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Abstract

Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with
remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been
an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes
from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’
were sequenced using lllumina sequencing technology. This is the first cp genome reported
in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp
in length, presenting a typical quadripartite structure with two inverted repeats each sepa-
rated by one large and one small single-copy region. For each cp genome, 134 genes were
annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179
repeats and 283 single sequence repeats were identified. Four hypervariable regions,
namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA,
were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp
genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is
closely related to D. kaki and could be used as a model plant for future research on D. kakij;
to our knowledge, this is proposed for the first time. Further, these analyses together with
two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its place-
ment as a new species in Diospyros. Both maximum parsimony and likelihood analyses for
19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is
monophyletic in Ericales.

Introduction

Diospyros, belonging to Ebenaceae, is a large genus with more than 500 species that are dis-
tributed worldwide [1]. D. kaki is the most important economic crop and the most widely
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cultivated species of Diospyros. It is believed to have originated in China and has been an
important food source in China, Korea, and Japan from prehistoric times [2]. The fruit of D.
kaki is delicious and has an extensive popularity globally. In 2013, the global production of
persimmon (D. kaki) was 4,637,357 tons, of which 78.0% was from China [3]. In addition,
the fruit is used as a source of persimmon lacquer and tannin [4]. The leaves can be used as
tea and are known to have phytochemical and pharmacological properties [5, 6]. At present,
about 1000 cultivars exist in China [7], most of which are hexaploid, while some are nona-
ploid [8]. The progenitor, origin, and polyploidization mechanisms of D. kaki are still ambig-
uous; thus, identifying a closely related diploid species to be used as reference for future
research is necessary. Previous studies indicated that the diploid species—D. oleifera, D.
lotus, D. glaucifolia, and D. ‘Jinzaoshi’—are the related species of D. kaki [9, 10]. They are
also widely used species of Diospyros. D. glaucifolia is used as timber wood; D. oleifera is used
as a source of tannin, whereas D. lotus and D. ‘Jinzaoshi’ are cultivated for their fruits. D. ‘Jin-
zaoshi’, known as Jinzaoshi in China, is a controversial species. It has been accepted as a cul-
tivar of D. kaki, but recent studies based on morphological as well as internal transcribed
sequence (ITS) and matK sequence analyses proposed that D. ‘Jinzaoshi’ might be a new spe-
cies [11].

In addition to these factors, the classification of Diospyros is very difficult because of the
natural or artificial interspecific hybrids, indistinguishable morphological features across
species, and the complex chromosome numbers (2n = 2X, 4X, 6X, 9X = 30, 60, 90, 135) [8].
The identification of the phylogenetic relationship of Diospyros has been attempted using
various methods based on morphological characteristics [12] and molecular markers [13,
14]. Different markers yield inconsistent results, probably because of the discrepant sequence
divergence ratios and tree-generating methods used. Additional markers should be detected
to reveal the accurate relationship within Diospyros and to elucidate phylogeny within the
asterids.

The chloroplast (cp) genome of higher plants has a conserved quadripartite structure
with one large single-copy region (LSC: 80-90 kb) and one small single-copy region (SSC:
16-27 kb) separated by two identical inverted repeat regions (IR: 20-28 kb in length) [15,
16]. The gene content and gene order in angiosperm cp genomes are usually highly con-
served, containing 110-130 distinct genes that encode 4 rRNAs, 30 tRNAs, and 80 protein-
coding genes [17]. However, the angiosperm cp genome has also undergone several large
mutations such as genome rearrangement and gene loss and gain in both monocots [18]
and dicots [19].

Cp genomes are useful in taxonomy and evolutionary studies [20, 21] for their small size,
conserved gene content and arrangement, and maternally inherited characteristics [22, 23].
The basal asterids Ericales are a large order containing more than 20 families [24]. However,
complete cp genomes have been sequenced from only four families (Ericaceae, Theaceae, Acti-
nidiaceae, and Primulaceae) [25-28]. Analysis of more cp genomes is needed for an accurate
phylogeny of angiosperms. The cp genome can also be used in genetic transformation [29],
agricultural trait improvement [30], and DNA barcoding [31]. Cp genome transformation is
superior to nuclear transformation because of its high level of transgene expression and gene
containment [32]. Complete cp genome of Diospyros or Ebenaceae has not yet been sequenced
despite their remarkable economic value.

