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Abstract

 Purpose—In this article, the authors describe and validate the performance of a modern 

acoustic analyzer specifically designed for infant cry analysis.

 Method—Utilizing known algorithms, the authors developed a method to extract acoustic 

parameters describing infant cries from standard digital audio files. They used a frame rate of 25 

ms with a frame advance of 12.5 ms. Cepstral-based acoustic analysis proceeded in 2 phases, 

computing frame-level data and then organizing and summarizing this information within cry 

utterances. Using signal detection methods, the authors evaluated the accuracy of the automated 

system to determine voicing and to detect fundamental frequency (F0) as compared to voiced 

segments and pitch periods manually coded from spectrogram displays.

 Results—The system detected F0 with 88% to 95% accuracy, depending on tolerances set at 

10 to 20 Hz. Receiver operating characteristic analyses demonstrated very high accuracy at 

detecting voicing characteristics in the cry samples.

 Conclusions—This article describes an automated infant cry analyzer with high accuracy to 

detect important acoustic features of cry. A unique and important aspect of this work is the 

rigorous testing of the system’s accuracy as compared to ground-truth manual coding. The 

resulting system has implications for basic and applied research on infant cry development.
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Acoustic analysis of infant cry has been a focus of clinical and developmental research for a 

number of decades. A variety of approaches to cry analysis have been employed, but each 

has its drawbacks. Over time, advances in computing have allowed for increased power and 

flexibility in acoustic analysis, including the ability to utilize robust techniques for the 

accurate estimation of fundamental frequency and other acoustic features of cry 

vocalizations. This article describes the development and validation of a modern tool for the 

acoustic analysis of infant cry.
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Applied and clinical studies of infant cry have examined features of cry production that may 

discriminate babies with specific conditions or medical risks. For example, there has been 

considerable interest in utilizing infant cry analysis as a measure of developmental status in 

babies with pre- and peri-natal risk factors, such as prenatal substance exposure (e.g., Lester 

et al., 2002) or premature birth (e.g., Goberman & Robb, 1999). There has also been interest 

in utilizing infant cry to identify babies at risk for developmental or medical conditions 

including hearing impairment (Várallyay, Benyó, Illényi, Farkas, & Kovács, 2004) and, 

recently, autism spectrum disorders (Esposito & Venuti, 2010; Sheinkopf, Iverson, Rinaldi, 

& Lester, 2012).

Early studies in this area relied on visual inspection of sound spectrograms in order to 

describe acoustic features of the cry in specific clinical populations (e.g., Karelitz & 

Fisichelli, 1962; Lind, Vuorenkoski, Rosberg, Partanen, & Wasz-Hockert, 1970; Prechtl, 

Theorell, Gramsbergen, & Lind, 1969; Vuorenkoski et al., 1966). Manual inspection of 

spectrograms has been seen as a gold-standard method for detecting acoustic features in cry 

sounds, including the timing and onset of cry vocalizations and the fundamental frequency 

(F0) of cry. Such visual inspection has also been used to describe melodic variations in F0 

across an utterance, and voicing or periodicity in the cry utterance. However, although these 

manual approaches have the advantage of being able to robustly detect F0, the trade-off is 

that the process is slow, limiting the amount of data that can be analyzed in any one study.

More recent approaches have utilized computer-assisted methods or commercially available 

speech analysis software packages to code acoustic aspects of infant cry. For example, one 

approach uses a computer cursor that is moved along a digitally displayed sound 

spectrogram to quantify aspects of cry duration and selects locations on the spectrogram for 

acoustic analysis (Goberman & Robb, 1999; Grau, Robb, & Cacace, 1995; Wermke & Robb, 

2010; Zeskind & Barr, 1997). In this way, resulting portions of the cry can be subjected to a 

fast Fourier transform (FFT) to yield information from the power spectrum in the cry (e.g., 

maximum/minimum F0). As we noted previously, abstracting quantitative data from 

spectrograms by this method is time consuming (LaGasse, Neal, & Lester, 2005). In 

addition, these approaches utilize speech analysis tools that were designed to extract 

acoustic information from adult speech. Given the anatomical differences in the vocal tract 

of infants, there is a need for tools designed to track and extract the F0 and other acoustic 

features from infant cries specifically. Finally, advances in computing capacity now allow 

researchers to utilize methods for quantifying aspects of the sound spectrum that can be 

expected to yield more accurate estimates of F0 and related parameters.

Automated approaches have the advantage of fast analysis of very large data sets, objective 

assessment, the ability to quantify multiple data points, and the flexibility to yield derivative 

measures (e.g., jitter, pitch contours, etc.), which have the potential to increase the applied 

value and clinical utility of cry assessment. These advantages notwithstanding, past 

automated approaches have also suffered from weaknesses due to limits in computing 

power. This has resulted in, for example, difficulties in signal detection and in not being able 

to pinpoint important cues when multiple analyses are required to do so. Automated 

detection of the F0 of infant cry is a difficult challenge, and the accuracy of F0 detection has 

not been fully reported in many approaches.
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There are multiple challenges to the design of an automated acoustic analysis of infant cry. 

Past researchers have developed automated analysis systems intended for the quantification 

of cry acoustics in larger samples of babies and with a method that minimizes the need for 

visual inspection or manual processing of data. For example, researchers have utilized 

automated application of FFTs to detect F0 in cry utterances or across whole cry episodes 

(Branco, Fekete, Rugolo, & Rehder, 2007; Corwin et al., 1992; Lester et al., 1991). In this 

general approach, digitized and filtered samples are subjected to an FFT in order to compute 

the log magnitude spectrum for analysis blocks of specific lengths (e.g., 25 ms). Summary 

variables for each analysis block can then be aggregated to yield summary statistics for a cry 

episode and for the individual cry utterances (a single expiratory period) within cry episodes 

(a series of expiratory periods).

