amino acid may fall into more than one group (i.e., be 

overlapping). Each amino acid was encoded with 10-bit, where each bit in the code 

represents a group, respectively. The position of the bit is set to 1 if the amino acid belongs 

to the corresponding group and 0 if it does not. For example, histidine (H) is encoded with 

1101101000, which indicates that it belongs to polar, positive, charged, hydrophobic, and 

aromatic groups. The number of features extracted with this method is n×10 where n is the 

window size [18].

 7-Average cumulative hydrophobicity—The average cumulative hydrophobicity 

(ACH) quantifies the tendency of the amino acids that surround the hydroxylation sites in a 

protein fragment to interact with solvents. The Eisenberg hydrophobicity scales [19] were 

used, where:

A: 0.62, C: 0.29, D: −0.90, E: −0.74, F: 1.19, G: 0.48, H: −0.40, I: 1.38, K: 

−1.50, L: 1.06, M: 0.64, N: −0.78, P: 0.12, Q: −0.85, R: −2.53, S: −0.18, T: 

−0.05, V: 1.08, W: 0.81, Y: 0.26

The number of ACH features depends on the size of the window. For a window of size 9, the 

ACH is computed by averaging the cumulative hydrophobicity indices of the amino acids 

around the putative hydroxylation site for the sub-windows of sizes 3, 5, 7 and 9, 

respectively, where K/P is always in the centre of the window. For example, to calculate 

ACH for the sequence KAGVPHED, we need first to create the sub-windows AGVPHED, 

GVPHE, and VPH. Then we can calculate the feature of each window as:

(5)

where n is the sub-window size and Pi is hydrophobicity index for the amino acid in the 

position i in the window. For this example the number of features is four.

 8-Protein disordered region—Previous studies suggested that many PTMs take place 

in disordered regions of the protein, where enzymes and solvent interact easily with the 

residues [20]. The protein disordered region information was extracted for the residues 

surrounding the hydroxylation sites using DISOPRED [21], which is standalone software for 

the prediction of protein disorder. The software assigns an amino acid 1 if it is disordered 

and 0 otherwise.
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 9-Type II entropy, relative entropy and information gain—Type II entropy 

(ENT2), relative entropy (RE2), and information gain (IG2) are computed using the above 

entropy, relative entropy, and information gain equations but the probabilities are substituted 

with the position-specific weighted observed percentages (WOP) [22], which are obtained 

by aligning each sequence to related homologous protein sequences in the NCBI non-

redundant protein database (nr). The alignment is performed with the NCBI executable 

position specific iterative basic local alignment sequence tool (psi-blast) [23], which uses 

BLOSUM62 [24] as a scoring matrix for the initial alignment. Then, a position specific 

scoring matrix (PSSM) and WOP are generated iteratively and each time the new PSSM is 

used as a scoring matrix for a new alignment until the convergence or the stopping criterion 

is reached. The WOP generated from the last psi-blast alignment is used to calculate H2, 

RE2, and IG2. These three feature types provide evolutionary information for each training 

sequence by reflecting the conservatism of the amino acid residues surrounding the 

hydroxylation sites.

 C. Model learning and testing

In this study, random forest (RF) [30], which is a popular tree-based ensemble machine 

learning technique, was used to construct a model using the features extracted from the 

benchmark sequences to predict lysine and proline hydroxylation sites in a protein 

sequences. The RF is a combination of a number of decision trees. Each tree is constructed 

with a bootstrap sample from the training dataset. A tree is composed of a root node, internal 

nodes, and terminal nodes. Each internal node represents a subset of the training data split 

based on a decision function of the best discriminatory feature. An internal node may further 

split into two nodes. The splitting features are selected based on feature importance. The 

terminal nodes represent the classified dataset. Put simply, training a model with an RF 

algorithm is the process of finding the tree structures and decision rules from the training 

data. Unknown sequence windows are classified by each tree in the forest whether they are 

positive hydroxylation sites or negative sites by traversing each tree starting from the root 

node down to terminal nodes where the path is determined according to the outcome of the 

splitting function at each node. The final classification is based on the general agreement of 

most decision trees rather than only one. Scikit-learn, a Python package for machine 

learning, was used to implement RF algorithm [25]. The RF parameters were chosen to 

optimize the performance of the model. These parameters included the number of trees 