In this study, we sequenced complete cp genomes from five species of Diospyros and con-
ducted comparative analyses within both Diospyros and Ericales. The comparative analyses of
the cp genomes of Ebenaceae and four other families with published cp genomes were con-
ducted to elucidate the phylogeny and genomic structures of Ericales.
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Materials and Methods
Plant Materials

Healthy and young leaves were collected from adult plants of five species, D. kaki, D. ‘Jin-
zaoshi’, D. glaucifolia, D. lotus, and D. oleifera, grown in a field nursery in Yuanyang County,
China. This nursery is a germplasm collection center of Diospyros species owned by Non-tim-
ber Forestry Research and Development Center, Chinese Academy of Forestry. Our study was
permitted and approved by this authority. No endangered or protected species were sampled.

DNA Sequencing, Genome Assembly, and Validation

Total DNA was extracted from 50 g of fresh leaves using a DNeasy Plant Mini Kit (Qiagen,
Valencia, CA, USA). After purification, the DNA sample was randomly fragmented to con-
struct paired-end (PE) libraries according to the Illumina preparation manual (San Diego, CA,
USA). This sequencing technology was chosen because of its high accuracy in homopolymer
sequencing [33] and its wide application to other plastomes [34, 35]. Accurate sequencing of
mononucleotide repeats is important since they have variable lengths in different haplotypes
[36].

The cp DNA was assembled as follows: all reads were filtered by trimming 20 bp from the
PE reads and reads with quality score of less than 20. The clean PE reads were overlapped
using FLASH ver. 1.2.6 [37] and then aligned to the cp database by using Burrows—Wheeler
Aligner (BWA) software [38]. Celera Assembler [39] was used to assemble the reads into con-
tigs, which were then scaffolded using SSPACE [40]. Mapping assembly was generated using
LASTZ [41] and Camellia yunnanensis (NC_013707) as a reference sequence.

The gaps were filled using GapFiller [42] to obtain the complete genomes. The complete cp
genome sequences were validated by designing 101 pairs of primers to obtain PCR products.
Five of these primers covered the four junctions between single-copy (SC) and inverted-repeat
(IR) regions. The PCR products were sequenced using Sanger sequencing and aligned to Dios-
pyros cp genomes. These complete cp genomes were deposited in GenBank (S1 Table).

Gene Annotation and Repeat Identification

Gene annotation was conducted using the Dual Organellar GenoMe Annotator (DOGMA)
[43]. The final annotation was obtained by manual correction based on published cp gene
annotations deposited in online databases. The circular gene distribution map was drawn
using OGDraw [44].

Four types of repeats—forward, reverse, complement, and palindromic—were assessed
using REPuter [45] with the minimal repeat size of approximately > 20 bp. Microsatellites
were detected using MISA; they were defined as (unit size/minimum number of repeats) 1/10,
2/6, 3/5, 4/4, 5/3, and 6/3 [46].

Phylogenomic Analyses

Unless otherwise specified, all the multiple sequence alignments in this study were performed
using Clustalw v2.0.12 with default parameters. The maximum parsimony (MP) trees were
reconstructed using PAUP* v4.0b10 [47] with heuristic search and tree-bisection-reconnection
(TBR) for branch-swapping settings. Gaps and multistate taxa were treated as missing and
uncertainty, respectively. One tree was held at each step during stepwise addition. The Mul-
Trees option was set in effect, and Steepest descent was not in effect. Before maximum likeli-
hood (ML) analyses, the target alignment was uploaded to Cipres to identify the best model by
using the Akaike information criterion (AIC) implemented in the jModelTest2 program [48].
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The ML trees were reconstructed with RAXML v8.2.6 using the corresponding best model [49].
In both the MP and ML trees, bootstrap analyses were performed with 1000 replicates [50].

Results
Genome Sequencing, Assembly, and Validation

Overall, 477-1,150 million bp short reads were produced by sequencing of the five species on
the Illumina Hiseq and Miseq platform. The short reads were aligned against the reference cp
genome, and a total of 18.2-58.9 million bp were mapped to the reference genome, with an
average of 116-376x read depth (S1 Table).

A total of 101 pairs of primers were designed to validate the genome assemblies, including
the junctions between four regions in Diospyros cp genome (S2 Table). After PCR and Sanger
sequencing, the sequences were aligned directly against the Diospyros genomes to correct for
nucleotide mismatches or indels.

