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Abstract The cytoprotective effects of glycine against

cell death have been recognized for over 28 years. They are

expressed in multiple cell types and injury settings that lead

to necrosis, but are still not widely appreciated or consid-

ered in the conceptualization of cell death pathways. In this

paper, we review the available data on the expression of this

phenomenon, its relationship to major pathophysiologic

pathways that lead to cell death and immunomodulatory

effects, the hypothesis that it involves suppression by gly-

cine of the development of a hydrophilic death channel of

molecular dimensions in the plasma membrane, and evi-

dence for its impact on disease processes in vivo.
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Abbreviations

CCCP carbonylcyanide m-chlorophenylhydrazone

COP Cytolytic oncotic pore

Dwm Mitochondrial membrane potential

EthBr Ethidium bromide

LDH Lactate dehydrogenase

MPT Mitochondrial permeability transition

NHE Sodium-hydrogen exchanger

P2X7R P2X7 purinergic receptor

Introduction

In 1987, it was first reported that the calcium-induced

mitochondrial permeability transition (MPT), a central

process in mitochondrial failure during injury states,

could be blocked by cyclosporine A [1, 2]. This discovery

ultimately led to the modern understanding of the

molecular basis of that process [2–4]. It can reasonably be

considered a critical early milestone in the path to the

now widespread appreciation, as exemplified by this

symposium, that cell death by necrosis is in fact a highly

regulated process.

Initially reported that same year, 1987, but much less

well known, was another observation highly relevant to

understanding regulated necrosis, i.e., glycine cytopro-

tection [5]. The contexts, mechanisms, and relevance of

glycine cytoprotection to necrotic cell death in vitro and

in vivo have since been addressed in several hundred

papers and reviews [6–15]. As we will cover here, this

robust and widely replicated behavior that is expressed

in multiple forms of necrotic cell damage to parenchy-

mal, vascular, and inflammatory cells of diverse tissues

has the potential to play a critical role in the develop-

ment of immunogenic tissue injury and resulting disease

processes. The fact that it targets a late downstream

process common to necrosis elicited in so many different

settings makes it of importance for understanding the

fundamental pathobiology of that process. Additionally,

it has led to the recognition that glycine can play an

important role as an immunomodulator via effects on

signaling in multiple inflammatory cells that are separate

from the cytoprotection it provides but that can combine

with cytoprotection, sometimes in the same cells, to

suppress tissue damage during a variety of disease

states.
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Initial recognition of glycine cytoprotection and its
relationship to intracellular glutathione
metabolism

The discovery of glycine cytoprotection resulted from

studies testing the role of glutathione in hypoxia/reoxy-

genation injury to freshly isolated proximal tubules [5].

These obligately aerobic and highly metabolically active

cells are especially prone to hypoxic injury both in vivo and

in vitro, because glycolytic pathways for preservation of

ATP content in the absence of mitochondrial oxidative

phosphorylation are either absent or only minimally

expressed in healthy proximal tubule cells [16], so that in the

absence of modifying interventions, oxygen deprivation of

15–30 min results in necrotic cell death to most cells as

manifested by LDH release [17–19] and classical oncotic

structural changes [18] that disrupt cellular structure and

decrease the numbers of intact cells that can be recovered by

centrifugation [5]. As a result of these events, the cells lose

their ability to maintain integrated metabolic, energetic, and

transport functions during reoxygenation as manifested by

failed recovery of mitochondrial respiration and intracellu-

lar ATP and K? levels. In the initial study that identified

glycine cytoprotection, isolated tubules treated with

exogenous glutathione remained intact and importantly

recovered respiratory function and cell ATP and K? levels

after hypoxic periods that severely compromised these

parameters in the absence of glutathione. Given that

exogenous glutathione was known to be extensively

metabolized by kidney tubules with subsequent uptake of its

component amino acids followed by re-synthesis of glu-

tathione [5, 6, 9, 20], the initial studies with glutathione

simultaneously assessed the effect of each of its component

amino acids, glycine, cysteine, and glutamate, with the

surprising finding that only glycine conferred cytoprotection

[5]. Work reported shortly thereafter then showed that even

though exogenous glutathione produced the expected

increases of intracellular glutathione [17, 21], glycine alone

did not increase intracellular glutathione [17, 21], thus fur-

ther dissociating its tubule cytoprotective effects from

glutathione and the pathways it targets. Moreover, glycine

retained the protective efficacy even when intracellular

glutathione levels were lowered with the gamma glutamyl-

cysteine synthetase inhibitor buthionine sulfoximine or the

alkylating agent bis-chloroethylnitrosourea [17, 21–23].

The independence of glycine’s effects from those of

glutathione is particularly notable given the important

cytoprotective actions of glutathione via its antioxidant

activity, which was well documented prior to the original

glycine study and has been further been reinforced during

the past several years with the recognition of the ferroptosis

regulated necrosis pathway [24–26].

Thus, modification of glutathione metabolism is not a

necessary component of glycine cytoprotection for kidney

proximal tubules during injury from hypoxia-induced ATP

depletion. Furthermore, glycine supplementation does not

contribute to supporting glutathione levels in that context.

Involvement of other pathways for glycine
metabolism

In addition to being a component of glutathione, glycine is

the most abundant amino acid in the body [27] and is

involved in multiple metabolic pathways [28]. Formation

of acylglycines was considered as a possible mechanism of

protection in the initial report of glycine cytoprotection [5],

but this was subsequently found not to be the case [29].

Many of the metabolic reactions involving glycine occur

over time frames and require conditions (e.g. ATP-depen-

dent reactions) that are not available at the late point of

injury during which cytoprotection occurs in the systems

where protection is most cleanly expressed, so they cannot

be an essential part of its mechanism. Consistent with this,

no changes in total glycine levels were detected during its

protection of isolated kidney tubules during hypoxia [5]. In

work using 13C-glycine, the main products of glycine

metabolism by proximal tubule cells were glutathione and

serine [30], which is consistent with its major involvement

in glutathione metabolism and in the folate cycle of one-

carbon metabolism [31]. As covered below, other amino

acids including L-alanine and D-alanine can share cyto-

protective effects with glycine, albeit with less efficacy.

Their metabolism was also not required for cytoprotection

[18].

Although not involved in direct glycine cytoprotection,

diverse pathways of glycine metabolism clearly have the

potential to act earlier in the injury process and upstream

from cytoprotection to contribute to its overall benefit

against cell and tissue damage. These contribute to the

large array of glycine-sensitive injury processes that have

been identified in work that has been generated by recog-

nition of glycine cytoprotection and are further considered

in the context of those observations.

Cell types subject to glycine cytoprotection

The robustness of glycine cytoprotection against necrosis

and its occurrence in multiple cell types have led to

numerous studies addressed separately below that have

identified the benefits of glycine for diverse forms of tissue

injury in vivo, but many of these results derive from novel

immunomodulatory, non-neuronal signaling effects of the
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amino acid that have come to light as a result of the work

[11, 14] rather than from direct glycine cytoprotection

against necrosis.

Table 1 summarizes cell types for which direct glycine

cytoprotection against necrosis has been convincingly

reported. Criteria for inclusion include use of models that

actually produce necrosis, absence of effects on the many

upstream pathways of injury listed in Table 2 that are not

necessarily modified during glycine cytoprotection, and a

compatible efficacy profile of other amino acids and related

compounds (Table 3). The earliest studies clearly docu-

mented this for both fully differentiated kidney proximal

tubules and kidney medullary thick ascending limb cells [5,

17, 32–39] and they were followed shortly thereafter by use

of permanent tubule epithelial cell lines [40].

Subsequent work showed strong expression of glycine

cytoprotection in multiple types of primary cultured

endothelial cells [41–44] and in both freshly isolated and

cultured hepatocytes [45–49]. Multiple peripheral macro-

phage cell lines as well as bone marrow-derived primary

cultures are strongly protected against necrosis by glycine

[50–56]. Kupffer cells, the specialized macrophages found

in hepatic sinusoids, were the cell type in which the non-

neuronal, immunomodulatory, anti-inflammatory signaling

effects via peripheral glycine receptors were first recog-

nized [57], but protection by glycine from necrosis has not

been clearly shown for them. Microglia are another cell

type whose activation can be significantly modified by

glycine (in this case, via signaling effects resulting from

glycine uptake-induced cell volume alterations), but for

which there are no clear descriptions of glycine cytopro-

tection [58–61].