Alternative automated approaches have also been recently described. Manfredi and 

colleagues (Manfredi, Bocchi, Orlandi, Spaccaterra, & Donzelli, 2009; Manfredi, Tocchioni, 

& Bocchi, 2006) have described a method that utilizes simple inverse filter tracking (SIFT) 

of short, fixed-length analysis frames followed by adaptive estimation of F0 using 5- to 15-

ms frames, varied in proportion to the changing F0 of the signal. Várallyay et al. (2004) used 

what they termed a “smoothed spectrum method” to detect F0 for the purpose of identifying 

infants with possible hearing loss.

These automated approaches have the potential to speed scientific inquiry, allowing for the 

study of large numbers of infants with efficient and rapid analyses. In addition, they bypass 

the need for manual inspection of spectrograms and do not require the time-consuming task 

of cursor placement and frame selection used in some computer-assisted methods. In this 

way, automated approaches allow for more rapid analysis that is less prone to observer bias 

or coding errors. Also, because these systems were developed specifically for the study of 

infant cry, there is the assumption that these algorithms accurately track F0 and differentiate 

voiced from unvoiced utterances. However, with the exception of a study of the efficiency of 

F0 detection by Várallyay et al. (2004), formal studies of the actual accuracy of 

measurement have not been conducted. Moreover, the automated approaches described 

above often utilize older signal processing approaches (FFT, SIFT). More modern 

approaches may now be employed given advances in computing power.

In this article, we describe the development and validation of a cry analysis tool that utilizes 

robust methods for voicing determination along with a cepstral analysis for the detection and 

tracking of F0. Investigating the validity of automated acoustic assessment of cry can be 

thought of as studying the sensitivity and specificity of an automated method of detecting 

the signal periodicity that constitutes F0. We have developed a new, robust tool for extracting 

acoustic information from digitally recorded infant cries, and we evaluated its validity by 

describing the sensitivity and specificity of the automated system to detect F0 (pitch periods) 

in comparison to the pitch periods manually coded by a trained observer from a sound 

spectrogram (oscilloscope view). In addition, we describe a method for categorizing voiced 

versus typically short, unvoiced utterances, or segments of utterances that are unvoiced. This 

includes a quantification of the confidence of the voicing determination, which can be 

adapted by researchers depending on the scientific questions being addressed. Finally, we 

describe the detailed output from this system that can be easily subjected to statistical 
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analysis for hypothesis testing. This system is detailed and flexible enough to allow 

researchers to describe infant cries at the utterance level while also producing detailed 

frame-by-frame acoustic output.

 Method

In developing our analysis tool, we began by defining the range of measures or outputs that 

we wanted to examine, basing this list on prior cry analysis work. These included parameters 

to characterize F0, amplitude or energy of cry, timing variables (latency, onset, duration, 

interutterance interval, etc.), and formants (while acknowledging difficulty in measurement). 

In addition to the kinds of variables used in prior automated analyses, we also had the aim of 

using the F0 tracking to model the shape or contour of F0 across each cry utterance in a cry 

episode. This would be similar to the studies of cry melody in some past research, such as 

Wermke, Leising, and Stellzig-Eisenhauer (2007), in which F0 was characterized as rising 

then falling, or having other contours across a cry utterance.

Acoustic characteristics of infant crying are determined by the complex interplay of neural, 

physiological, and anatomical factors manifested in the properties of the driving function of 

the cry (Newman, 1988). Notably, periodicity of the glottal motions determines properties 

such as the pitch or the amount of voicing/excited turbulence in a cry. The shape of the vocal 

tract determines the resonant frequencies (formants) of the spectrum of the cry at a given 

instant. Important acoustic properties of infant cry include F0, defined as the fundamental 

frequency of the glottal excitation (vibrations of the vocal folds), and the formant 
frequencies, defined as resonances of the vocal tract. Non-vocal-fold driven turbulences need 

also to be detected and categorized in a suitable analysis system.

Our system is run as two sequential programs: Phase I analyzes the digitized data to produce 

a set of parameters for each consecutive 12.5-ms frame. Phase II takes the Phase I output as 

input and produces an output record for each consecutive group of frames that has similar 

properties. The analysis tool is currently implemented in MATLAB, but it is easily adaptable 

for any embedded processor. The analyzer assumes the input is a .wav file, sampled at 48 

ks/s with 16 bits per sample (768 kbits/s). Using these high sampling and quantization 

parameters ensures that all cues are captured and that there is sufficient headroom for 

dynamic range differences. In this study, we recorded cry samples using an Olympus 

DM-520 digital voice recorder (Olympus Imaging America, Inc., Center Valley, PA). This 

standardized input format can easily be replicated in other studies.

Phase I takes the .wav files and produces a comma-separated value (CSV) file that is 

readable not only by the Phase II program but also by programs such as Microsoft Excel. In 

the first phase of the analysis system, all outputs relate to the unit of a fixed-length, fixed-

advance frame described by 22 numerical parameters. Thus, because each number has a 32-

bit representation, this implies a data rate of only 56.32 kbits/s, a significant reduction. The 

first two lines of each Phase I output file are headers. The fields for the header record are 

defined in Table 1. We needed to address the fact that there are many useful (older) infant 

cry samples that have been recorded on analog tape. However, the recording quality of these 

tapes may vary. Thus, a preliminary automatic scan of a digitized recording has been 
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designed to ascertain a recording’s quality based on background noise—usually hum and 

signal-to-noise ratio (SNR; as determined by an average amplitude for high-energy events to 

the amplitude of easily identifiable “silence” regions)—and a detection of saturation at some 

phase of the recording process. The mean value of the recording, an estimate of the dynamic 

range, and a classification of the quality of the file (high quality, noisy, low level, analog 

saturated, digital saturated) are all put into the header file for the Phase I system. The rest of 

the output file consists of fixed-length records, one record per frame, as defined in Table 2.