Genome Features

Diospyros cp genomes consist of two IRs (26,079-26,119 bp) segregated by two SC regions,
namely, LSC (86,948-87,059 bp) and SSC (18,076-18,532 bp), thereby presenting a typical
quadripartite structure (Fig 1, S3 Table). The genome structure and gene content and order
were identical in the five Diospyros cp genomes. For each of the five Diospyros cp genomes, 134
functional genes were predicted (Table 1), of which 115 were unique genes (including 80 pro-
tein-coding genes, 31 transfer RNA genes, and 4 ribosomal RNA genes), and 19 were dupli-
cated genes in the IR regions. Eighteen distinct genes contained one intron, two of which
contained two introns. The rps12 gene, similar to Actinidia chinensis [27], is a trans-spliced
gene with the 5" end located in the LSC region and the duplicated 3’ end in the IR region. As
has been reported previously in other plants [51-53], we also detected several non-canonical
start codons, e.g., ACG and GTG, in ndhD and rps19, respectively.

The expansion of ycfI into the IRa region is attributed to the formation of the ycfI pseudo-
gene at the corresponding border of IRb and SSC (Fig 1). Such expansion has been detected in
other angiosperm plastid genomes [51].

In total, 58% of the Diospyros cp genomes represented coding regions, whereas the remain-
ing 42% were non-coding regions.

Repetitive Sequence

Four repeat types—forward, reverse, palindromic, and complement—were detected using
REPuter [45]. The length and similarity of these sequences were more than 20 bp and 90%,
respectively (54 Table). We identified 179 repeats in the five Diospyros cp genomes, 100 of
which were shared by all the genomes, and four, five, seven, and two repeats were specifically
detected in D. kaki, D. oleifera, D. ‘Jinzaoshi’, and D. glaucifolia, respectively. Palindromic
repeats were the most common, accounting for 49%, followed by forward repeats (40%) and
reverse repeats (10%). Only one complement repeat (20 bp) was specifically identified in the
LSC region in the D. Jinzaoshi’ genome. Except for a few repeats in the coding regions of ycf2,
ndhH, ndhC, trnS-GCU, trnS-UGA, trnfM-CAU, trnV-UAC, trnS-GGA, trnP-GGG, and
trnA-UGC, the majority were located in the noncoding regions.

In total, 53, 52, 61, 55, and 62 single sequence repeat (SSR) loci were identified in D. kaki, D.
‘Jinzaoshi’, D. lotus, D. oleifera, and D. glaucifolia cp genomes, respectively (S5 Table). Among
all mononucleotide repeats, 278 were A/T stretches, whereas only one C stretch was found in
the D. locus and one G stretch was found in the D. glaucifolia cp genome. Three tetranucleotide
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doi:10.1371/journal.pone.0159566.g001

PLOS ONE | DOI:10.1371/journal.pone.0159566 July 21,2016 5/18



@’PLOS ‘ ONE

Complete Chloroplast Genomes of Diospyros

Table 1. Genes located on Diospyros chloroplast genomes.

Category
Ribosomal RNAs
Transfer RNAs

Proteins of the small ribosomal
subunit

Proteins of the large ribosomal
subunit

Subunits of RNA polymerase
Subunits of NADH- dehydrogenase
Subunits of Photosystem |
Subunits of Photosystem Il

Large subunit of Rubisco

Subunits of cytochrome b/f complex
Subunits of ATP synthase
Acetyl-CoA carboxylase
Cytochrome c biogenesis
Maturase

Protease

Envelope membrane protein

Conserved hypothetical chloroplast
reading frames

Translation initiation factor

Gene name
rm16(2), 23(2), 4.5(2), 5(2)

*trmA-UGC(2), C-GCA, D-GUC, E-UUC, F-GAA, *G-GCC, G-UCC,
H-GUG, I-CAU(2), *I-GAU(2), *K-UUU, L-CAA(2), *L-UAA, L-UAG,
M-CAU, N-GUU(2), P-UGG, P-GGG, Q-UUG, R-UCU, R-ACG(2),
S-UGA, S-GCU, S-GGA, T-GGU, T-UGU, V-GAC(2), *V-UAC,
W-CCA, Y-GUA, fM-CAU