Given their structural and metabolic characteristics

shared with renal epithelial cells and hepatocytes, it would

seem that intestinal epithelial cells should be subject to

glycine cytoprotection. There are multiple reports of ben-

efit of glycine for intestinal insults in vivo and in vitro [14,

62–69]; however, convincing demonstration of direct gly-

cine cytoprotection in isolated cell models is lacking.

Cultured cell lines of intestinal epithelial cells were pro-

tected against oxidant injury from tert-buthylhydroperoxide

(tBHP) [70], but this required pretreatment. Glycine only

during the insult was not effective, which, as discussed

below, is atypical for direct glycine cytoprotection.

There is only limited information available for myocytes

[71, 72]. Although the data are consistent with glycine

cytoprotection, the reported effect was weaker than typi-

cally seen and was suggested to be secondary to

suppression of the mitochondrial permeability transition,

which is not an effect of glycine that has been consistently

observed. This issue is addressed further below.

A study with cultured PC-12 cells [73] indicates that

they exhibit typical glycine cytoprotection. How that would

be expressed in vivo in the central nervous system, how-

ever, is complex, because low micromolar concentrations

of glycine that are well below cytoprotective levels are

cofactors at N-methyl-D-aspartate (NMDA) receptors,

which are responsible for much of neuronal damage during

brain injury [74–77]. Moreover, the primary glycine effects

as an inhibitory neurotransmitter come into play. As a

result, the effects of glycine on neuronal injury are

potentially complex and difficult to interpret [78, 79].

Glycine levels are kept low in the cerebrospinal fluid [80]

and are tightly regulated by neuronal glycine transporters

[81]. Microglial glycine uptake via sodium-coupled neutral

amino acid transporters may help buffer these levels when

Table 1 Types of cells and injury subject to glycine cytoprotection

Cell types

Freshly isolated and primary cultured kidney proximal tubules [5, 17,

32–36, 90, 222, 259–262]

Medullary thick ascending limb of the isolated perfused kidney [37–

39]

Permanent renal cell lines—MDCK, LLC-PK1, OK [40, 84, 85, 137]

Kidney mesangial cells (JMW unpublished data)

Endothelial—umbilical vein, aortic, hepatic sinusoidal [41–44, 263]

Hepatocytes—freshly isolated, primary culture, and cell lines [42, 45–

49]

Peripheral macrophages—multiple types of primary cultures and cell

lines [50–56, 161]

PC-12 cells [73]

Myocytes [71]

Injury types

Anoxia/hypoxia [5, 17, 33–35, 46, 48, 49, 259–261]

Mitochondrial respiratory chain inhibitors and uncouplers [34, 40, 45,

82, 260]

Calcium ionophores [40, 83, 84]

Oxidants

H2O2 [41, 85]

Menadione [86]

Cysteine conjugates [87]

Rewarming/reperfusion after cold storage [32, 47]

Agents/processes that alter plasma membrane permeability barriers

Pyroptosis due to intracellular bacterial infection and toxins [50–52,

54–56, 91]

Pore-forming peptides [44, 92, 168]

Activation of P2X7 receptors by ATP [53, 264]

Complement (JMW unpublished data)

Phosphate depletion [36]

Ouabain [23]

Cholesterol esterase [262]

Gabexate mesilate [263]

References are limited to studies with isolated cell models or isolated

tissue systems where direct glycine cytoprotection is likely. Addi-

tional references are in the text
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glycine is released from neurons in injured areas, and, as

noted above, this may affect microglial function [60], but

that process is distinct from direct cytoprotection.

Types of injury subject to cytoprotection

ATP depletion-associated injury models produced by

anoxia, severe hypoxia [5, 17, 33–35, 46, 48, 49], and

mitochondrial respiratory chain inhibitors and uncouplers

[34, 40, 45, 82] have been widely used to study glycine

cytoprotection in multiple cell types (Table 1 and addi-

tional references therein). Necrosis that develops during

rewarming after cold preservation of both kidney tubules

and hepatocytes is alleviated by glycine [32, 47].

Calcium ionophore-induced injury has been very useful

for studying glycine cytoprotection in kidney cells in

conjunction with respiratory chain inhibitors and uncou-

plers, particularly in cultured cells where either type of

maneuver by itself did not produce necrosis [40, 83, 84].

Glycine was not effective against calcium ionophore-in-

duced killing of freshly isolated hepatocytes [47].

Protection by glycine has been reported for oxidant

injury produced by both H2O2 [41, 85] and menadione

[86]. Benefit for tBHP-induced injury, however, was mild

or absent in both kidney tubule cells and hepatocytes [47,

86, 87]. There are reports of glycine protection of

endothelial cells against iron-induced necrosis of

endothelial cells [88] and of hepatocytes against iron-in-

duced injury [89]. The hepatocyte effect was associated

with decreased apoptosis rather than necrosis. In contrast to

its strong effects against other insults to kidney proximal

tubule cells, glycine does not protect against iron-induced

necrosis of those cells [86, 90].

In 2000, it was first recognized that macrophage cell

death induced by intracellular bacteria and mediated by

caspase-1 during the process that would come to be known

as pyroptosis was highly glycine sensitive [50]. Since then,

there have been multiple studies demonstrating glycine

cytoprotection during pyroptosis and related types of injury

that target plasma membrane permeability barriers,

including the pore-forming toxins maitotoxin and palytoxin

as well as activation of P2X7 receptors by extracellular

ATP [44, 50–53, 91, 92]. These models have provided new

insights into the mechanism for glycine cytoprotection that

are addressed further below.

Even where it was not the primary target, all of the

aforementioned injury models are characterized by severe

ATP depletion. However, glycine cytoprotection has also

been reported in some settings where ATP is not severely

depleted, i.e., low phosphate incubation [36] and ouabain

treatment [23].

Effects of glycine on central injury-related
pathogenic processes

The relevance of multiple common injury pathways and

pathophysiologic processes to glycine cytoprotection have

been assessed and none have been found to be essential, so

Table 2 is titled based on that perspective. Nonetheless, the

studies addressing them have been highly informative for

understanding the nature of glycine cytoprotection, and, in

turn glycine cytoprotection has been useful for clarifying

their contribution to necrosis. As covered already, the role

of glutathione in glycine cytoprotection was initially

assessed in the early work that identified the process and it

was clearly dissociated [5, 17, 21–23].

Table 2 Pathophysiologic processes not necessarily modified by glycine

Glutathione depletion [5, 17, 21, 45, 82]

Decreased cell ATP levels [5, 17, 21, 29, 40, 45, 46, 82]

Prelethal increases of cytosolic free calcium [40, 41, 83, 84, 95, 100, 114, 117] and calpain activation [135]

Mitochondrial permeability transition [49, 265, 266]

Cytoskeletal disruption, actin depolymerization, blebbing [83, 96, 97, 101]

Disruption of monovalent cation homeostasis [5, 17, 23, 82], cell swelling [23], hypotonic lysis [113]

Nonesterified fatty acid accumulation [35, 84, 119] and fatty acid-mediated post-hypoxic mitochondrial energetic deficit [19, 118, 140, 246]

Intracellular acidification [122]

Iron-induced lipid peroxidation [86, 90]

Oxidative cross-linking of proteins [86]

Bax-mediated cytochrome c release and resulting DNA damage [131, 145]

Caspase-1 activation and resulting IL-1 b maturation and secretion processing [50–54, 91, 92]

Nitric oxide production [134]

Proteolysis [135, 136]

Only selected references emphasizing initial and most informative observations and findings in diverse cell types are included due to space

considerations
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The initial recognition of glycine cytoprotection during

hypoxia models in cells such as kidney proximal tubules

[5] and hepatocytes [45] where the extent of ATP depletion

is a critical determinant of progression to necrosis [33, 93,

94] was followed by multiple studies indicating that

preservation of ATP is neither a primary effect of glycine

nor necessary for glycine cytoprotection [5, 17, 21, 29, 40,

45, 46, 82]. Although increases of ATP may be seen sec-

ondarily due to retention of more intact cells under some

conditions, it is clear that they are not a requirement for

cytoprotection.