We use a fixed-frame rate of 1,200 samples (25 ms) with a frame advance of 600 samples 

(12.5 ms) to keep reasonably high resolution in both time and frequency. Given today’s 

technology, the analysis system was designed to be liberal with its use of computation so as 

to reflect resultant parameters more accurately. Thus, three discrete Fourier transforms are 

computed for each 1,200-point frame. The middle 768 points are transformed for the F0 

estimate as explained below. The full frame (1,200 points) is transformed for amplitude 

computations, and an interpolated transform of 4,096 points (1,448 zeros, the 1,200 point 

frame, and 1,448 zeros) is used to detect F0 above 1 kHz (what we term hyper-pitch).

The Phase II program takes the Phase I data as input and reduces the data further, separating 

them into groups of frames having similar properties, which we call sound segments. The 

CSV output has a record for each of these groups of frames. The concatenated groups of 

frames are labeled to be one of the following classes:

1. silence

2. short utterances (length < 0.5 s, relatively high energy)

3. long utterances (length > 0.5 s, high energy)

The output from Phase II contains information summarizing utterance-level characteristics 

of infant cries, and thus the Phase II output is expected to be most useful for studies of 

crying in various infant populations. Phase I accuracy has been carefully tested for this 

article because it is upon this phase that the validity of the summary output rests.

 Phase I System

There are several approaches that can be used for pitch detection, and the more common of 

these methods are based on (a) time-event rate detection (Ananthapadmanabha & 

Yegnanarayana, 1975; Rader, 1964; Smith, 1954, 1957), (b) autocorrelation methods 

(Dubnowski, Schafer, & Rabiner, 1976; Gill, 1959; Rabiner, 1977; Stone & White, 1963), 

and (c) frequency domain methods. Time-event rate detection methods are based on the fact 

that if an event is periodic, then there are extractable time-repeating events that can be 

counted and the number of these events per second is inversely related to the frequency. 

Autocorrelation methods are used as a measure of the consistency or sameness of a signal 

with itself at different time delays; the peak of the time-delay value is returned as the pitch 

period. Finally, frequency domain approaches include methods such as comb filters (filters 

in which a signal is subtracted from itself at different time-delay values; Martin, 1981), 

tunable infinite impulse response (IIR) filters (Baronin & Kushtuev, 1971), and cepstrum 
analysis (Bogert, Healy, & Tukey, 1963; Noll, 1967).
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The time-event rate detection methods are extremely simple and easy to implement. 

However, they have immense difficulties dealing with spectrally complex signals such as 

human speech or a baby’s cry. The autocorrelation and the first two frequency domain 

methods are also more suitable for cleaner signals (e.g., sounds produced by musical 

instruments). Perhaps the method most widely used for obtaining F0 for adult speech is 

cepstrum analysis. When applied correctly, it has proven to be a robust method for 

describing acoustic properties of noninfant vocalizations, and it should be suitable for the 

complex vocalic signals of infant cry. The resulting cepstral coefficients are the standard 

features for speech recognition algorithms. Accordingly, we have selected cepstrum analysis 

to develop the cry analysis algorithm in this project.

It is accepted that a normal infant cry F0 range is 200 Hz to 1 kHz, or a pitch-period range of 

5 ms to 1 ms. Because pitch-period estimates are obtained using a modified version of the 

cepstrum method (Noll, 1967), several pitch periods are required within each frame to make 

the short time frame appear periodic. Thus, to get a minimum of three pitch periods (and a 

“nice” number for an FFT), we selected a fixed frame of 768 points (or 16 ms for 48 kHz 

sampling) of each 1,200-point frame and a 768-point Hamming window. A larger window 

will cause the cepstral pitch peak to broaden for the higher F0 values, and a smaller window 

will not have as good cepstral peaks for low values of F0. The Hamming window will 

broaden the harmonic peaks but eliminate most the effects due to sidelobe accumulations. 

This analysis strategy was decided upon in order to capture four to eight pitch periods per 

frame. Given the nature of infant cry, greater frame lengths would decrease the reliability of 

pitch-period estimation. Thus, we had to modify the basic technique in order to compensate 

for the unique characteristics of infant cry. The first change was to apply a frequency 

window W[r], effectively limiting the band to be considered to be from 200 Hz to 2200 Hz 

to the log-spectrum before computing the inverse discrete Fourier transform (IDFT). 

Because energy in voiced speech naturally falls off after 4 kHz, the spectral harmonic 

structure is amplitude modulated by the roll-off function, which can cause multiple peaks in 

the cepstrum when the sampling rate exceeds 8 kHz. Applying a frequency window 

smoothes the cepstrum, eliminating these modulation effects. The window also 

deemphasizes low- and high-frequency noise. The effects of the frequency window are 

depicted in Figure 1, specifically in Panel (c), in which the pitch period is easy to identify, 

although a second rahmonic is also evident (the term rahmonic refers to harmonics in the 

cepstral domain).

