
R E S EARCH ART I C L E
B IOENG INEER ING
1Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1,
Canada. 2Terrence Donnelly Centre for Cellular and Biomolecular Research, University
of Toronto, Toronto, Ontario M5S 3E1, Canada. 3Department of Molecular Genetics,
University of Toronto, Toronto, Ontario M5S 3E1, Canada.
*These authors contributed equally to this work.
†Corresponding author. Email: pi@kimlab.org

Sun et al. Sci. Adv. 2016; 2 : e1600692 20 July 2016
2016 © The Authors, some rights reserved;

exclusive licensee American Association for

the Advancement of Science. Distributed

under a Creative Commons Attribution

License 4.0 (CC BY). 10.1126/sciadv.1600692
Protein engineering by highly parallel screening
of computationally designed variants

Mark G. F. Sun,1,2* Moon-Hyeong Seo,2* Satra Nim,2 Carles Corbi-Verge,2 Philip M. Kim1,2,3†
Current combinatorial selection strategies for protein engineering have been successful at generating binders against
a range of targets; however, the combinatorial nature of the libraries and their vast undersampling of sequence space
inherently limit these methods due to the difficulty in finely controlling protein properties of the engineered region.
Meanwhile, great advances in computational protein design that can address these issues have largely been under-
utilized.Wedescribe an integrated approach that computationally designs thousands of individual proteinbinders for
high-throughput synthesis and selection to engineer high-affinity binders. We show that a computationally designed
library enriches for tight-binding variants by many orders of magnitude as compared to conventional randomization
strategies. We thus demonstrate the feasibility of our approach in a proof-of-concept study and successfully obtain
low-nanomolar binders using in vitro and in vivo selection systems.
INTRODUCTION
The success of combinatorial selection strategies is evident from their
dominance in the protein engineering field, particularly for the identi-
fication of new antibodies against targets associated with cancer and
other human diseases. Their success can be attributed to their ability
to rapidly construct and screen large libraries to assess protein binding
(1–4). Unfortunately, randomizing more than just eight positions on a
protein with all 20 natural amino acids (208 combinations) exceeds the
capacity of a typical phage library (≈1010), resulting in sequence under-
sampling that is exponential in the number of randomized positions.
Libraries can be biased toward the wild-type sequence or use a reduced
set of amino acids because randomly generated sequences are unlikely
to yield stable and functional proteins (1, 5, 6), thus restricting the ac-
cessible search space to one that is centered on the wild-type sequence.
At the same time, great advances in computational design methodolo-
gies have allowed the systematic evaluation of complete sequence land-
scapes (7–11). Modern design methods are able to identify novel
medium-affinity protein binders (12, 13); however, no current tech-
nique efficiently uses computational methods in combination with
powerful high-throughput screening systems.

Here, we developed a highly parallel protein engineering approach
that, for the first time, directly couples computational protein design
with the combinatorial screening capabilities of phage display and yeast
two-hybrid (Y2H) using custommicroarrays. Custommicroarrays have
previously been used for transcription factor specificity determination
(14) and, more recently, in the screening of natural human peptide
binders (15, 16). Here, we usemicroarrays to directly synthesize the com-
putationally designed variants to construct a full-length variant library
for high-throughput screening. Our approach contrasts with previous
methods whereby computational protein design is used to identify an
initial set of variants that likely have the function of interest, such as
binding. Experimental strategies are subsequently used to optimize the
designed variants, but whose sequence composition is still similar to the
designed variants (17–19). We demonstrate the efficacy of our parallel
protein engineering approach by performing positive design on the hu-
man ubiquitin–ubiquitin specific peptidase 21 (USP21) complex, by
computationally designing 6000 ubiquitin variants for oligonucleotide
synthesis and subsequent selection for binding against USP21 by phage
display and Y2H. Deep sequencing of the final phage and Y2H pools
recovered the variants inhibiting USP21 at low nanomolar concentra-
tions. The approach is highly scalable and generalizable because virtually
any protein scaffold can be used in librarieswith 100,000s of variantswith
current technologies.
RESULTS

Designing the ubiquitin variant library
Using the ubiquitin-USP21 complex as a model, a contiguous 18–amino
acid segment on wild-type human ubiquitin (positions 54 to 71) was
selected for the design (Fig. 1). Previously, positions 64, 68, and 71 were
found to be important forUSP21 inhibition; thus, using this systempro-
vides us with a set of impartial controls to assess our method (20). The
complete sequence landscape of the 18 designed positions encompass
about 2.6 × 1023 possible variants, far exceeding the typical capacities of
≈1010 and ≈106 variants for phage display and for Y2H screening li-
braries, respectively. Rather than creating a library using random se-
quences biased toward the wild-type sequence, we systematically explore
the complete sequence space to select 6000 ubiquitin variants likely to
stably fold and bindUSP21 by using three computational protein design
strategies (Fig. 2).