Early studies of glycine cytoprotection in kidney tubule

cells made extensive use of calcium ionophore-induced

injury under both high and low calcium conditions [40, 41,

83, 84, 95–97]. Glycine was highly protective in both

settings indicating a target that was downstream of both

very low and very high free intracellular calcium levels. As

further detailed below, low calcium conditions were par-

ticularly useful for probing mechanistic processes specific

for glycine cytoprotection, because they were not accom-

panied by the extensive biochemical and structural

disruption induced by calcium that are not blocked by

glycine even as it delays progression to necrosis [83, 84,

98, 99].

Terminal necrosis in the presence of normal extracel-

lular free calcium of 1.25 mM results in a flood of Ca2?

into the cell where normal cytosolic free calcium (Caf) is

\100 nM. Determining the extent to which progressive

and pathogenic prelethal increases of Caf contribute to the

events leading to necrosis was a major goal in studies of

injury pathophysiology at the time glycine cytoprotection

was first recognized. This was particularly difficult under

cell/injury conditions such as ATP deletion of fully dif-

ferentiated kidney proximal tubules where progression to

necrosis was very rapid and accompanied by leakage of the

fluorescent intracellular probes used to measure Caf. Use of

glycine to delay necrosis allowed the first definitive studies

in these systems, documenting the occurrence and extent of

the prelethal changes of Caf [95, 100].

The cyclosporine-sensitive MPT is a major effector of

cell injury that results from disturbances of cellular calcium

homeostasis [2, 4], so is of considerable interest as a

potential mediator of glycine cytoprotection, especially

since glycine does not prevent increased Caf. Glycine

protects calcium ionophore-treated kidney tubule cells

under conditions of normal ambient Ca2? despite large

increases of Ca2? in all cellular compartments including

the mitochondrial matrix that invariably induce the MPT

[40, 41, 83, 84, 95]. Therefore, the MPT cannot be the only

or final target of glycine.

There are conflicting data as to whether glycine can

modify MPT under milder (and more physiological) con-

ditions than calcium ionophore treatment. Although

glycine is less protective against calcium ionophore-in-

duced injury in freshly isolated hepatocytes [47] than in the

various fresh and cultured kidney tubule cell models [40,

41, 83, 84, 95], elegant imaging techniques and a model of

pH-dependent reoxygenation injury to primary cultured

hepatocytes were used to clearly dissociate the develop-

ment of the cyclosporine A-sensitive MPT from glycine

cytoprotection by showing that the MPT occurred within

cells while they were still protected from necrosis by gly-

cine [49]. We have also not found that glycine blocks the

MPT in kidney proximal tubules (unpublished).

In contrast to the hepatocyte data [49], studies of a

parallel model of glycine-suppressible, pH-dependent,

reoxygenation injury to a cardiomyocyte cell line showed

that parameters consistent with the calcium-induced MPT

in mitochondria isolated from those cells were even more

strongly suppressed by glycine than by cyclosporine A

[71]. However, unlike the hepatocyte study [49], the car-

diomyocyte paper [71] does not provide information about

expression of MPT in the intact glycine-protected cells,

which is needed to fully interpret those results. Given the

importance of both the MPT and glycine cytoprotection to

the development of necrosis, it would clearly be of interest

to further investigate their interactions more completely in

cardiomyocytes and other cell types.

Injury during the states of both low and high Caf is

accompanied by pronounced cytoskeletal changes [83, 96,

97, 99]. Glycine did not modulate the cytoskeletal changes

in any of these settings and its benefit was not modified by

further disrupting the actin cytoskeleton with cytochalasin

during anoxia [101].

ATP depletion states are accompanied by monovalent

cation shifts and volume increases due to Na? pump

inhibition [102], opening of small membrane channels

[103], and action of the sodium hydrogen exchanger (NHE)

[104]. Measurements of cell K? and volume in tubule

models of ATP depletion, as well as injury induced by

ouabain and incubation in high K? medium, did not indi-

cate modification by glycine of these processes during

cytoprotection [5, 23, 82]. Moreover, incubation of tubules

in hypotonic medium to aggravate volume changes during

anoxia did not prevent glycine cytoprotection [105] and

glycine remained protective during anoxia even in the

presence of pore-forming agent, a-toxin. In a cultured

tubule cell model of injury produced by Ca2? ionophore

under Ca2?-replete conditions, addition of sucrose as an

osmoprotectant did enhance glycine cytoprotection even

though sucrose alone was without effect [106].

For other cell types, the situation is more complicated.

In hepatocytes, glycine cytoprotection is associated with

decreased Na? entry and limiting that entry is itself pro-

tective [46, 104]. However, the effect of glycine on Na?

entry may be an early signaling effect in which glycine-
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induced volume changes activate p38, which in turn sup-

presses NHE [107]. This process is likely distinct from

glycine cytoprotection, even though it contributes to the

benefit of glycine seen in those cells. One study of glycine-

sensitive injury to endothelial cells has implicated volume

increases that are blocked by glycine [43], but another did

not [44].

Pyroptosis is another glycine-sensitive insult where

volume changes likely mediated by ion entry play a role.

When pyroptosis was induced by salmonella infection or

anthrax toxin, protection of macrophages similar in degree

to that produced by glycine was provided by oncotic sup-

port with addition to the medium of polyethylene glycols of

1450–2000 MW suggesting the involvement of 1.1–2.4 nm

membrane pores [52, 91]. Benefit of the same-sized poly-

ethylene glycols was also seen during glycine-sensitive

killing of macrophages by Streptococcus pyogenes [54].

These observations contrast with the kidney tubule work

showing that glycine still limits LDH release after addition

of alpha-toxin to form plasma membrane pores in already

anoxic proximal tubules [105]. The size of the a-toxin
pores, 1.5 nm [108], is the same as the pores that are

proposed to be involved in the protection provided by the

polyethylene glycols during pyroptosis [52, 91].

The fact that the neuronal glycine receptor is a chloride

channel [109] has led to investigations of the possibility

that glycine acts on plasma membrane chloride channels in

non-neuronal cells to limit their pathological opening

during injury states and thereby decreases chloride entry

that aggravates volume changes causing plasma membrane

disruption and necrosis. This idea has been supported by

evidence from several systems that chloride entry occurs

during injury, is blocked by glycine, and contributes to

progression of injury [110–112]. However, multiple other

studies have failed to find any dependence of injury or

glycine effects on chloride availability [43, 46, 53, 98], and

the aforementioned work showing that protection by gly-

cine is not modified by use of a-toxin to allow unhindered

movements both cations and anions during anoxia defini-

tively shows that movements of small ions such as chloride

cannot be a necessary target of glycine cytoprotection

[105]. Glycine also does not modify hypotonic swelling of

erythrocytes [113]. Overall, the data from the diverse cell

types and models indicate that volume changes associated

with pore formation and chloride entry can aggravate

progression to glycine-sensitive necrosis in a cell- and

model-specific fashion, but glycine does not primarily

target them.

The initial study of glycine cytoprotection using kidney

tubules described strong post-hypoxic recovery of respi-

ratory function, ATP levels, and K? homeostasis [5],

indicating that cytoprotection was not limited to preventing

terminal necrosis, but instead could enable true integrated

metabolic recovery necessary for long-term viability and

subsequent reports showed similar behavior including

prolonged viability [17, 44, 114–117]. However, metabolic

and functional recovery may not occur after more severe

conditions despite glycine cytoprotection [19, 32, 85]. In

freshly isolated kidney tubules subjected to prolonged

severe hypoxia, mitochondrial recovery can be absent or

severely impaired [19]. This energetic deficit has been

shown to result from mitochondrial uncoupling and de-

energization resulting from accumulation of nonesterified

fatty acids during hypoxia [118], which glycine does not

prevent [35, 118, 119].

Decreases of pH during ATP depletion can both pro-

mote and prevent injury depending on the cell type and

conditions [49, 104, 120, 121]. Glycine did not modify the

behavior of intracellular pH during cytoprotection of kid-

ney tubules [122].