It is noted that infants generally do not double or halve their pitch frequency nearly 

instantaneously during voiced portions of a cry vocalization. Thus, by considering multiple 

frames at once, many F0 doubling and halving estimation errors can be eliminated. We 

consider halving and doubling errors to be those that occur for one or two frames, which 

would imply very rapid changes in pitch frequency. It is these that we try to eliminate, not 

the longer doubling or halving regions that appear when even or odd harmonics disappear in 

the spectrogram. A dynamic-programming smoother is a reasonable mechanism to ensure 

continuity in the F0 estimates at transitions and many other anomalies. This is not a new idea 

(Secrest & Doddington, 1982), although our implementation is specifically set up for infant 

cries. In our implementation, 50-frame blocks (0.625 s) are run through the dynamic-

programming algorithm after determining F0 and a confidence measure for independent 
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frames. The last 50 frames of the recorded cry constitute the last block. As the number of 

frames is not likely to be divisible by 50, there is some special processing due to overlap for 

the last block. All negative cepstral values are truncated to zero, and the accumulated path 

metric is simply the sum of the 50 cepstral values built in the normal forward part of the 

dynamic-programming algorithm. The pitch period is allowed to change no more than plus 

or minus 20 cepstral points (0.416 ms) per frame. The backtracked path is used for the initial 

estimates for F0. Following the dynamic programming, some further outliers (typically at 

utterance transitions) are eliminated using a standard five-point median filter. The result is 

pitch-period estimate q0[i] for Frame i, and pitch frequency (Data Element 3 as in Table 2) is 

simply F0 [i] = fs /q0[i], where fs is the sampling frequency. Data Element 4, pitch energy, is 

the cepstral value of q0[i], C[q0[i], i].

Instead of using amplitude alone, the pitch-estimation system is also well suited for making 

voicing decisions for each frame. Data Element 5 in Table 2 is a pseudoprobability for 

voicing based on the cepstral analysis. For cepstrum C[q, i] and pitch-period estimate q0[i], 
the traditional cepstrum method uses C[q0[i]] as a measure of voicing. This measure has 

been found to fluctuate under different noise conditions, making it difficult to find a reliable 

threshold for a multi-environment system. Instead, we use an SNR-like measure to make a 

voicing decision. This measure is based on the height of the cepstral peak with respect to the 

cepstrum noise level. The window W [r] effectively smoothes the cepstrum of length N by a 

factor of D, where

(1)

This smoothing causes peaks in the cepstrum to have a width of approximately D + 1 

samples. This information is used to compute the voicing confidence measure V, which is a 

function of C[q0[i], i] and its surrounding. The cepstrum method searches for evidence of 

periodicity within a finite pitch-period range based on knowledge of human F0 production. 

In this method, qmin and qmax are the minimum and maximum pitch- period (quefrency) 

indices in the search region. These are fixed and do not vary with the frame index i. The 

voicing-detection algorithm begins by zeroing out all negative C[q] values and all values 

outside the region q∈ [qmin, qmax] in the cepstrum C[q, i]. This nonnegative cepstrum is 

denoted as Ĉ [q, i], and let D̂ = ⌠D⌡. Pitch-period estimate q0[i] is chosen to correspond to 

the maximum value of Ĉ [q, i], as is done in the traditional method. Then, the voicing 

confidence V [q0[i], i] is defined as

(2)

where R is the number of rahmonics to include. It was found that R = 3 was sufficient, 

because larger rahmonics were often insignificantly small.
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V [q0[i], i] is a number between 0 and 1. Values of V [q0[i], i] corresponding to high-

quefrency (low-frequency) pitch-period estimates tend to have smaller magnitudes because 

fewer rahmonics fall within the search interval [qmin, qmax]. The decision threshold, α 

[q0[i]], depends linearly (from 0.7 at qmin to 0.5 at qmax) on the index of the current pitch-

period estimate q0[i]. In the Phase II program, a frame would be labeled as voiced if V 
[q0[i], i] ≥ α[q0] perhaps along with some amplitude criteria.

(3)

In addition to being more robust to different noise conditions, V [q0[i], i] also protects 

against doubling errors by including the magnitude of cepstral content away from the peak. 

Although doubling errors will not be corrected by using this method, it was ultimately found 

that ignoring such difficult frames by labeling them unvoiced was sufficient for the task at 

hand.

There is a mode in an infant’s cry when the fundamental frequency is above 1000 Hz, which 

we call hyper-pitch (Golub, 1989; LaGasse et al., 2005). Thus we attempt to determine a set 

of hyper-pitch values for each frame. We use a Hamming-windowed 4,096-point DFT with 

the full 1,200-point frame data in the center of inserted zeros to compute an interpolated 

spectrum and search its log magnitude for peaks in the range of 1000 Hz to 5000 Hz. The 

highest peak P[1] in the range is found first, and, because the lowest hyper-pitch is 1000 Hz, 

the spectrum is masked from max[1000, P[1, i] – 1000] to min[5000, P[1, i] + 1000] and 

searched for another peak. This process is repeated until three such peaks have been found 

P[k, i], where k denotes the individual elements of the set of three peaks (kε [1, 3]). The set 

is then reordered to be left to right as P̂ [k, i]. It is hypothesized that the three peaks form 

some harmonic set, and the frequency differences are taken, yielding a hyper-pitch value 

Fhp[i] = 0.5(P̂ [3, i] – –P̂ [1, i]). If only two peaks can be found, then Fhp[i] = P̂ [2, i] – –P̂ 

[1, i]. There is a special case when the hyper-pitch is about 1000 Hz and the odd harmonics 

dominate. In this case, the minimum difference between peaks is taken as the hyper-pitch 
frequency. An example of a spectrum for a frame driven by hyper-pitch is shown in Figure 2.

The hyper-pitch energy (seventh value in the record) is simply taken as the average of the 

fundamental hyper-pitch value and two of its harmonics. It is not necessarily that of the 

average of the peaks. The hyper-pitch confidence (eighth value in the record) is determined 

in a similar fashion to that of the confidence in the normal pitch range. It is a number 

between 0 and 1 that correlates well with the validity of the hyper-pitch condition being 

active in the frame. For this result the power, A, not the log power, is accumulated for the 

range 1000 Hz–5000 Hz, and the power in the detected peaks, B (up to four in the range), is 

also accumulated. The power for a given peak is accumulated over about 30 interpolated 

points or about 360 Hz about the peak. The ratio B/A is the confidence measure.