1ps2, 3,4, 7(2), 8, 11, *12(2), 14, 15, 16, 18, 19
*pl2(2), 14, *16, 20, 22, 23(2), 32, 33, 36

oA, B, *C1,C2

*ndhA, *B(2),C,D,E,F,G,H, I, J,K
psaA,B,C,I,J
psbA,B,C,D,E,F,H,|,J,K,L,M,N, T,Z
rbclL

petA, *B, *D, G,L,N

atpA, B, E, *F, H, |

accD

CCSA

matK

**clpP

cemA

ycf1(2), 2(2), **3, 4, 15(2)

infA

(2) indicates genes that have undergone duplication. * and ** indicate genes containing one and two introns,

respectively.

doi:10.1371/journal.pone.0159566.t001

repeats (AAAT) were found only in the D. kaki, D. ‘Jinzaoshi’, and D. oleifera cp genomes. Di-,
tri-, penta-, or hexanucleotide repeats were not found. Most of the SSRs were located in the
LSC (209) region, followed by those in the SSC (49) and IR (25) regions, and 67% were inter-

genic sequences.

Comparison of the Whole Chloroplast Genomes among Ericales

The global alignments between Ebenaceae and other published families in Ericales were per-
formed using mVISTA [54] (Fig 2). The cp genome of Vaccinium macrocarpon in Ericaceae
was remarkably different from that of Ebenaceae. IRs were more conserved than SCs. Unlike
coding sequences, non-coding sequences exhibit a higher divergence across different species.
The intergenic regions of trnQ_rps16, atpl_atpH, psb]_petA, ndhF_rpl32, rpl32_trnL,
trnV_ndhC, and psbD_trnT were highly variable.

Indel Identification and Relationship of the Five Diospyros cp Genomes

All the ML trees reconstructed based on the whole cp genome sequences, protein-coding
sequences, and intergenic and intron sequences of Diospyros indicated that D. kaki was closer
to D. oleifera, whereas D. lotus had a closer relationship with D. glaucifolia (Fig 3a, Sla and S2a
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Fig 3. Phylogenetic trees based on whole genome sequences of Diospyros. (a) Maximum likelihood tree, (b) Maximum
parsimony tree.
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Figs). MP trees reconstructed using corresponding sequences were consistent with the ML tree
topology (Fig 3b, S1b and S2b Figs).

Multiple sequence alignment was performed, and indels more than 5 bp long were detected
to reveal the variations within the five Diospyros cp genomes (Fig 4). Although the five Dios-
pyros cp genomes were highly conserved, the existing differences might reveal species variation
and differentiation. In total, 66 loci were identified, and the intergenic region trnQ_rps16 with
five loci was the most variable region, followed by trnV_ndhC(4), ndhAintron (4), and
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Fig 4. Indels (>5 bp) identified based on multiple sequence alignment of five Diospyros cp genomes. Insertions are shown above and deletions
below the horizontal axis. Indel distribution was positioned using D. kaki as a reference.

doi:10.1371/journal.pone.0159566.g004
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psbD_trnT(3). The two largest indels were the deletions of 140 bp and 301 bp located in
trnQ_rps16 and rpl32_trnL in the cp genome of D. ‘Jinzaoshi’, respectively. Both MP and ML
trees based on the sequences of these four hypervariable regions corroborated the results based
on whole cp genome sequences (S3a and S3b Fig).

Analysis of IRs

In Ebenaceae, the IRa/SSC borders were located in the 3’ region of the ycfI gene creating the
ycfl pseudogene at the IRb/SSC border (Fig 5). This finding is similar with those in Actinidia-
ceae, Theaceae, and Primulaceae but remarkably different from that in Ericaceae. The IRb/SSC
borders were located upstream of the ndhF gene, except in Primulaceae whose IRb/SSC junc-
tion was located in the 5’ region of ndhF. In Ebenaceae, the IRa/LSC junctions were located in
the upstream region of trnH-GUG, similar to that in Theaceae. However, this gene was found
in the IRs in Actinidiaceae and Ericaceae, as well as in most monocot cp genomes [55]. In Ebe-
naceae and Primulaceae, the IRb/LSC junctions were located within rps19, but no copy was
generated in the corresponding region.