As discussed above, the efficacy of glycine cytoprotec-

tion is less consistent for oxidant models than for those

driven primarily by ATP depletion. Both H2O2- [123] and

tBHP- [86] induced injury have strong components medi-

ated by iron-driven lipid peroxidation, which is central to

cell death by the newly described ferroptosis pathway [24].

Glycine does not protect against either iron-induced lipid

peroxidation or oxidative protein cross-linking [86] under

conditions where these processes are strongly blocked by

ferroptosis inhibitors [25, 86].

The initiation of pyroptosis, whose terminal necrotic

phase is strongly blocked by glycine [50–53, 91, 92],

involves caspase-11 and/or caspase-1 activation followed

by IL-1b maturation and secretion [124–130]. Neither of

these processes is affected by glycine [50–54, 91, 92].

Glycine does not affect either cytochrome c release

during apoptosis or the characteristic DNA laddering [131,

132], and there are no reports that it blocks any of the

intermediate apoptotic pathways. In fact, the initial

demonstration of apoptosis resulting from hypoxia was

enabled by the use of glycine to prevent the cells from

undergoing necrosis instead [131, 132]. In this regard, it is

of note that both DNA laddering and TUNEL-positive

nuclei can be seen in necrotic cells (reviewed in [133]).

Using streptolysin-O to permeabilize glycine-protected

cells, it was shown that necrosis-associated DNA laddering

can result from post-lethal serine protease mediated, cas-

pase-independent endonuclease activation [106]. Although

the effect of glycine to shift necrotic to apoptotic cell death

has not been studied in multiple cell types, it is likely an

important generalized phenomenon that impacts on the

course of tissue injury by favoring nonimmunogenic cell

death via apoptosis rather than proinflammatory,

immunogenic necrosis.

Excess nitric acid production, particularly by inducible

nitric oxide synthetase, can contribute to cell injury and
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death. Glycine does not block that process in kidney

tubules [134].

An early study of glycine cytoprotection in hepatocytes

proposed a role for inhibition of proteolysis [45]. However,

subsequent work has suggested that the effects on prote-

olysis are due to limitation by glycine of postlethal

enhancement rather than being a prelethal effect that con-

tributes to primary cytoprotection [135, 136].

Glycine and related compounds that appear to induce the

same cytoprotection have been reported to modify other

injury modifiers including hsp70 [137], heme oxygenase

[138], ERK [89, 139], and p38MAPK [107], but they have

not been rigorously established as being necessary for true

glycine cytoprotection. Some of these changes may reflect

actions of glycine on signaling pathways that certainly

contribute to the evolution of injury but that are not central

to the unique cytoprotection provided by glycine.

Timing of the glycine effect

In the study that originally identified glycine cytoprotection

using a hypoxia/reoxygenation model [5], it was shown

that the protective effect of glycine required its presence at

the time of the lethal event, which was during the hypoxic

period in that experimental setting. Pretreatment with

glycine followed by removing it from the medium was not

effective, nor was addition during reoxygenation, which

was predictable since most lethal injury in that model

occurred during hypoxia. Subsequently, it was shown using

chemical hypoxia ATP depletion models of both kidney

tubule cells [87] and hepatocytes [45] that glycine could be

added after the ATP depletion period was well underway

and still prevent subsequent LDH release. These examples

of efficacy without any pretreatment resulting from the

addition during periods when the injury-inducing insult

suppresses most ATP-dependent metabolic pathways

emphasize the dissociation between glycine cytoprotection

and metabolic pathways requiring active metabolism.

Another timing consideration highly relevant to under-

standing an essential element of glycine cytoprotection

derives from observations on withdrawal of glycine during

insults. These were initially reported using tubules injured

by a halogenated hydrocarbon [87]. Subsequently, this

behavior was demonstrated in a more common disease-

relevant context using a hypoxia/reoxygenation model

where, as discussed above, the tubules develop a severe

energetic deficit during reoxygenation mediated by per-

sistently high levels of nonesterified fatty acids (NEFA)

[118, 140]. If glycine is withdrawn before the energetic

deficit is corrected, necrosis rapidly occurs. If, on the other

hand, the energetic deficit is corrected in the presence of

glycine by maneuvers that lower the NEFA burden and

restore ATP, glycine can then be withdrawn without

development of necrosis [140]. Glycine cytoprotection was

also shown to be lost when glycine was withdrawn from

endothelial cells subjected to chemical hypoxia [43] or

maitotoxin treatment [44]. These observations emphasize

that glycine must be present at the time of the lethal event

and that the glycine-suppressible process rapidly proceeds

if glycine is removed.

Relationship of cytoprotection to neuronal glycine
receptors

The inhibitory neuronal glycine receptor (GlyR) is a pen-

tameric gated chloride channel composed of alpha and beta

subunits [109, 141]. It is a member of the nicotinoid

receptor, cysteine-loop superfamily that also includes the

excitatory nicotinic acetylcholine receptor, the inhibitory

c-aminobutyric acid, Type A receptors, and the cation

permeable serotonin type 3 receptor. Neuronal glycine

receptors are found in spinal cord, brain stem, caudal brain,

and retina. In humans, there are four types of alpha sub-

units. The most common GlyR consists of three a1 48 kDa

and two b 58 kDa subunits along with a 98 kDa cyto-

plasmic anchoring protein, gephyrin, which binds to the b
subunit to anchor it to the subsynaptic membrane. The

presence of alpha subunits is sufficient to confer receptor

function, which has been widely studied in HEK 293 cells

expressing a1 homomers [142, 143]. Classical primary

agonists for GlyR besides glycine are b-alanine and taurine

with a potency order glycine[ b-alanine[ taurine

(EC50s of 18, 52, and 153 lL, respectively, in HEK cells

expressing homomeric a1 receptors [143]: 90, 100, and

500 lL, respectively, in isolated hypothalamic neurons

[144]). L-Alanine and D-alanine show similar activity less

than that of taurine and greater than L-serine. D-Serine is

without significant activity [144]. Glycine is antagonized

by low micromolar concentrations of strychnine, which

binds to the a subunit [109, 141]. In addition to being the

primary agonist at the neuronal glycine receptor, glycine is

a coagonist at the NMDA receptor [74].

The data reviewed in the preceding sections showing

independence of glycine cytoprotection from its major

metabolic pathways, absence of modification of multiple

metabolic and structural changes that contribute to cell

death, and rapid ‘on–off’ behavior at its target are all

consistent with the involvement in cytoprotection of a

ligand–receptor type of action. Even before most of these

latter observations were made, the possibility that glycine

cytoprotection was mediated by a non-neuronal glycine

receptor was addressed using a pharmacological approach

testing the efficacy of known analogs for the neuronal

glycine receptor [18]. The results of this study and of
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subsequent work by multiple laboratories that extended the

observations using additional compounds, injury models,

and cell types are summarized in Table 3.

In the initial study of the molecular pharmacology of

glycine cytoprotection in kidney proximal tubules, 4 of 45

compounds tested, glycine, L-alanine, b-alanine, and

1-aminocyclopropane-1-carboxylate were found to be

highly protective [18] and these results have been con-

firmed in other reports testing them as summarized by the

citations in Table 3. The EC50 for glycine in this study

[18] and the original report of its cytoprotective effect [5]

was *0.5–0.75 mM. Similar EC50s have been reported in

multiple other systems [34, 44, 45, 145]. Maximal effects,

usually complete cytoprotection, are generally reached

by 2 mM. L-Alanine had a substantially higher

EC50, *2.5 mM, in the studies with sufficient data to

estimate it [17, 18], but in all reports was as protective as

glycine when its concentration was increased to 5 mM [18,

33, 37, 39, 44, 45, 47]. Sufficient data to estimate EC50s

for b-alanine and 1-aminocyclopropane-1-carboxylate are

not available, but based on smaller effects than glycine at

2 mM and incomplete protection at 5 mM, they were

substantially less effective than glycine and L-alanine [18].