Fields 10 to 16 of the record give the amplitudes in dB for the entire band and for the six 

subbands listed above. The full Hamming-windowed 1,200-point DFT output is used to 

accumulate the power in each prescribed band (and overall). Those values are directly 
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converted to dB without any normalization. Thus no information is lost, but differences in 

recording levels, distance from the microphone, and other aspects of sound acquisition will 

also affect these data. However, keeping nonnormalized data allows the Phase II system to 

consider the recording conditions when making its decisions.

As has been stated, the determination of formants is a very difficult problem for analyzing 

infant cries because of the high pitch of the cries and thus the sparse harmonics. Formant 

positions can be estimated, but their precise central values, if somewhat distant from a pitch 

harmonic, may be hard to obtain. To estimate formants as accurately as possible, we use the 

interpolated 4,096-point DFT data. After obtaining the log-magnitude spectral data, we 

apply a low-pass “lifter” to the data, whose parameters depend upon the pitch value. Then 

substantial peaks in the smoothed data are taken for the formant positions and the heights of 

the peaks are taken for the magnitudes. Figure 3 shows a typical voiced frame. In Panel (a) 

the smoothed spectrum is shown, whereas in Panel (b) the unsmoothed spectrum is given. 

The formant positions and their magnitudes take up the last six positions in each record. One 

should note that the third formant is more arbitrary than the first two and for this reason has 

really not been used yet in our follow-up work.

 Phase II

Because this article is meant to describe the Phase I part of the analyzer and validate this 

first extraction of infant cry data, the Phase II analyzer is only described somewhat briefly. 

Phase II output starts with two header records, the first being the same one as the Phase I 

header with the first field changed to read “Phase II.” The second contains the 81 Phase II 

column headings. (Specific definitions of the fields are given in the supplementary material 

at www.lems.brown.edu/array/download.htm.) The first step in the Phase II processing 

utilizes the recording quality classification that is contained in the header information from 

the Phase I prescan. When running Phase II, the user defines which quality classes should be 

used, and Phase II processing is then performed only on recordings with quality 

classifications that have been entered by the user. The Phase II data output consists of 

records, each of which describes a sound segment, where a sound segment is a group of 

consecutive frames that are similar. The Phase II analyzer takes in the Phase I data and 

produces an output .csv file with sound segment records of size 81 and an average rate of 

about 3 sound segments per second. Thus the data rate, using 32-bit numbers, is reduced by 

a factor of about 7 to 7,776 bits per second. In Phase II, the user makes decisions, the most 

fundamental of which have to do with the partitioning into these utterances.

The output contains one 81-element record for each of the three sound segment types that 

were defined previously, long utterance, short utterance, and silence. (The specific field 

definitions are available in the supplementary material; see above.) All 81 fields are filled for 

long utterances, and appropriate fields are filled for the other types. The 81 fields quantify 

file ID and five various classifier outputs, eight timing parameters, six F0 parameters, five 

hyper-pitch parameters, 13 formant parameters, 15 parameters from fitting a polynomial to 

the pitch contour, and 28 parameters for amplitudes from several octave frequency bands. 

The segmentation is obtained by K-means clustering the 500-Hz to 10-kHz amplitude (dB) 

data into three classes in a prescan of the whole recording and using the results to classify 
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each frame as one of three classes: 1 = low energy, 2 = transition energy, and 3 = high 
energy. The important long utterances consist of a contiguous sequence of frames that each 

has a 500-Hz to 10-kHz amplitude (dB) classified as in the high-energy cluster with a high 

F0 confidence. Using these frame labels, the change in energy to help with the boundaries, 

and some extension rules, the partitioning is determined. If a contiguous sequence of high-

energy frames is longer than 0.5 s (40 frames), a long utterance is created. If only the length 

criterion is not met, then that sequence is classified as a short utterance, and if the sequence 

is of low energy, then the sequence is called a silence. The operational definition of a long 

utterance is consistent with prior research on infant crying (LaGasse et al., 2005) and allows 

for analyses of utterances produced in different types of cries (e.g., initial utterances of pain-

induced cries can be expected to be longer than 0.5 s, but cry utterances produced in 

different contexts may be shorter). In our work with sound files of adequate quality, there 

has been virtually no mis-labeling of low-energy cry information as silence.

Many infant cries are very intensive, with a large amount of frication in the high-energy long 

utterances. This can be found in our system by seeing if there is very high energy for a frame 

but low F0 confidence; the extra frication-sounding energy for this frame tends to mask the 

cepstral detector. We call this phenomenon voiced frication and extract pertinent information 

about it for the Phase II output. Also, many infants exhibit a short air-intake noise—audible 

inspiration that typically follows a long cry and/or one produced by an infant under duress—

immediately after a long utterance. If sufficiently close (in time) to the end of a long 

utterance, this period is included in the long utterance but specifically noted as a classifier 

for the long utterance. An audible inspiration of this type is likely to be perceived as a part of 

the cry utterance. The use of this classifier retains the full length of the utterance while also 

allowing for the user to examine utterances with this classifier separately. Although the third 

formant is very suspect, it has been included. Because the contours of the F0 data within an 

utterance are important, we approximate these contours by a polynomial fit. Using an 

information-theoretic criterion, we estimate the best order to use for this model. This number 

is often large, approaching 20 or more. We then restrict the fit to be of order five or fewer, 

and the best fit is often of the third or fourth order. All the polynomial fitting is done on the 

F0 data. The class field is a number (1 to 10) descriptor of the shape of the fit: rising, falling, 

flat, double peak, and so forth. The final 28 fields contain information on the amplitudes. 

Again, these values have not been normalized in any way. Each of the sound segment–level 

statistics has been calculated by going back to the power domain, accumulating properly 

over the frames of an utterance, and then transforming back to dB.