To capture protein flexibility, we generated alternative protein back-
bonesusing twodifferent ensemble generationmethods aswell as adesign
strategy that uses flexible backbones. Ensembles of the ubiquitin-USP21
complex were created (i) from a 100-nsmolecular dynamic (MD) simul-
ation (21) by extracting structures every 40 ps and (ii) from structures
whose atoms satisfy multiple atomic distance constraints, such as bond
distances, after refining structures whose atoms were randomly initia-
lizedwithin an 8-nm3 cube centered on the input positions as applied by
the CONCOORDmethod (22). For both theMD and the CONCOORD
ensemblemethods, 2500ubiquitin-USP21 complexmodelswere created.
To search for optimal sequences for each backbone in the ensemble that
may tightly bind USP21, we used the Rosetta fixed backbone design
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method (8), a simulated annealing procedure that samples alternative
amino acid side chainswhose configurations are specified by theDunbrack
rotamer library (23). Finally, we used a flexible backbone approach to iden-
tify ubiquitin variants that tightly bind USP21 as employed by the Rosetta
backrub method. For this strategy, alternative protein backbones and
amino acids are explored within the same sampling scheme, whereby
alternative protein backbones are created by rotating atoms around an
axis defined by two Ca atoms and alternative amino acid side chains
are sampled using the Dunbrack rotamer library (10). Starting from
the wild-type ubiquitin-USP21 structure [Protein Data Bank (PDB) ID:
3I3T], tight-binding ubiquitin variants are identified using the MD,
CONCOORD, and Backrub design strategies. For each design strategy,
62,500 ubiquitin variants were created. The best 2000-scoring designs
from each of the three design strategies were selected, for a total of
6000 unique ubiquitin variants tailored forUSP21 binding (Fig. 2). These
variantswere derived from556, 543, and 2000 backbonemodels from the
MD, CONCOORD, and Backrub protein design strategies, respectively.

The MD, CONCOORD, and Backrub designed sequences differed
from the wild-type ubiquitin sequence by 53, 58, and 49% (over the
18 designed positions) on average, respectively (Fig. 3A). These designed
sequences are actually more similar to variants previously recovered by
phage display (20) than to the wild-type sequence, as measured by
Jenson-Shannon divergence (table S1). Shape complementarity assess-
ment of the ubiquitin backbone models for USP21 binding using prin-
Sun et al. Sci. Adv. 2016; 2 : e1600692 20 July 2016
cipal components analysis (PCA) found that the ubiquitin models are
similar to known ubiquitin structures bound to USP21 (PDB ID: 3I3T
and 3MTN). However, compared to each other, the designed backbone
models occupied different regions in three-dimensional space (Fig. 4A).
Furthermore, the median root mean square deviations of the MD,
CONCOORD, and Backrub backbones were 0.63, 0.53, and 0.28 Å, re-
spectively, to thewild-type ubiquitin structure (PDB ID: 3I3T) andwere
0.64, 0.57, and 0.37 Å, respectively, to Ubv21.4, a known variant that
tightly binds USP21 (PDB ID: 3MTN) (20).We find that theMDback-
bones are equally distant from the wild-type and Ubv21.4 ubiquitin
structures, whereas the CONCOORD and Backrub backbone models
show a bias toward the wild-type structure (fig. S1), which may hinder
the identification of tight-binding ubiquitin variants to USP21.

Parallel screening of the designed ubiquitin library
We constructed a library containing all 6000 computationally designed
ubiquitin variants using a customoligonucleotide array. Specifically, oli-
gonucleotides representing each computationally designed variant were
synthesized with a custommicroarray and cloned into phage and yeast
vectors to create screening libraries (Fig. 2). Phage display and Y2H se-
lection strategies were subsequently performed to assess the binding of
the designed ubiquitin variants for tight USP21 binding. In doing so, we
combine the targeted search of ubiquitin variants for USP21 binding by
computational protein design strategies with the screening capabilities
of experimental parallel selection methods.