In the original study [18], D-alanine had a weak cyto-

protective effect, but a-aminoisobutyric acid, L-serine and

D-serine were all without activity. Other reports (summa-

rized in Table 3) have described variable results for those

compounds. Multiple other amino acids importantly

including taurine, which is an invariant agonist at neuronal

glycine receptors [143, 144], and glutamate, which is the

natural primary agonist at the NMDA receptor [74], have

not exhibited cytoprotective activity like that of glycine in

multiple studies that have compared them with glycine

([18] and others summarized in Table 3). 1-Aminocyclo-

propane-1-carboxylate, which had some cytoprotective

activity, is, like glycine, a coagonist at the NMDA receptor.

However, D-serine, the other main physiological coagonist

at that receptor [74], does not have consistent

Table 3 Ability of other amino acids and small molecules to reproduce glycine cytoprotection

Strongly Protective

Glycine

L-Alanine [18, 33, 37, 39, 44, 45, 47]

b-Alanine [18, 37]

1-Aminocyclopropane-1-carboxylate—agonist at glycine-sensitive site on NMDA receptor [18, 38]

Weak/variably protective

D-Alanine [18, 37, 44, 45]

1-Aminocyclopropane-1-carboxylate—agonist at glycine-sensitive site on NMDA receptor [18, 38]

c-Aminoisobutyric acid [18, 37, 39, 45]

L-Serine [18, 37–39, 47]

D-Serine [18, 38]

Consistently non-protective

L-Glutamate [5, 39]

L-Glutamine [33, 37, 39]

L-Cysteine [5, 39]

L-Taurine [18, 37, 38, 47]

L-Proline [18, 37, 44]

L-Valine [18, 44, 47]

Protective non-amino acids

Strychnine—glycine receptor antagonist [34, 46, 98, 104, 107, 145, 148]

Bicuculline—glycine and GABAA receptor antagonist [34, 145]

Norharmane—glycine receptor antagonist, benzodiazepine receptor agonist [34]

Avermectin B1a—GABAA receptor modulator and glycine receptor agonist [98]

Cyanotriphenylboron—GABAA and glycine receptor antagonist [98]

Muscimol—GABAA receptor agonist [111]

Allopregnanolone, pregnenolone sulfate, dehydroepiandrosterone sulfate—GABAA receptor modulators [111]

Chloride channel blockers—indanyloxyacetic acid, niflumic acid, N-phenylanthranilic acid, 5-nitro-(3-phenylpropylamino)benzoic acid,

diphenylamine-2-carboxylate [46, 85, 116, 145, 267]

Multiple direct comparisons of these compounds with each other and with other compounds that lack effects along with detailed concentration

dependence considerations within the same models can be found in refs [18, 98, 111, 145]. References for glycine are not enumerated because

virtually all studies include it. References cited are selected to be the earliest and most complete for multiple cell types where available
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cytoprotective effects [18, 38] and two antagonists at the

glycine-modulatory site, kynurenic acid [146] and cyclo-

leucine [147], had no effect on their own and did not alter

the effects of glycine [18]. Cytoprotection in the tubule

system required that both amino and carboxyl groups be

present and unmodified [18]. Neither taurine, as already

covered, cysteamine, sarcosine, propargylamine, betaine,

aminoacetonitrile, ethanolamine, or alaninol, all of which

have variations in structure relative to glycine and alanine

that are limited to either their amino or carboxyl groups,

had any activity, nor did propionic and acetic acid, which

lack amino groups [18].

Strychnine is the classical antagonist at the GlyR and the

first purification of GlyR was via a strychnine affinity

column. It is a high-affinity competitive antagonist that

binds to the 48 kDa a subunit, inhibits all known GlyR

isoforms, and is considered to be the definitive pharma-

cological tool for identifying glycinergic synaptic currents

[141] with an IC50 for inhibition of glycine-induced

chloride currents in hippocampal neurons of 20 nM and a

maximal effect at 1 lM [144]. True glycine cytoprotection

(as distinct from glycine effects on signaling in nonneu-

ronal cells that will be addressed below) has never been

shown to be antagonized by strychnine. Rather, multiple

laboratories have demonstrated that strychnine has similar

cytoprotective effects to those of glycine at concentrations

similar to those at which glycine is effective [34, 46, 98,

104, 107, 145, 148]. Strychnine has behavior similar to

glycine with respect to timing, in that it can be added late

just before the lethal event and cytoprotection is rapidly

lost when it is removed [87]. Labeled strychnine showed

specific binding to isolated kidney proximal tubules with

an IC50 of 0.87 mM [149]. Unlike neuronal binding [150],

the proximal tubule binding was not displaced by excess

glycine. However, strong support for the specificity of

strychnine effects on a surface target has been provided by

studies with MDCK cells using novel, water-soluble, cell

impermeant, fluoresceinated strychnines, which allowed

verification of their localization [145]. In this work, a flu-

oresceinated derivative in which the strychnine moiety was

not altered at any of its critical active sites provided

cytoprotection without entering the cells. A similar

derivative modified by methylation of the nitrogen atom at

position N22, which is near the region involved in receptor

binding, was not cytoprotective.

Further studies summarized in Table 3 have compared

the cytoprotective efficacy of glycine with that of other

agents active at the GlyR and other nicotinoid receptors as

well as chloride channel blockers and have identified

multiple additional cytoprotective compounds, some of

which had substantially higher potency than glycine, par-

ticularly when injury was produced under Ca2?-limited

conditions [98]. These include the GlyR and GABAA

receptor antagonists avermectin B1A and cyanotriphenyl-

boron [98], the neurosteroid GABAA receptor modulators

allopregnanolone, pregnenolone sulfate, and dehy-

droepiandrosterone sulfate [111], and the chloride channel

blockers indanyloxyacetic acid and niflumic acid [85, 98].

Thus, molecular pharmacology studies of glycine cyto-

protection from multiple laboratories indicate substantial

overlap with agents active at neuronal receptors for which

glycine is an agonist or coagonist and indicate highly

constrained steric and conformational requirements for the

interaction, which, along with the rapid on–off timing of

the effects, is consistent with the involvement of reversible

ligand binding site interactions. Even though, as covered

previously, chloride is not necessarily involved in glycine

cytoprotection, the facts that GlyR is a chloride channel

and the chloride channel blockers have cytoprotective

efficacy, including cyanotriphenylboron and niflumic acid

that bind to glycine receptor M2 channel domains, also

strongly support the concept that a protein with chloride

channel properties is involved in cytoprotection [98].

However, the profile of cytoprotective activity does not

correspond to either of the known neuronal receptor types

targeted by glycine or that of other nicotinoid receptors.

The results of studies assessing the presence of the GlyR

in cells showing strong glycine cytoprotection have been

equivocal. Immunoblotting of rat hepatocyte membrane

extracts for the a1 subunit was negative on the same blots

where rat spinal cord and rat liver Kupffer cell (see below)

membrane extracts were positive [151]. Evidence for

expression of the GlyR b-subunit has been reported for

endothelial cells where, as covered below, glycine-gated

chloride channel signaling is seen, but that effect of glycine

is blocked by micromolar levels of strychnine [152], which

is not a characteristic of nonneuronal glycine cytoprotec-

tion. For kidney proximal tubules, there are short reports

providing immunoblots suggesting the presence of the b-
subunit and gephyrin, but negative for the a1-subunit [153],
PCR screening of human and rat kidney cortex cDNA

libraries that were positive for b but not a1 subunits [154],
and immunofluorescence positive for the b-subunit and

gephryin, but not the alpha subunit [154]. In the latter

studies, the b-subunit bands overlap with the IgG heavy

chain making it difficult to interpret the immunoblots

shown [153] and the immunofluorescence was not clearly

membrane localized [154]. There is no reported work

testing the effects on cytoprotection of manipulating

availability of the b-subunit or gephyrin and whether these

molecules alone could confer functional GlyR activity is

not clear. We have queried a recently reported RNA-Seq

transcriptosome data set from microdissected rat nephron

segments [155] for the presence of GlyR a1- and b-subunits
and gephryin and did not detect any expression

(unpublished).
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Message and protein for GlyRa1 were detected in

MDCK cells [156]. In this study, siRNA knockdown of

GlyRa1 decreased cytoprotection by glycine in proportion

to the efficacy of the siRNA knockdown, transfection of

GlyRa1 into HEK-293 cells conferred protective effects of

both glycine and strychnine that were not present in wild-

type HEK-293, and the protective effects were abrogated

by mutating Tyr202 of GlyR to phenylalanine or leucine,

which impair glycine and strychnine binding [156].