 Validation of Pitch-Estimation and Frame Voicing-Decision Algorithms

Interpreted results from older analysis systems most often indicate that timing—lengths and 

spacing of utterances—F0, and voicing are highly informative features of infant cry 

production. Moreover, other features of infant cry, such as the contours of F0 across 

utterances, are dependent on the accuracy of F0 estimation. Therefore, an experiment was 

conducted to evaluate the performance of the voicing-detection and pitch-estimation 

algorithm. We identified cry recordings recorded previously in an ongoing longitudinal 

study (Lester et al., 2002). Cries were elicited and recorded using procedures approved by 

the hospital institutional review board (IRB). The IRB also approved access to these archival 
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recordings for the purpose of the analyses reported in this paper. Recordings were made of 

cries elicited by standard methods (LaGasse et al., 2005) from typically developing infants at 

1 month of age. Cries were elicited by a specially designed device that applied a painful 

stimulus (analogous to a rubberband snap) to the sole of the right foot while babies lay 

supine in a stroller with a unidirectional microphone suspended at a standardized distance 

above the baby (5 inches). Cry samples were selected from an existing longitudinal data set. 

A total of 15 cries from 15 individual babies were evaluated, each sample containing 

between 36 and 42 s of cry data. We coded and analyzed only cries characterized by intense, 

loud, rhythmic, and sustained vocalizations that were differentiated from brief cries and 

fusses characteristic of lower states of arousal.

These cries were selected on the basis of the infants being the products of full-term normal 

pregnancies and receiving scores within normal limits on later assessments of developmental 

functioning (e.g., Bayley Scales of Infant and Toddler Development [Bayley, 2005] at 24 

months of age). Recordings were made in a quiet and controlled setting at a hospital-based 

developmental assessment center, and thus the recording quality was high and background 

noise was minimal. Recordings were sampled at 48 kHz with the Olympus direct PCM 

recorder described above.

 Establishing ground truth—Ground truth was established for both the presence of 

voicing and the corresponding F0 by hand-labeling each cry. Pitch-frequency labels were 

obtained by hand-marking pitch-period intervals from the time-domain plot of the cry 

waveform. For this purpose we utilized a software program developed in our lab that 

conveniently displays both time and frequency plots from .wav files (Silverman, 2011). All 

labels were affixed by a single person trained to affix time markers at the high-energy peaks 

that generally allow the denotation of a pitch frequency. Pitch-period labels were affixed for 

regions of each cry recording determined to be clearly voiced.

The intervals of voicing were also hand labeled using a spectrogram plot, as shown in Figure 

4. Intervals were first marked at the frame level, indicating that the region about that 

particular 12.5-ms frame advance was voiced. Then, the regions indicated by the labels on 

the frames as voiced were fine-tuned to indicate specific interval types at the resolution of 

the sampling time by viewing the corresponding time-domain plot. Five different interval 

types were defined: voiced (V), unvoiced (UV), silence (S), voiced frication (VF), and high 
voicing (HV). An interval was labeled as V if the spectrogram showed a well-defined 

harmonic structure, indicating periodicity. An interval was labeled as UV if the spectrogram 

showed significant energy without the presence of harmonics. S intervals showed very low 

signal energy. The VF label was assigned when an interval exhibited a harmonic structure in 

addition to turbulent (frication) noise at nonharmonic frequencies. VFs were given a separate 

label because it is unclear whether such frames should be labeled as V or UV. Finally, the 

HV label was assigned to intervals with a very sparse harmonic structure, indicating a very 

high fundamental frequency (greater than 1 kHz), which we have called hyper-pitch–excited 
frames.
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Table 3 shows the number of frames in the data set corresponding to each of the five voicing 

classes. The infant cries in this data set consisted mainly of voiced speech. Examples of the 

HV and UV classes occurred quite infrequently.

The labeling was conducted by a research assistant who was first trained to understand the 

kinds of patterns that should be labeled and then trained to criterion level of accuracy by the 

first author. Once the labeler’s accuracy was confirmed on a series of training samples, she 

then hand coded the cry samples as described above. It was these hand-coded cry samples 

that were used as the gold standard or ground truth for subsequent analyses of the accuracy 

of the automated system. Each frame required the careful labeling of 4 to 15 (or more if 

hyper-pitch) F0 onsets, and some 2,915 frames were hand labeled. To cross-validate the 

hand-labeled ground truth, the author (X. L.) used the same criterion to hand label a little 

less than 10% of the frames (256). The receiver operating characteristic (ROC) curve and an 

expansion of the “knee” part of the curve are shown in Figure 5. It may be seen in this figure 

that about 92% of the ground-truth data agree with the data labeled by X. L. within a 2-Hz 

tolerance and that there is 98% agreement within a 5-Hz tolerance. We are thus quite 

confident in our ground-truth data.

 Fundamental frequency—The results presented here demonstrate the accuracy of the 

F0 estimation algorithm. The ground-truth labels were placed at sample indices of consistent 

peaks bracketing each pitch period during clearly voiced cries. There are clearly multiple 

pitch periods in each voiced frame. The sample indices were compared with the frame 

boundaries used by the analysis system to find all frames that were 100% covered by the 

pitch-period labels. The subset of frames for which hand-marked pitch-period labels were 

available is represented as v0. The same set of cry recordings were processed by the analysis 

system, which output the set of estimated voiced frames v. The following analysis was 

carried out on v ∩ v0, the set of all frames for which the automatic voicing labels, v, and the 

ground-truth voicing labels, v0, agreed. The set v ∩ v0 contained a total of 2,915 voiced 

frames.