Tight-binding ubiquitin variants toUSP21were determined by phage
display andY2H selection screens (Fig. 2). For phage display, phage par-
ticles selected after four selection rounds had their phagemid polymer-
ase chain reaction (PCR)–amplified and deep-sequenced, recovering
82,292high-quality sequencing reads, corresponding to 215uniqueubiqui-
tin variants from 88, 82, and 45 variants derived fromMD,CONCOORD,
andBackrubbackbones, respectively (table S3). ForY2H,deep sequencing
was performed on PCR-amplified products from the yeast pools surviving
on synthetic complete dropout medium [SC-leucine-tryptophan-histidine
and3mM3-aminotriazole (3-AT)]. Fromsequencing, 2280high-quality
sequence reads were recovered, corresponding to 84 unique ubiquitin
variants composed of 46, 25, and 13 variants fromMD, CONCOORD,
and Backrub backbones, respectively (table S3). We observed that the
designed variants identified from both phage display and Y2H selection
methods had the critical Phe68 mutation previously found to be neces-
sary for tight USP21 binding (20). Additionally, these selected variants
suggest that Thr66 also plays an important role in binding. These meth-
ods also identified positions 56, 59, 61, 67, and 69 as being important, as
indicated by the strong preference for thewild-type amino acid (Fig. 3, B
andC). Residues at these positions had their side chains oriented toward
the ubiquitin core, giving rise to the observed preference for hydropho-
bic residues. The phage display and Y2H selection methods identified
different ubiquitin variants that tightly bind USP21, with an overlap of
23 to 52% with respect to the Y2H variants (fig. S3). Despite the Y2H
library capacity (106) being smaller than those found for a typical phage
display library (1010), creating a targeted library of computationally de-
signed variants permits alternatives in cell screening strategies to be used,
sidestepping the requirement for the laborious expression and purifica-
tion of the protein targeted by the engineered variants.

Variant validation
To validate the ubiquitin variants identified by our approach, we first
measured the median inhibitory concentration (IC50) values (the
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Fig. 1. Structure of the ubiquitin-USP21 complex. Ubiquitin and USP21
are shown in gray and blue, respectively, with the engineered ubiquitin
region shown in pink.
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concentration to inhibit USP21 activity by 50%) of variants recovered
after four phage display selection rounds. To this end, 10 infected phage
colonies were picked, yielding four unique variants whose geometric
IC50 mean values were 4.4 nM (Ubv10), 9.9 nM (Ubv2), 13.9 nM (Ubv1),
and 40.4 nM (Ubv4) (table S2, Fig. 5A, and fig. S2). The top three bind-
ing variants inhibit USP21 1000 times better than the ubiquitin wild
type whose IC50 value was found to be 18,000 nM (Fig. 5 and table S2).
The IC50 value of Ubv10 is lower than that of Ubv21.4 (20), a USP21
binder generated by conventional phage display, which we found to be
9.4 nM (table S1; its published IC50 value is 2.4 nM). To quantify the
dissociation constant (Kd) for Ubv10, isothermal titration calorimetry
(ITC) was performed, resulting in a Kd of 42 nM (table S4). Together,
Sun et al. Sci. Adv. 2016; 2 : e1600692 20 July 2016
these results indicate that our computational design strategy performs
similarly or better than conventional experimental strategies, despite
validating orders of magnitude of fewer sequences.

To rationalize the tight binding of these four variants, we compared
their associated structuralmodels by superimposing themontowild-type
ubiquitin that is in complex with USP21 (PDB ID: 3I3T) (Fig. 6). Asp60