Although these observations would seem to be strong

evidence for involvement of GlyRa1 in cytoprotection, the

same laboratory has subsequently reported data suggesting

that the effects of GlyRa1 in both cell systems are mediated

by ERK1/2 and AKT activation [139]. Since there are

multiple experimental models reviewed in the preceding

sections where ERK1/2 and AKT activation cannot occur

and/or cannot explain the timing of glycine’s effects rela-

tive to injury, those pathways cannot be an essential or

generalized feature of glycine cytoprotection. These

authors have also reported strong glycine cytoprotection of

primary neuron cultures subjected to oxygen and glucose

deprivation (OGD) that is convincingly blocked by anti-

GlyR and antibodies or GlyRa1 knockdown [157]. Injury in
that system was also strongly decreased by the NMDA

receptor antagonist, MK-801, although its effect was

independent of GlyR. Since NMDA receptor antagonists

do not generally reproduce glycine cytoprotection [18], the

relationship between these neuronal GlyR-mediated effects

in OGD injury and nonneuronal glycine cytoprotection

remains to be clarified.

Although the findings reviewed thus far have not shown

that either the presence of GlyR or modification of chloride

movements is essential for glycine cytoprotection, studies

further investigating them have led to recognition of pre-

viously unsuspected and widely expressed

immunomodulatory effects of glycine that do appear to

utilize those pathways [11, 14]. This concept originated

from work investigating the effects of glycine on whole

liver models of ischemia/reperfusion and transplantation in

which strong benefit was observed [42, 158, 159]. Analysis

of the mechanisms for the whole liver effects provided

evidence that they involved glycine suppression of

inflammatory Kupffer cell activation resulting from gly-

cine-induced chloride uptake leading to hyperpolarization

and suppression of calcium influx via voltage-gated cal-

cium channels and subsequent signaling similar to the

neuronal effects of glycine [57].

Immunomodulatory effects were then found by these

investigators and others in multiple types of inflammatory

cells in addition to Kupffer cells including peripheral

macrophages, alveolar macrophages, T cells, polymor-

phonuclear leukocytes, as well as endothelial cells [152,

160–163]. Moreover, evidence for the presence of GlyR

was provided for several of these cell types where GlyRa1
was detected [151]. The pharmacology of the Kupffer cell

effects was also consistent with the effects being mediated

by true neuronal-type receptors in that they were fully

reproduced by the other strong classical glycine receptor

agonists, b-alanine and taurine [57]. As reviewed previ-

ously, b-alanine consistently has cytoprotective effects like

glycine, but taurine does not (Table 3). EC50s for these

glycine effects on inflammatory cell signaling were in the

range 0.3–0.5 mM with maximal effects at 1 mM [152,

160, 162, 163], which is slightly lower than for glycine

cytoprotection, but higher than for neuronal glycine

receptors. Similar signaling effects have also been reported

for cardiomyocytes [164]. The effects of glycine on each

type of inflammatory cell were maximally blocked by

1 lM strychnine [152, 160, 162, 163]. Interestingly, raising

the strychnine concentration to 1 mM with neutrophils and

alveolar macrophages appeared to change it from a glycine

antagonist to an agonist [160, 163].

Studies assessing whether activation of microglial cells

is also modified by glycine in this fashion instead

demonstrated a separate pathway of glycine-induced

immunomodulation, where glycine uptake via the sodium-

linked neutral amino acid transporter induces cell Na? and

volume increases that in turn affect signaling and function.

[58, 60, 61]. Distinctly higher glycine concentrations were

required for these effects with initial changes seen at 1 mM

and consistently maximal effects at 10 mM. Glycine sim-

ilarly modulated peritoneal macrophage function via its

uptake by neutral amino acid transporters in peritoneal

macrophages even though those cells expressed the GlyR

a1 subunit and gephyrin [59]. In addition to the effects of

glycine on neutrophils that were apparently mediated by

strychnine-sensitive signaling, it has also been reported that

both N-formyl methionyl leucyl phenylalanine peptide and

phorbol myristate acetate-induced reactive oxygen species

production in neutrophils can be inhibited by glycine with

EC50s of 0.5–1.5 mM by a strychnine-insensitive mecha-

nism that is unrelated to changes of Caf [165]. None of the

studies of inflammatory cells displaying immunomodula-

tory effects of glycine and implicating GlyR in them

extended the models to assess glycine modulation of

necrosis in those cells, which would clearly be of interest in

view of the work that has shown strong protection by

glycine against pyroptosis of macrophages [50–54, 91, 92].

Nature of protection

Necrosis/oncosis is usually defined and assessed by chan-

ges in the plasma membrane permeability barrier, which,

at the point of widespread cellular disruption, allows

leakage of large intracellular proteins such as lactate
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dehydrogenase (136 kDa). Prevention of LDH leakage has

been used since the earliest studies of glycine cytoprotec-

tion [17, 21] to assess it and is the most common way of

quantifying the process. Glycine also prevents pathological

permeability increases to small probes that are used to

monitor cell death as initially shown for propidium and

fluorescein in cultured kidney tubule cells [40] and then

subsequently for them and others in multiple cell types

(Table 4).

Several studies with more detailed investigations of the

progressive nature of the plasma membrane alterations that

underlie these permeabilities in the context of glycine

cytoprotection have provided insight into both that process

and the underlying pathophysiology of necrosis/oncosis in

general. In the first reported study of this type [99], the

permeability of dying MDCK cells to propidium was

compared to 4 kDa, 70, and 2000 kDa fluorescent dextrans

using a low Ca2? injury model. The majority of cells

became progressively permeable to propidium (416 Da)

over 120 min and were similarly permeable to 4 kDa

dextran (3 nm molecular diameter [166]) In contrast,

development of permeability to 70 kDa dextran (10–15 nm

molecular diameter [166]) was delayed and more hetero-

geneous with many propidium-positive cells that still

excluded dextran for the full duration. 2000 kDa dextran

(54 nm molecular diameter [166]) was entirely excluded,

although as pointed out subsequently [43], volume exclu-

sion by intracellular membranous and cytoskeletal

elements could have contributed for that very large mole-

cule. The changes of MDCK cell permeability occurred

without overt disruption of the plasma membrane. In the

model, cells became uniformly swollen (essentially single

large blebs), but had continuous membranes based on flu-

orescent visualization of biotinylated surface proteins and

displayed osmotic shrinkage when suspended in medium

with osmotically active concentrations of large dextrans

[99]. This membrane continuity and suppression by glycine

of progression from small to large membrane defects was

also seen in hypoxic, hypotonically swollen proximal

tubules that were deliberately permeabilized to small

molecules (eosin and propidium) by a-toxin, yet did not

leak LDH as long as glycine was present [105]. Addi-

tionally, the MDCK cell study demonstrated that the

permeability defects in the absence of glycine were sup-

pressible by an impermeant homobifunctional ‘nearest

neighbor’ cross-linking reagent, further supporting plasma

membrane protein involvement [99].

The second study of this type subjected primary cultures

of hepatic sinusoidal endothelial cells to ATP depletion

injury in Ca2?-containing medium and tested permeation

of two small anionic probes, calcein (623 Da) and Lucifer

yellow (443 Da), of propidium, which is cationic, and of 40

and 2000 kDa dextran [43]. In the absence of glycine, the

first change in these endothelial cells was permeability to

calcein and Lucifer yellow simultaneously with the start of

bleb formation. 30–60 min later, they became permeable to

propidium and all the dextrans tested without evident dif-

ferences between the differently sized dextrans other than

weaker uptake of the 2000 kDa dextran that was attributed

to volume exclusion by intracellular membranous and

cytoskeletal components. Glycine slowed, but did not stop

the calcein and Lucifer yellow entry. It completely pre-

vented entry of propidium and the dextrans. Subsequent

withdrawal of glycine allowed entry of propidium and the

dextrans within 20 min [43].