For each voiced frame in v ∩ v0, the magnitude of the error between the estimated pitch 

frequency, f, and the ground-truth pitch frequency, F0, was computed. The pitch frequency 

estimate was considered to be correct if |f – F0| ≤ T for some tolerance T in Hz. One should 

note that the quantization tolerance in the cepstral domain varies from about 1 Hz at F0 = 

200 Hz to about 5 Hz at F0 = 1 kHz. Figure 6 shows the percentage of frames with correct 

pitch-frequency estimates corresponding to each pitch-frequency tolerance, T. Several 

operating points are also shown in Table 4. As can be seen, the automated F0 detection had 

an accuracy of about 90% at a tolerance of 10 Hz and nearly 95% at a tolerance of 20 Hz. 

We did not see evidence for any systematic disagreement between the hand-coded and 

automated F0 detection.

 Voicing—A separate analysis was carried out to evaluate voicing-detection capabilities 

of the system. This analysis was formulated as a simple two-category classification problem, 

and Figures 7 and 8 give standard ROC curves showing the results. The two figures differ in 

that Figure 7 includes S frames, whereas Figure 8 does not.
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Figures 7 and 8 show that the system is very effective in distinguishing V frames from UV 

and S frames. As expected, the system achieves much higher error rates when attempting to 

detect VF, which by definition is a mixture of voicing and turbulent signals. The HV frames 

were also more difficult to detect, although they occurred infrequently in this data set. 

Figures 7 and 8 include area under the curve (Az) values demonstrating accurate detection of 

V sound segments. Az values ranged from .907 to .997 for the analysis that included frames 

with S and .883 to .995 for frames that did not include S.

 Conclusions

We have presented the details of a modern infant cry analyzer that can be run in near real 

time on a normal PC platform or could be run in real time on many of today’s embedded 

processors. The design is the result of 2 years of collaborative effort between hospital-based 

and engineering-based faculty at Brown University. The intent of this collaboration was to 

produce a system that would have utility for both basic and applied research on infant cry 

production. This system extends and builds upon recent approaches to quantifying acoustic 

features of infant cry (e.g., Branco et al., 2007; LaGasse et al., 2005; Lester et al., 1991; 

Manfredi et al., 2009; Várallyay et al., 2004). This automated system is described in detail in 

order to provide the reader and potential users with a clear understanding of the approach 

that we used to develop this system. In addition, and quite uniquely, we conducted stringent 

tests of the accuracy of this automated system as compared to hand-labeled cry 

spectrograms.

The analysis system has two levels of output. Phase I segments the sound into analysis 

frames with an advance of 12.5 ms. Each frame is summarized by the system for features 

that include timing, voicing, F0, amplitude, and formant information. Phase II operates on 

the Phase I data, making decisions with regard to classifying portions of the sample as cry 

utterances or silence, which could be a portion of the recording prior to cry onset or could 

represent time periods between cry utterances. This timing information allows researchers to 

utilize measures such as latency to cry, which is of interest for researchers utilizing standard 

methods to elicit infant cries (LaGasse et al., 2005), and interutterance intervals, which may 

be useful for classifying different types of infant cries (e.g., pain vs. nonpain cries). In 

addition to this timing information, the Phase II output yields summary descriptors of cry 

utterances, including measures of F0, amplitude of cry in various frequency bands, and 

estimates of formant location. This Phase II output also yields measures of the voiced 

proportion of each cry utterance. A unique aspect of this output is that it includes a 

confidence estimate for the voicing decision. This is based on an SNR analysis and allows 

the researcher both full information on how the voicing decision was made and the ability to 

modify this decision, should the research question call for a more- or less-stringent 

definition of voicing.

An additional unique feature of the Phase II output is an automated approach to describing 

F0 contours across a cry utterance. Some past research has made use of this variation in F0 

across utterances to describe “melodic” aspects of cries, but it has accomplished this task by 

hand classification of F0 contours from spectrograms (Mampe, Friederici, & Wermke, 2009; 

Wermke, Mende, Manfredi, & Bruscaglioni, 2002). The system described here utilizes a 
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polynomial fit method to classify F0 contours. Initially, the system classifies these contours 

into one of 10 categories. This output may be used to identify cry utterances with more or 

less prototypical contours, to characterize the complexity of such F0 variation, or to explore 

differences in F0 contours related to development or population differences. The validity of 

an automated acoustic analysis is dependent on its performance accuracy. Therefore, we 

conducted a substantial experiment that indicates the accuracy of both the voicing and the 

fundamental frequency detectors. The features that were selected, F0 and voicing, are the 

ones that have proven to be most discriminating of clinical populations in past literature.

As depicted in Figure 6, about 90% of the automatic estimates were within a F0 tolerance of 

10 Hz. The best the estimator does is 96.4% when the tolerance is opened up a bit to 50 Hz. 

Virtually all errors occur at the boundaries of voiced utterances. Equal-error rates for voiced 

(vs. unvoiced or silence) frame detection is nearly 99%. Much more difficult to detect hyper-

pitch frames are identified with an equal-error rate of about 80%. Past research utilizing 

automated analyses of infant cry has generally not reported this type of performance 

analysis. Furthermore, other computer-assisted methods have utilized analyzers designed for 

adult speech. Validation of a system specifically designed to summarize the acoustic features 

of infant cry is therefore an advance in the field and a unique strength of the study reported 

here. The results of our experiments revealed high accuracy of the automatic detectors of F0 

and voicing decisions in comparison to gold- standard hand coding from spectrogram 

displays.