(100) [26], the depth (i.e., until node purity is achieved) and the number of features. Though 

the number of features varies depending on the window size, in each case the maximum 

number of features for a given window was considered (Sup-B). For comparison, four other 

ensemble learning methods (AdaBoost, Bagging, Gradient Boosting, and Extra-Trees 

Classifier) were also tested and analyzed. The results for the other four ensemble methods, 

which demonstrate the robustness of the selected features, are provided in supplemental 

information (Sup-A).

The models were rigorously tested with both jackknife cross validation and an independent 

test set. In the jackknife test, an instance of the dataset is left out for testing and the 

remaining instances are used for training one at a time until all instances in the dataset are 

tested without being in the training dataset. For the independent test, a sample of 10% of the 
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sequences was selected randomly from both positive and negative windows and left out for 

testing the model while the remaining 90% of the sequences were used to construct the 

model. Furthermore, entire protein sequences of experimentally verified positive 

hydroxylation sites were selected randomly as independent sequences and were removed 

from the training data. These sequences then were tested with RF-Hydroxysite to compare 

the numbers and positions of the experimentally verified sites in each sequence to those that 

were predicted by our model.

The testing results from both jackknife cross validation and the independent test were 

evaluated for accuracy, specificity, sensitivity, precision, F1-score, Matthew’s correlation 

coefficient (MCC), and area under the receiver operating characteristic curve (AUC). These 

parameters are defined below:

(1)

(2)

(3)

(4)

(5)

(6)

where TP is the true positive rate, TN is the rate of true negative rate, FP is the false positive 

rate and FN is the false negative rate.

 3. Results and discussion

To develop a robust computational tool that is able to identify putative hydroxylation sites 

using only the primary amino acid sequence as input, we examined a diverse set of sequence 
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features using a random forest (RF)-based approach. To this end, we first evaluated sequence 

windows of lengths 7, 9, 11, 13, 15, 17, and 19 residues for both training and testing with 

RF. The number of trees in the RF was chosen to be 100 based on a previous study [26]. The 

features extracted from the sequences represented information pertaining to sequence-order, 

physicochemical properties, protein structure and evolutionary relationships. To capture this 

information, we integrated a variety of features, including position weight amino acid 

composition (PWAA), high quality indices (HQI1–HQI8), type I entropies (H1, RE1, and 

IG1), overlapping properties (OP), average cumulative hydrophobicity (ACH), protein 

disordered regions (PDR) and type II entropies (H2, RE2, and IG2), into a sequence-window 

represented with a numerical feature vector.

One of the primary advantages of using an RF-based approach was that it allowed us to 

evaluate the relative impact of each feature on method performance. To identify the feature 

types that contributed most significantly to the performance, we implemented Gini feature 

index to quantify the relative importance of each feature. Although all feature types 

contributed to model improvement to some degree, some features had a greater impact than 

others. For instance, Figure 1 shows that HQI3 (normalized frequency of alpha-helix) and 

HQI4 (protein volumes, including the crystallographic waters) had a strong impact for both 

HyK and HyP residues.

Likewise, ACH also had a substantial impact for both residues, with more hydrophilic 

environments being favored for positive sites. This is perhaps not surprising since sites of 

hydroxylation are expected to be found near the protein surface. However, it is important to 

note that, though the influence of ACH is quite pronounced for sequence windows less than 

11, its impact decreases dramatically at window sizes larger than 13 (Figure 2). Interestingly, 

HQI8 (optimized relative partition energies) appeared to be highly important for prediction 

of HyP residues but had little impact on the prediction of HyK residues. While exploring the 

feature profiles, we also noticed that the sequences surrounding positive hydroxylation sites 

exhibited consistently higher protein disorder region (PDR) scores than those surrounding 

negative sites (Figure 3). The difference between positive and negative sites is particularly 

pronounced at positions +1, +2 and +3, suggesting that a high degree of flexibility may be 

required immediately C-terminal to the site of hydroxylation. This is consistent with the 