(Ubv2 and Ubv10), Tyr62 (Ubv2), Arg63 (Ubv2), andHis64 (Ubv4) make
new hydrogen bonds with USP21, whereas Lys63 (Ubv1, Ubv4, and
Ubv10) and Thr66 (Ubv1, Ubv2, Ubv4, and Ubv10) maintained the
original hydrogen bond. Substitution of Glu64 (Ub-WT) by Phe (Ubv1),
Asn (Ubv2), His (Ubv4), or Asn (Ubv10) contributed to themitigation of
unfavorable charge interactions with Asp438 of USP21. Mutating Ser65 to
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Fig. 2. Schematic of the parallel protein engineering strategy. Computational protein design is performed on the human ubiquitin interface
(positions 54 to 71) binding USP21 [Protein Data Bank (PDB) ID: 3I3T]. Fixed backbone design is performed on protein ensembles, whereas flexible
backbone design is performed directly on the initial crystal structure. Unique sequences (2000), 18 amino acids (AA) in length, were extracted for
each of the three design strategies and reverse-translated (NT) for synthesis on a DNAmicroarray. Libraries were constructed by amplifying the DNA
microarray product and were subsequently screened by either phage display or Y2H. Deep sequencing of the final screening products recovered
the designed ubiquitin variants that tightly bound USP21.
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Ala65 (Ubv1, Ubv2, Ubv4, and Ubv10) abolished close contact with Glu395,
and Phe68 (Ubv1, Ubv2, Ubv4, and Ubv10) enables favorable hydro-
phobic interaction with side chains of USP21 (Leu378, Phe423, and Leu450).

Evaluation of the designed sequences
Not all of the 6000 computationally designed ubiquitin variants may be
present in the screening libraries; thus, some variantsmaynot have been
evaluated for binding against USP21 by phage display or Y2H. To assess
all the designed variants, we trained random forestmodels to predict the
variants’ binding affinity for USP21 by using the number of deep se-
quencing reads as a surrogatemeasure for binding affinity. First, we ob-
served a strong correlation (Pearson r = −0.969; P = 0.031) between the
log number of deep sequencing reads and the IC50 values of the four
ubiquitin variants we previously recovered (Fig. 5), rendering the num-
ber of deep sequencing reads a useful surrogate measure for a variant’s
binding affinity toward USP21. The correlation also suggests, assuming
linearity, that after four phage selection rounds, the IC50 upper bound
for the 215 identified variants is 68.1 nM (Fig. 5). Evaluation of the de-
signed variants was performed using the median of 100 random forest
regression models that predicted the log number of deep sequencing
reads. The 100 random forest models were trained on the 215 tight-
binding variants and a matching number of random sequences that
differed for each random forest model. Parameter selection was per-
formed by a grid search over the terminal node size (nodesize) and the
number of sampled variables chosen at each decision split (mtry) and
was assessed by fivefold cross-validation (see Materials and Methods).
The final model identified 92% (24 of 26) of protein variants that tightly
bindUSP21 from a previous phage display study (20), whose sequences
were not present among the 215 designed variants used for training.
Furthermore, the wild-type and random sequences were predicted to
not bind USP21 (fig. S4).
Sun et al. Sci. Adv. 2016; 2 : e1600692 20 July 2016
Using the described random forest model, we assessed the quality of
our computationally designed library.We found that 16.0% (319 of 2000),
8.5% (169 of 2000), and 5.5% (110 of 2000) of the designed sequences
derived from MD, CONCOORD, and Backrub backbones, respectively,
are predicted to tightly bind USP21. To ensure that only tight-binding
variants were selected, the predicted read count of the Ubv21.4 variant
(20)was chosen as a threshold (fig. S4). These predicted variants are high-
ly similar to the 215 variants recovered by deep sequencing, indicating
that the prediction model captures the necessary sequence signals reflec-
tive of low-nanomolarUSP21binding (Fig. 3B and fig. S6). Thepredicted
number of tight-binding variants can also be used to estimate the number
of variants that were present in the phage and yeast libraries by taking
the ratio between the observed and predicted number of variants. This
coarse approximation suggests that 28 to 49% of the designed variants
are incorporated within the phage library, whereas 12 to 15% of the de-
signed variants are present in theY2H library.Note that, for the ubiquitin-
USP21 system, protein ensemble designmethods outperformed the local
backrub sampling strategy. In particular, the fine-grainedpotential energy
function of the AMBER force field used to create theMDprotein ensem-
ble generates backbones that are highly amenable for the identification of
tight-binding ubiquitin variants for USP21, despite the protein ensem-
ble being derived from the wild-type sequence.