Phylogenetic Analysis

The phylogenetic relationship between Diospyros and other asterids was determined by collect-
ing 18 published cp genome sequences from the GenBank of the NCBI database (S6 Table).
Two cp genome sequences from Spinacia and Silene belonging to Caryophyllales were included
as outgroup taxa. Sixty-one protein-coding sequences shared by these cp genomes were aligned
in a single data matrix with a total of 52,294 characters included. Of all the characters, 35,097,
8414, and 8783 were constant, variable, and parsimony-informative, respectively. All the nodes
in the phylogenetic tree received high bootstrap (83%-100%). The MP tree strongly indicated
that Ericales is a basal sister order to the subdivision of euasterids (euasterids I and II; Fig 6)
and suggested the monophyletic placement of Ebenaceae in Ericales. Lamiales, Solanales, and
Gentianales were clustered into the subdivision of euasterids I, whereas Apiales and Asterales
were included in euasterids II. The tree topology reconstructed using the ML method was con-
sistent with the MP tree topology (54 Fig).

Discussion

In this study, five sequences of Diospyros cp genomes were sequenced and validated using
PCR-based Sanger sequencing. The complete cp genomes ranged from 157,300 to 157,784 bp,
which is within the range of the cp genomes of other angiosperms [51]. Despite the occurrence
of frequent large-scale genome rearrangements and gene loss-and-gain events in several line-
ages of land plants [56, 57], the cp genomes of Diospyros were highly conserved with identical
gene content and gene order and genome structure comprising four parts, as noted in other
angiosperms [58]. Similar to previously published asterid plastid genomes [59, 60], the Dios-
pyros cp genome contained more AT and had a GC content of 37%.

SSRs are widely used markers in population genetics [61, 62] and in phylogenic investiga-
tions [63, 64] because of their high polymorphism even within species. A total of 283 SSR loci
were identified in the five Diospyros cp genomes; most of them were intergenic sequences, indi-
cating numerous variations in these regions. Most of the mononucleotide repeats were A/T
stretches, contributing to the rich A/T content in the cp genomes of Diospyros and suggesting
that most of the cp SSRs are short polyadenine (polyA) or polythymine (polyT) repeats [34].
Thus, Diospyros cp microsatellites might be useful tools in ecological and evolutionary studies,
which warrants further research.
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PLOS ONE | DOI:10.1371/journal.pone.0159566 July 21,2016 10/18



el e
@ ) PLOS ‘ ONE Complete Chloroplast Genomes of Diospyros

S. miltiorrhiza

100
100 L——— S indicum
Lamiales
100 B. hygrometrica
o ——— O. europaea
e
o)
-—— 100 .
|72} C. arabica
= 100 .
o Gentianales
A. nivea
83
N. tabacum
100 120 Solanales
I. purpurea
P. ginseng
= 100 Apiales
%)
= D. carota
—
2L 1100
0
‘§ H. annuus
w | 100 Asterales
100
T. caeruleum
V. macrocarpon
100
97 L A chinensis
2 92| —— C. yunnanesis Ericales
[0)
et
<
D. kaki
= 100
%)
®
o0 A. polysticta
S. noctiflora
Caryophyllales
S. oleracea

100

PLOS ONE | DOI:10.1371/journal.pone.0159566 July 21,2016 11/18



el e
@ ) PLOS ‘ ONE Complete Chloroplast Genomes of Diospyros

Fig 6. Phylogenetic tree of the asterid clade. The tree was reconstructed based on 61 protein-coding sequences shared by 19
angiosperm species. The numbers at the nodes indicate bootstrap values (1000 replications).

doi:10.1371/journal.pone.0159566.g006

Global alignment between Ebenaceae and other published cp genomes in Ericales indicated
that the IR regions were more conserved, probably because of copy correction by gene conver-
sion when mutations are introduced into IRs [65]. The significant difference between the cp
genome of V. macrocarpon and that of other species might have been caused by multiple struc-
tural rearrangements in its cp genome [25]. Seven intergenic regions with rich variation were
included in the 13 hotspots reported in the plastid genomes of several plants, including asterids
[66]. These regions could be developed as interspecific DNA markers for the phylogenetic anal-
ysis in Ericales.

The IR regions play an important role in stabilizing plastid genome structure [67]. Although
IRs are highly conserved, IR contraction and expansion events are common in the evolutionary
history and are mainly responsible for length mutations of plastid genomes [51, 68]. In this
study, we compared the IR/SC junctions within Ericales. The IR/SC junctions of Diospyros
were similar and showed little difference with those of Actinidiaceae, Theaceae, and Primula-
ceae. The cp genome of Ericaceae was significantly different from those of others, further con-
firming the rearrangements during its evolution [25]. Our results indicated that the cp
genomes might be conserved in closely related species, whereas species belonging to different
families might have greater diversity, such as the large inversions in the cp genome of Eucom-
mia ulmoides [69] and one inverted repeat loss in Astragalus membranaceus [70].