PWAA feature profiles, which show that glycine exhibits the heaviest position-weight 

amongst the upstream flanking residues for both HyP and HyK (Figure 4). Glycine is the 

smallest amino acid and is frequently found in disordered protein regions [27] where 

flexibility is required. Interestingly, other residues also associated with disordered regions, 

such as proline, were found more often in the negative set than the positive set for both 

residues.

In addition to information about disorder, the type II entropies (EN2, RE2, and IG2) also 

contain evolutionary information that may reveal the conservation of a function. Since 

hydroxylation sites have important implications with regard to protein function, we 

hypothesized that some degree of conservation in the flanking regions of both HyP and HyK 

would be observed. As can be seen in Figure 5, differences in the evolutionary information 

between positive and negative HyP sites fluctuate in a reciprocal manner. The flanking 
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positions of HyK show a similar pattern (please see Sup-C Figure C-7 in supplemental 

information). The biological significance of this observation requires further investigation.

In addition to profiling the ensemble dataset, we also evaluated a randomly selected 

collection of individual sequences (Sup-C). To facilitate comparison between positive and 

negative sets, the window size for all analyses was arbitrarily set at 15. Interestingly, several 

features exhibited distinct patterns, both between the positive and negative datasets and 

within a given dataset. For instance, using HQI-1 for hydroxyproline, nearly all of the 

sequences in the negative dataset were characterized by relatively flat feature profiles. In 

contrast, the positive hydroxyproline sequences appeared to cluster into two distinct groups: 

one in which the feature profiles remained flat and another that was characterized by an 

oscillatory pattern throughout the window. Likewise, Shannon Entropy exhibited distinct 

patterns between the positive and negative hydroxyproline sequences. However, in this case, 

nearly all of the negative sites exhibited an oscillatory pattern while the majority of the 

regions surrounding positive sites exhibited uniformly flat profiles (albeit with one subset 

clustered around 0 AU and another set clustered around −2.0 AU). It will be interesting to 

see whether these patterns correlate with different hydroxylases and/or hydroxylase 

subfamilies.

Together, these analyses allowed us to identify the most important features for method 

development. Though the contribution of all eleven feature types and their overall impact on 

the performance of the model is evident, only the top contributors were selected in the final 

model for each hydroxylation site (Table 1). These features were selected based on the level 

of their average feature importance. This was done in order to develop a model that is 

simultaneously non-complicated and efficient. Figure 6 shows the feature order in the final 

hydroxyproline (P) and hydroxylysine (K) models. Likewise, the lengths of the feature 

vectors, which were dependent on the window-size, are provided in Supplemental Figure B 

(Sup-B). Table 2A and 2B show the evaluation metrics for the RF-based models before and 

after feature selection, respectively. The evaluation metrics of the other ensemble learning 

methods are also included in Supplemental Figure A (Sup-A).

By testing several lengths of sequence windows, we expected that information about the 

hydroxylation sites would concentrate or fade in a particular range of flanking depths. 

However, to our surprise, after comparing the results from various window lengths, we 

found that the results of all window sizes are similar to one another, with window size 7 

showing marginally better performance across most metrics. Therefore, in the final model, 

which we termed RF-Hydroxysite, we utilized a window size of seven. However, it is 

important to note that users can choose from any of the window sizes in the web-based 

interface (http://bcb.ncat.edu/RF_hydroxy/).