In the third related study [167], anoxic freshly isolated

proximal tubules were incubated with propidium, phal-

lacidin, Trypan blue, and 4 and 70 kDa fluorescent dextran

as membrane permeability probes. These cells showed

early permeability to propidium even in the presence of

glycine, but propidium here was used at the very high

concentration of 20 lM (3 lM was typical in the other

studies) and the early propidium-positive cells were

impermeable to phallacidin and Trypan blue and retained

mitochondrial function, so failure to exclude propidium

here was not indicative of cell death. The fluorescent

dextrans, however, behaved similarly to the MDCK cell

study with much greater permeability in the absence of

glycine to the 4 kDa molecule than to the 70 kDa molecule

and glycine blocked the development of permeability to

both. This fresh tubule study [167] also tested bifunctional

cross-linkers and they were found to protect against LDH

release (without impairing LDH activity), but, in contrast

to the MDCK cell work with cross-linkers [99], only per-

meant cross-linkers were protective for the fresh tubules.

The final detailed permeability testing of this type was

done using injury induced by the pore-forming toxins,

maitotoxin [44] and palytoxin [168], in bovine aortic

endothelial cells and employed small chemical fluorescent

probes along with transfected green fluorescent protein

(GFP) as permeability markers. The maitotoxin study [44]

importantly included concatemers of the 27 kDa GFP up to

162 kDa in size. Both maitotoxin and palytoxin induce

rapid large increases of Caf due to extracellular influx,

which are necessary for cell killing [44, 168, 169]. For

maitotoxin, the agent itself is thought to form a channel; for

palytoxin, the channel appears to involve alterations of the

configuration of Na,K-ATPase because it is ouabain sen-

sitive [44, 168, 169]. Both toxins induced biphasic uptake

of ethidium (359 Da) characterized by an initial slow rate

than an abrupt acceleration. Uptake of propidium after

maitotoxin [44] and of either propidium or Yo-Pro-1 after

palytoxin [168] coincided with the accelerated phase of

ethidium uptake. Loss of transfected GFP, which was fol-

lowed in multiple single cells, similarly coincided with the

accelerated phase of ethidium uptake [44, 168, 169]. There
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were no correlations between the sizes of GFP concatemers

and the time to start of their release or the rate of release

once it was underway. Glycine prevented the rapid phase of

ethidium uptake, propidium uptake, and release of LDH

and GFP concatemers. Similarly to the endothelial cells

subjected to metabolic inhibition [43], withdrawal of gly-

cine led to GFP release after about 20 min [44]. The single

cell analysis used for the maitotoxin and palytoxin studies

included high-resolution visualization of the time course of

bleb formation during injury [44, 168]. As was the case for

the MDCK [99] and proximal tubule [167] studies, there

was no evidence for bleb rupture or loss of gross membrane

continuity during the permeability changes. In fact, blebs

were noted to continue to increase in size after GFP loss

[44, 168]. Maitotoxin potently elicits inflammasome for-

mation and pyroptosis in macrophages [127]. Although

size dependence of the permeability changes during

pyroptosis has not been studied in same detail as in

endothelial cells, the biphasic uptake of small fluorescent

probes has been described during glycine-sensitive pyrop-

tosis induced by both maitotoxin [92] and bacterial

products [52, 91].

Overall, these fluorescent probe data using multiple

forms of injury in several cell types are consistent with the

conclusion that glycine prevents the development of rela-

tively large, but size-specific hydrophilic membrane pores

of molecular dimensions. There may be charge selectivity

of the earliest manifestation of these pores [43], but that

has only been studied in one system. There is good evi-

dence for progression of pore size over time in renal

tubules [99, 167], but not in endothelial cells [43, 44, 168].

Although glycine prevention of membrane rupture related

to inhibition of large ion fluxes has been hypothesized in

two of the these experimental systems [43, 52, 91], models

in which membrane continuity was assessed in detail have

not provided evidence that membrane rupture is a neces-

sary or consistent feature of the glycine-sensitive

permeability alteration [44, 99, 101, 167, 168]. Figure 1

summarizes the major pathways that have been identified

as leading to glycine-sensitive injury and the pore forma-

tion that accounts for it.

Glycine effects on disease models in vivo

Circulating glycine levels in humans, [170, 171], rats and

mice [172–174], cats [80], and dogs [175] range from 0.2

to 0.4 mM. In rabbits [176, 177] and pigs [28], they are

1–1.5 mM. Intracellular concentrations are much higher,

particularly in renal proximal tubules, which reabsorb fil-

tered glycine and reach 4–109 circulating levels depending

on whether they are being actively perfused [178, 179].

The high intracellular levels are in excess of the 2 mM

typically needed for maximal glycine cytoprotection and

are reflected in whole cortex measurements [30, 172, 180].

Intracellular levels are high in other tissues as well [27,

170, 181]. The dynamics of glycine movements during

injury conditions have been studied in detail using freshly

isolated kidney tubules [30]. Those cells became severely

depleted of glycine during their isolation. During incuba-

tion with 0.25–2 mM glycine in the medium, they actively

concentrated it to 49, the medium level under control

conditions, but then rapidly lost it if they were metaboli-

cally inhibited and transferred to glycine-free medium. If

glycine was added to ATP-depleted or sodium pump-in-

hibited cells, it reached levels similar to those in the

medium, but was not concentrated. Thus, cellular glycine is

labile and its ability to maintain cytoprotection under

in vivo conditions could vary depending on the injury state

and where it acts. If, as reviewed above, glycine acts pri-

marily at the outer surface of the plasma membrane,

leakage of glycine from the large intracellular pools during

a low flow ischemic state could bring extracellular con-

centrations to cytoprotective levels and thus favor tissue

resistance. In fact, microdialysis measurements of tissue

extracellular glycine showed increases during back

table processing of transplanted livers [182], although they

were not large and remained well below fully protective

levels. During reflow states, restoration of blood flow could

remove any leaked protective extracellular glycine while

intracellular glycine remains depleted, thus promoting

injury as seen when glycine is withdrawn from isolated

cells that have not metabolically recovered [140]. There is

evidence for persistent depletion of glycine after acute

kidney injury in vivo [172, 180], but its precise timing

relative to development of cell death has not been studied

and it is possible that those changes seen simply reflect loss

of healthy cells that can maximally concentrate it.

In considering modification of injury at the whole organ

level (i.e., isolated organs such as those used for trans-

plantation and in vivo), interpretation of the effects is

complicated by the presence of multiple cell types and

tissue compartments. In vivo, the contributions of circu-

lating cells and cross talk between organ systems via

cytokine generation are additional factors. As covered in

the preceding sections, studies of glycine cytoprotection

have led to the recognition that glycine acts on multiple

types of parenchymal and inflammatory cells and can do so

via effects on both upstream signaling pathways as well as

its membrane cytoprotective action to delay the lethal

membrane damage that results in necrosis and pyroptosis.

Moreover, by limiting the necrosis, secondary inflamma-

tory effects will be prevented. Since the recognition of its

cytoprotective effects, multiple studies have investigated

the effects of glycine in disease models in vivo. Protective

effects in multiple disease models in vivo have been

The role of glycine in regulated cell death 2297

123



reported. These include such diverse processes as aortic

allograft rejection [183], arthritis [184, 185], distension-

induced bladder wall damage [67], diabetic complications

[186], hypertension and the metabolic syndrome [187–

197], and angiogenesis in tumors [198–200]. The majority

of these are due to primary signaling or anti-inflammatory

effects [11, 14] not associated with necrosis and cannot be

covered in detail within the confines of this review.

Additional references to studies of glycine effects during

diverse disease processes can be found in other reviews

[10, 11, 13–15]. However, a number of effects in which

cytoprotection could be a primary target or during which

necrotic cell damage is a major component merit more

detailed consideration here.

Although glycine is considered a nonessential amino

acid, its availability may, in fact, be limiting for all of its

normal metabolic roles [201]. Manipulating glycine levels

in vivo to potentially elicit protective effects is feasible

because circulating glycine levels in multiple species,

including humans and rodents, are at or below the EC50s

(0.5–0.75) required for both its cytoprotective and anti-

inflammatory effects. Serum glycine levels can be readily

increased by either oral feeding [28, 171, 202–206] or

parenteral administration [207–209], and maximal cyto-

protection is seen at 2–5 mM concentrations that are well

below the 16–36 mM levels associated with acute toxicity

[210]. Although not an issue for acute processes, it is

notable that glycine and products of its metabolism can

promote tumor growth [31, 211–214], which is potentially

a limiting factor for long-term administration.