Our careful experiment demonstrates that the analysis system yields an excellent reduced 

data representation of the desired acoustic features of babies’ cries. However, there are some 

areas of analysis that are a significant challenge for infant cry analysis. In particular, the 

accurate automatic detection of formants is quite difficult given the high pitch and wide 

harmonic structure of infant cry (Robb & Cacace, 1995). In adult speech, the shape of the 

vocal tract determines the resonant frequencies, which are described as formants. For our 

purposes, we applied a low-pass “lifter” to the data in order to assist in estimating the 

location and magnitude of formants in the infant cry. We have described this approach, but 

we acknowledge that the problem of both the measurement and interpretation of formants in 

infant cry remains to be fully resolved. An additional challenge is to reliably determine 

voicing in conditions that we refer to as voiced frication or high voicing portions of a cry 

utterance. These issues are a reflection of some of the conceptual and methodological 

challenges to infant cry analysis more generally. Thus, these issues notwithstanding, our 

interpretation is that this study reports a level of performance accuracy that is quite sufficient 

for both human and automatic interpretation of cries for various phenomena. For example, 

the automated nature of this analysis system makes possible rapid analysis for large data sets 

and thus studies of substantial numbers of subjects, allowing for more powerful studies of 

differences in infant cry associated with various medical or developmental conditions or 

populations. A highly unique aspect of this system is that it allows researchers to summarize 

broad characteristics of cry utterances using the Phase II output while also preserving 

detailed microanalytic data in the Phase I output that would allow for precise 

characterization of within-utterance variations in cry production.
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A number of future directions for this research are possible: It can be applied to questions 

pertaining to possible individual or group differences in cry production that may help to 

screen for infants at risk for various developmental disorders, or it may find use in medical 

applications, such as identifying infants at risk for poor developmental outcomes. Thus, a 

validated cry analyzer will be useful for continued research on developmental outcomes in 

at-risk infants, including investigations of neurobehavioral outcomes associated with 

prenatal environmental risk factors. Moreover, the complex nature of infant cry acoustics has 

the potential to yield feature patterns that can be used to identify infants at elevated risk for 

poor developmental outcomes or specific developmental disorders such as autism spectrum 

disorders. More basic research may also utilize this system in order to study normative 

aspects of infant cry production with larger samples than has been possible in the past. To 

this end, we intend to make the MATLAB version available online at www.brown.edu/

Departments/Children_at_Risk, so that the general community will have access to a high-

quality infant cry analyzer. Future efforts will involve refining the analysis and output of this 

system, as well as developing a more user-friendly interface to enhance its accessibility for a 

variety of researchers.
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Figure 1. 
Panel (a): An example of a voiced infant cry spectrum. Panel (b): Nonwindowed cepstrum of 

same frame showing range for inspecting for rahmonics. Panel (c): Windowed cepstrum 

showing range for inspecting rahmonics.
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Figure 2. 
An example of the spectrum of a hyper-pitch-excited frame and the cues from the peaks.
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Figure 3. 
An example of the smoothed function for the determination of formant positions; there is 

strong influence from the harmonics of F0.
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Figure 4. 
Ground truth for voicing type was established by hand labeling a spectrogram plot. Intervals 

were labeled as voiced (V), unvoiced (UV), silence (S), voiced frication (VF), or high 

voicing (HV).
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Figure 5. 
Panel (a): Receiver operating characteristic (ROC) curve showing agreement between 

ground-truth hand labeling and author X. L. hand labeling of about 10% of data used in the 

validation. Panel (b): Expanded graph of the dotted area of Panel (a).
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Figure 6. 
Percentage of the 2,915 voiced frames with correct pitch-frequency estimates (|f – F0| ≤ T ) 

for several error tolerances (T in Hz).
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Figure 7. 
ROC curves giving the voicing-detection performance of the system. V, VF, and HV frames 

were separately considered to be positives. In each case, both UV and S frames were 

considered to be negatives. Area under the curve (Az) values were as follows: V/(UV,S) = .

997; HV/(UV,S) = .907; VF/(UV,S) = .995.
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Figure 8. 
ROC curves giving the voicing-detection performance of the system. V, VF, and HV frames 

were separately considered to be positives. Only UV frames were considered to be negatives. 

Az values were: V/(UV) = .995; HV/(UV) = .883; VF/(UV) = .934.
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Table 1

Initial header record definitions.

Field Definition

1 Phase I or Phase II (text)

2 Subject (text)

3 Subject description (text)

4 Number of zero frames

5 Mean value of recording [0, 32767]

6 1% dynamic range (dB)

7 1% dynamic range [0, 32767]

8 5% dynamic range (dB)

9 5% dynamic range [0, 32767]

10 10% dynamic range [0, 32767]

11 10% dynamic range [0, 32767]

12 Quality class
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Table 2

Phase I: Definition of fields of per frame record.

Frame record Field

1 Frame number

2 Time (ms)

3 F0 (Hz)

4 F0 amplitude (dB)

5 F0 confidence [0, 1]

6 Hyper-pitch (Hz) ([1, 5] kHz range)

7 Hyper-pitch amplitude (dB)

8 Hyper-pitch confidence [0,1]

9 Peak pitch amplitude (dB)

10 Overall amplitude (dB)

11 Amplitude [0.5, 10] kHz (dB)

12 Amplitude [0, 0.5] kHz (dB)

13 Amplitude [0, 5, 1] kHz (dB)

14 Amplitude [1, 2.5] kHz (dB)

15 Amplitude [2.5, 5] kHz (dB)

16 Amplitude [5, 10] kHz (dB)

17 F1 (Hz)

18 Amplitude of F1 (dB)

19 F2 (Hz)

20 Amplitude of F2 (dB)

21 F3 (Hz)

22 Amplitude of F3 (dB)
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Table 3

Number of frames in the data set, labeled with each of the five voicing classes.

Voicing class # of frames

Voiced (V) 27,745

High voiced (HV) 92

Unvoiced (UV) 3,155

Voiced frication (VF) 560

Silence (S) 13,638
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Table 4

Percentage of the 2,915 voiced frames with correct pitch-frequency estimates (|f – f0| ≤ T) for several error 

tolerances (T in Hz).

T (Hz) % Correct frames

10 88.44

20 94.17

30 95.33

40 96.12

50 96.43
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