Jackknife cross validation reflected robust performance with respect to all metrics for both 

HyP and HyK (Table 2B, Figures 7–8). For instance, RF-Hydroxysite was characterized by 

high true positive (TP) and true negative (TN) rates coupled with low false positive (FP) and 

false negative (FN) rates. As a consequence, RF-Hydroxysite was both highly precise, 

exhibiting precision scores of 98.9% for HyK and 96.9% for HyP, and highly sensitive, 

exhibiting sensitivity scores of 93.8% and 92.0% for HyK and HyP, respectively. On the 
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other hand, the specificity evaluates the ability of the method to predict negative 

hydroxylation sites. Owing to high TN and low FP rates, RF-Hydroxysite exhibited 

specificity scores of 98.9% for HyK and 97.4% for HyP. Likewise, RF-Hydroxysite 

performed well with respect to composite scores, such as accuracy, which reflects the ability 

of the method to predict positive and negative hydroxylation sites correctly. Indeed, the 

accuracy of our method is 96.3% and 94.8% for HyK and HyP, respectively. Similarly, the 

F1-scores, which combine both precision and sensitivity, were 96.3% for HyK and 94.4% 

for HyP. Finally, the Matthew’s correlation coefficient (MCC), which quantifies the quality 

of binary prediction, can be used as a surrogate for overall method performance. 

Accordingly, an MCC score of 1.0 denotes perfection, 0 denotes poor quality (i.e., the 

method performance is no better than random prediction) and −1 denotes total disagreement 

between the prediction and observation. Our method exhibited MCC scores of 0.927 for 

HyK and 0.897 for HyP. The relatively small trade-off between true positive rate (TPR) and 

false positive rate (FPR) is apparent in the receiver-operating characteristic (ROC) curve 

(Figure 7). Likewise, as can be seen in Figure 8, the precision-recall (PR) curve suggests a 

small trade-off between prediction and sensitivity. Indeed, the large area under both curves 

reflects excellent model performance (AUCROC > 0.92 and AUCPR > 0.95). Moreover, 

similar results were obtained using an independent test set (Table 3). Taken together, these 

results suggest that there is strong agreement between the prediction and observation, 

indicating that the quality of our method is high.

To see how our method performed relative to existing hydroxylation site prediction methods, 

we compared RF-Hydroxysite to iHyd-PseAAC and PredHydroxy, the most popular 

hydroxysite methods developed to date. As can be seen in Tables 4 and 5, in side-by-side 

comparisons using both jackknife cross-validation and an independent test set, our method 

performed as well or better than the existing methods in each of the metrics, suggesting that 

the features introduced during the development of RF-Hydroxysite positively impact method 

performance. This was also evident when the features were used to train other machine 

learning methods, namely Adaptive Boosting, Bagging, Gradient Boosting and Extra-Trees 

Classifier (Sup-A). Together, these results suggest that the selected features are highly 

robust. Indeed, the results of testing the entire set of independent sequences showed that RF-

Hydroxysite was able to successfully predict 100% of the experimentally verified 

hydroxylysine sites and 97.83% of the hydroxyproline sites (Sup-D).

 Conclusions

In this study, we describe the development of RF-Hydroxysite, a new method for 

identification of putative hydroxylation sites in a protein given only the primary amino acid 

sequence as input. The features used to develop this new method capture physicochemical 

(HQIs, OP, and ACH), sequence-order (PWAA, ENT1, RE1, and IG1), structural (PDR), and 

evolutionary (ENT2, RE2, and IG2) information from protein sequences. The relative 

importance of each feature type was evaluated by averaging the Gini importance indices 

across the features in the group, allowing us to identify those feature types that most strongly 

impacted the fidelity of hydroxylation site identification for proline and lysine residues. For 

instance, for HyK, the most decisive features were HQI3, HQI4, and ACH (derived from 

physicochemical information) followed by ENT2, RE2, and IG2 (derived from evolutionary 
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information). Meanwhile, for HyP, the most decisive features were HQI1, HQI3, HQI4, 

HQI7, HQI8, and ACH (physicochemical) and ENT2, RE2, and IG2 (evolutionary).