Effects of glycine on ischemia/perfusion-induced acute

kidney injury in vivo have been tested in several studies. A

Fig. 1 Pathways for development of glycine-sensitive cell death.

Summarized here are pathways of injury discussed in the text for

which glycine protection is well documented and a scheme for ‘death

channel’ development that incorporates data from studies with

differently sized fluorescent probes. Primary insults include multiple

maneuvers that impair mitochondrial ATP generation (oxygen

deprivation, electron transport inhibitors, uncouplers, Ca2?-induced

development of the mitochondrial permeability transition), maneuvers

that produce transmembrane cation shifts prominently including

increased Ca2? entry (ionomycin, maitotoxin, palytoxin-induced

modification of Na, K, ATPase, and P2X7 receptor activation), and

activation of caspase 1 and/or 11. The glycine-insensitive ‘cytolytic

oncotic pore’ mediating ethidium bromide uptake, which develops

after P2X7 receptor activation, maitotoxin and likely caspase

activation promotes the cation shifts and can also lead to loss of

ATP. This further enhances the ATP depletion. Development of the

glycine-sensitive ‘death channel’ is depicted as a sequential process

of pore enlargement that is normally suppressed by ATP, because

ATP depletion is a common factor in most processes and other major

injury mediators such as Ca2? increases are not necessary for it to

occur. It is possible that the cytolytic oncotic pore rather than being a

separate process as depicted is a stage in the development of the

glycine-sensitive channel. Cell death associated with ROS and Fe2?-

mediated lipid peroxidation directly targeting the lipid phase of the

membrane is shown as a separate pathway, since it is relatively

glycine insensitive. Other early injury-associated membrane perme-

ability changes such as activation of connexin [268] and TRPM [103]

channels almost certainly feed into the pathways shown, but are not

illustrated because they have not been specifically studied with

glycine
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single report has described benefit accruing from combined

oral and parenteral glycine supplementation for an ische-

mia/reperfusion-induced AKI [206]. However, despite its

cytoprotective and anti-inflammatory effects and the

additional action of glycine (like other amino acids) to

increase renal blood flow and glomerular filtration rate

[215–217], most studies have either shown no benefit of

parenteral glycine administration [207] or aggravation of

structural and functional changes [216, 218]. These find-

ings are similar to earlier work with amino acid mixtures

[219]. In these models, it has been hypothesized that

increased renal metabolic demand produced by glycine

through its effects on renal blood flow and glomerular fil-

tration rate could have aggravated tissue hypoxia after the

insults [216]. Consistent with this possibility, worsening of

function by glycine was prevented by antagonizing NMDA

receptors [218], which have been implicated in amino acid-

induced vasodilation [217]. Additionally, glycine has been

reported to lower blood pressure in an NMDA-sensitive

fashion [220]. Blood pressure is rarely measured in rodent

AKI models, but can play a major role in the process and

effects of administered metabolites on it [221].

Glycine has been tested in several nephrotoxic models

of acute kidney injury (AKI) in vivo. Oral glycine feeding

doubled both serum and tissue glycine levels and strongly

protected against maleate-induced proximal tubule dys-

function (Fanconi syndrome) and proximal tubule cell

necrosis without modifying associated glutathione oxida-

tion and depletion [202]. Since tissue ATP was preserved

by the glycine treatment in this study, it was possible that

glycine was in some way primarily alleviating the meta-

bolic effect of maleate to inhibit tricarboxylic acid cycle

metabolism. However, subsequent work testing direct

maleate toxicity to isolated proximal tubules showed that

glycine strongly protected against maleate-induced necro-

sis without preserving their ATP levels [222]. Glycine

ameliorated cisplatin-induced nephrotoxicity, but this was

associated with reduced early cisplatin delivery to the

tubule epithelium [223]. It also ameliorated subacute

cyclosporine-induced nephrotoxicity, probably by modi-

fying drug-induced vasoconstriction [224, 225].

Glycine administration is beneficial in multiple experi-

mental models of liver injury in vivo and transplantation

([42, 159, 226–233] and reviewed in [11, 12, 14, 234, 235])

and has been shown to ameliorate transaminase increases

after transplantation of human livers [234]. As previously

discussed, efficacy in liver models led to recognition that

glycine suppresses Kupffer cell activation during injury

and that suppression of Kupffer cell activation plays a

major role in the observed liver effects [14, 57, 158, 236–

239].

The protective effects of glycine have been reported in

several types of acute bowel injury in vivo [62, 66, 68, 69]

and in chemical-induced inflammatory bowel disease [67].

It is likely that inflammatory cells in the intestinal mucosa

are a major target. Whether protection involves suppression

of activation, inhibition of pyroptosis, or both is not known.

There are only limited observations of the effects of

glycine during myocardial and skeletal muscle injury. As

discussed previously, reduction of necrosis by glycine in an

isolated perfused heart model of ischemia was attributed to

suppression of MPT [71] and there is a report of attenua-

tion of I/R injury in vivo [240]. Glycine supplementation

had beneficial cardiac effects in a burn model [241].

Infusion of glycine at the end of 6 h of skeletal muscle

ischemia and then during the first hour of reperfusion

decreased necrosis and increased metabolic and functional

recovery [242]. Glycine suppression of reactive oxygen

species production by neutrophils [165] may have played a

major role in this skeletal muscle effect [243].

Both cold and warm I/R injury to the lung was ame-

liorated by glycine [244, 245]. This benefit was attributed

to mitochondrial protection, but given the lack of benefit of

glycine for mitochondrial function in rigorously studied

models [19, 49, 118, 140, 246], the mitochondrial function

effects in these systems were likely secondary.

Interpretation of CNS effects is complicated by the role

of glycine as a coagonist of NMDA-glutamate receptors,

which typically promote injury [74–77], and its effects on

microglia [58–61]. As a result, diverse effects have been

reported in brain ischemia models [77, 157, 247–251].

Protective effects of glycine have been reported for

several sepsis models [209, 252–255] and hemorrhagic

shock [256], but not after gunshot trauma [257]. Glycine

was beneficial early after cecal ligation and puncture [255],

but not late [209]. It is not known to what extent sup-

pression of pyroptosis [258] in addition to the effects of

glycine on signaling and neutrophil function was involved

in these effects.

Conclusions

Glycine cytoprotection is a robust and widely expressed

biological phenomenon that confers resistance to multiple

forms of necrotic cell death as well as pyroptosis and can

reasonably be considered the ultimate downstream regu-

lator of necrosis in multiple injury settings. The specific

molecular target of glycine remains undefined 29 years

after the effect was first discovered, but it is likely to

involve suppression of the reconfiguration of plasma

membrane proteins to form hydrophilic channels with

molecular dimensions. Glycine’s effects can be reproduced

by other small molecules that are active at neuronal glycine

and GABAA receptors and other non-receptor chloride

channels, but the pharmacology of protection does not
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conform to any established receptor and chloride itself is

not required for the effect. That glycine cytoprotection is

seen in so many forms of necrotic cell death and different

cell types indicates that the targeted process is a final

common pathway for necrotic cell death. The normally

high tissue levels of glycine provide an endogenous

reservoir of glycine to protect during ischemic conditions

when intracellular glycine leaks into the static extracellular

space. Glycine cytoprotection suppresses inflammation by

preventing the immunogenic effects of necrosis and

directly inhibiting pyroptosis. Moreover, efforts to under-

stand the basis for glycine cytoprotection have led to the

discovery of novel upstream immunomodulatory effects of

glycine to block primary activation of multiple types of

inflammatory cells that, unlike glycine cytoprotection,

appear in many cases to involve previously unsuspected

nonneuronal glycine receptors. The EC50s for both glycine

cytoprotection and its immunomodulatory effects are close

to the usual circulating concentrations of the amino acid,

allowing for manipulation in vivo with benefit for multiple

disease processes in experimental models.
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