Phylogenetic trees reconstructed using different sequences indicated the closer relationship
between D. kaki and D. oleifera. This finding is consistent with that of our previous study
based on SSR and ITS regions (S5 and S6 Figs) [71, 72] and with that of a study investigating
taxonomy based on morphology [73]. The morphological characteristics of D. oleifera are simi-
lar to those of D. kaki: both have pistillate flowers, styles that are parted, and branches without
pellicle. However, the branches of D. lotus and D. glaucifolia are covered with pellicle and pistil-
late flower styles are parted halfway. In D. ‘Jinzaoshi’, the branches are covered with pellicle,
but the pistillate flower style is joined (for more details, see [11, 73]). Multiple sequence align-
ment among five Diospyros genomes indicated that most of the indels were intergenic
sequences located in the LSC and SSC regions, which is consistent with the findings of previous
studies suggesting that SC regions are less conserved than IR regions [58, 74, 75]. The large
deletions identified in the cp genome of D. ‘Jinzaoshi’ might have been caused by slipped-
strand mispairing [76] or illegitimate recombination events [77-79]. The indels identified in
the Diospyros cp genomes might have numerous important applications in systematics and
evolutionary biology, such as elucidating the origin of domesticated species [80], tracing bio-
geographic movements [81-83], and clarifying complex relationships among species [84]. Fur-
thermore, these hotspot regions could be used to determine the molecular phylogeny of other
Diospyros species. Previous studies based on morphological as well as ITS and matK sequence
analyses proposed that “Jinzaoshi” does not belong to D. kaki and other related Diospyros spe-
cies and might be a new species of Diospyros [11]. The two large deletions in the cp genome of
D. ‘Jinzaoshi’ and the phylogenetic trees inferred from the five Diospyros cp genomes indicated
that D. ‘Jinzaoshi’ is a new species and should be named in the future.

Both tree topologies reconstructed using the MP and ML methods confirmed the basal posi-
tion of Ericales in asterids and the subdivision of this clade. This is consistent with the findings
of a previous phylogenetic analysis based on the complete cp genomes of 15 asterid species and
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one outgroup [27]. Thirteen out of 16 nodes in the MP tree received a bootstrap support of
100%, suggesting that proper settings were used during the reconstruction. Ebenaceae was
resolved monophyletic, which corroborated the findings of a previous study based on five
genes from the plastid and mitochondrial genomes [85]. Numerous studies use DNA
sequences from complete cp genomes to estimate phylogenetic classification of angiosperms
[86, 87]. Completely sequenced cp genomes comprise abundant phylogenetic information, and
several complete cp genome sequences have been successfully applied to study the phylogenetic
relationships among angiosperms [21, 87]. Better understanding of the evolutionary history of
asterids requires expanded range of sampling.

Conclusion

To our knowledge, this is the first report of the complete cp genome sequence of Ebenaceae.
The sequences of the complete cp genomes of Diospyros and sequencing and assembly strate-
gies can be used as a reference for future cp genome sequencing within Ebenaceae, or even Eri-
cales. The available plastid genomes contain sufficient phylogenetic information to resolve
interspecific relationships, conduct phylogenetic and classification analyses, and trace the ori-
gin of Diospyros, in particular, of economically important plants. Since the majority of D. kaki
are hexaploid, with a few being nonaploid [8], further investigation of its genetic background is
challenging, especially the whole-genome sequencing. D. oleifera could be considered as a
model plant to study D. kaki and its cultivars. Furthermore, our study findings confirmed that
D. ‘Jinzaoshi’ is a new species and indicated that the complete cp sequences might provide a
practical and efficient approach to clarify the phylogenetic relationships among Diospyros
species.
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S3 Fig. Phylogenetic trees reconstructed based on 4 hypervariable sequences of Diospyros.
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$4 Fig. Maximum likelihood tree reconstructed based on 61 protein-coding sequences
shared by 19 angiosperm species.
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S5 Fig. Phylogenetic tree constructed based on the single sequence repeat sequences.
(TIF)

S6 Fig. Phylogenetic tree constructed based on the internal transcribed spacer region

sequences.
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