The physicochemical information and evolutionary information are important for both types 

of hydroxylation sites, which may suggest that the biochemical process is physicochemical 

in nature but that evolutionary factors serve to preserve the biological functions that rely on 

hydroxylation, thereby reinforcing the features. The finding that ACH features are important 

may indicate that the flanking regions of the hydroxylation sites are highly hydrophilic in 

nature and that there are clear distinctions between the local environment of positive sites 

and that of negative sites, which tend to be found in more hydrophobic contexts. With regard 

to other features, such as PWAA and OP, although they showed clear patterns, these 

differences were not large enough to create clear distinctions between positive and negative 

sites. Therefore, their roles in prediction were limited and they were ultimately omitted from 

the final model.

The method was evaluated using both jackknife cross validation (Table 2B) and an 

independent test set (Table 3). Both evaluation methods suggest that RF-Hydroxysite 

performs as well or better than other existing hydroxylation site prediction methods. 

Importantly, its high accuracy and specificity suggest that RF-Hydroxysite has the power to 

annotate potential hydroxylation sites within a protein with high confidence. Importantly, 

model building based on the selected features using four other ensemble learning methods 

(AdaBoost, Bagging, Gradient Boosting and the Extra Trees Classifier) showed no 

significant difference from that of RF-based models. This strongly supports the robustness of 

the features selected as determining factors for hydroxylation site prediction. Though 

subsequent experimental validation will be necessary to verify putative hydroxylation sites, 

accurate prediction will allow for targeted analysis that will complement global 

identification methods, such as shotgun tandem MS and protein microarray-based 

approaches (28–29). To promote its use, RF-Hydroxysite is freely available online as 

bioinformatics tool at http://bcb.ncat.edu/RF_hydroxy/.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The importance scale of feature types for hydroxylysine (blue) and hydroxyproline (red)
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Figure 2. 
Average cumulative hydrophobicity for hydroxyproline flanking regions where x-axis 

represents the sub-windows of size 3, 5, 7, 9, 11, 13, and 15 and y-axis the average of ACH 

for positive and negative hydroxyproline windows.
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Figure 3. 
Protein disordered region (PDR) scores for hydroxyproline flanking position, where y-axis 

shows the average of PDR scores. Higher PDR scores correspond to more disordered 

regions.
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Figure 4. 
The average of position weight amino acid composition in the flanking regions for positive 

and negative proline (A) and lysine (B) hydroxylation sites
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Figure 5. 
The average of type II entropies for positive and negative hydroxyproline flanking positions
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Figure 6. 
Feature order in the final hydroxyproline and hydroxylysine models.
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Figure 7. 
Receiver operating characteristics curve (ROC) of RF-based model for the prediction of 

hydroxylation sites

Ismail et al. Page 20

Mol Biosyst. Author manuscript; available in PMC 2017 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Precision-recall (PR) curve of RF-based model for the prediction of hydroxylation sites
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Table 1

The list of the features used to develop the models. Only the checked features were selected for the final 

hydroxyproline and hydroxylysine model while the crossed features were omitted. The shaded features belong 

to the HQI feature type.

Features P K

Position weight amino acid (PWAA) ✖ ✖

Propensity (HQI1) ✓ ✖

Solven accessibility (HQI2) ✖ ✖

Alpha-helix frequency (HQI3) ✓ ✓

Crystallographic waters (HQI4) ✓ ✓

Amino acid composition of MEM (HQI5) ✓ ✖

Composition of AA in intracellular (HQI6) ✖ ✖

Conformational preference (HQI7) ✓ ✖

Partition energies (HQI8) ✓ ✖

Type I entropy (ENTI) ✓ ✖

Overlapping properties (OP) ✖ ✖

Average cumulative hydrophobicity (ACH) ✓ ✓

Protein disordered region (PDR) ✖ ✖

ENTII (Type II entropy) ✖ ✖
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Table 4

Comparison between PredHydroxy and our method. The results were based on jackknife cross validation

Metrics

PredHydroxy RF-Hydroxysite

P K P K

Accuracy 0.85 0.83 0.95 0.95

Sensitivity 0.84 0.84 0.90 0.89

Specificity 0.85 0.82 0.90 0.89

MCC 0.69 0.67 0.90 0.90
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