Next, we sought to understand the limitations imposed by naïve (that
is, combinatorial) libraries used by conventional engineering methods,
such as phage display and other selection strategies. To this end, we gen-
erated 10 sets of 1million random sequences following theNNK ran-
domization (N ∈ {A, C, G, T} and K ∈ {G, T}) strategy, while sampling
the wild-type nucleotide 70% of the time, as similarly used for the cre-
ation of large biased libraries (5, 20). Evaluating all the randomized se-
quences using the previously described random forest model for tight
binding (Fig. 3E), we found that the MD, CONCOORD, and Backrub
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Fig. 3. Sequence logos of ubiquitin variants that tightly bind USP21. (A to C) Sequence logos of computationally designed ubiquitin variants derived
from MD, CONCOORD, and Backrub ensembles for (A) 2000 of the best ranked designed variants, (B) variants selected by phage display, and (C) variants
selected by Y2H. (D and E) Sequence logos of ubiquitin variants selected for USP21 binding (D) from a biased naïve library screened by phage display and
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biased toward the ubiquitin wild-type nucleic acid composition 70% of the time. The x and y axes correspond to the designed ubiquitin positions and the
information content in bits, respectively, as determined byWebLogo (39). Amino acids colored black, green, and blue correspond to hydrophobic, neutral, and
hydrophilic residues, respectively.
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methods enrich for the number of tight-binding variants by 14906.5,
7897.2, and 5140.2. That is, a computationally generated library of
90,000 variants (easily accessible using modern oligonucleotide synthe-
sis strategies) would yield as many or more good binders as a standard
random phage library of around 109 variants while also offering many
advantages, such as full control over the biophysical properties as well
as enabling of in-cell screening.

The large number of validated ubiquitin variants enables us to quan-
titatively evaluate structural features necessary for tight binding. Un-
fortunately, ranking computationally designed variants with respect
to binding affinity is a difficult problem because of (i) approximations
made within scoring functions and (ii) the fact that structures used for
design are static instances of a dynamic protein. Hence, not surprisingly,
no strong correlation exists between the deep sequencing read counts and
the Rosetta energy scores of the ubiquitin variants associated with MD,
CONCOORD, and Backrub backbones. A similar observation is found
when comparing theD Rosetta energy scores of the variant andwild-type
Sun et al. Sci. Adv. 2016; 2 : e1600692 20 July 2016
structures. Difficulties associated with designing protein-protein interac-
tion interfaces to enhance interaction affinity (24, 25) prompted the de-
velopment of scoring functions specific for protein interface design,
whereby energy terms of existing functions were reweighted or a reduced
set of terms focused on electrostatics and solvation were used (26–28).
Alternatively, increasing the score contribution of residues within the
interface was found to enhance the recovery of experimentally deter-
mined variants (29). To this end,we searched over different combinations
of energy terms within the Rosetta scoring function and positions on
the protein interface. No correlation was found when simply consid-
ering residues within 5 Å of the designed residues on the ubiquitin
interface. However, focusing on residue side chains on the ubiquitin
interface (positions 60, 63, 64, 65, 66, 68, 70, and 71) oriented towards
the USP21 interface that are within 5 Å of the designed ubiquitin
positions, can a significant correlation be found. By only considering
the Lennard-Jones attractive and repulsion terms from theRosetta energy
function one finds a strong correlation between the deep sequencing
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read counts and energy scores, as observed from the Spearman corre-
lation of −0.30 (P = 0.0041), −0.33 (P = 0.0024), and −0.30 (P = 0.045)
for MD, CONCOORD, and Backrub designs, respectively. Indicating
that after a design procedure a reranking step using only a Lennard-
Jones potential may be beneficial when attempting to maximize the
number of protein variants that tightly bind a protein target.
DISCUSSION

Wehave described a general parallel protein engineering strategy by in-
tegrating high-throughput computational protein design approaches,
oligonucleotide synthesis, parallel screening methods, deep sequencing,
and subsequent computational analysis. In doing so, we combined the
targeted search of ubiquitin variants for USP21 binding by computa-
tional protein design methods with the screening capabilities of exper-
imental parallel selection methods. By directly constructing large
screening libraries composed of full-length designed variants, our
strategy enables us to sidestep the difficult issues of (i) ranking variants
with a computationally expensive scoring function and (ii) testing only
a few highly ranked variants.

We demonstrated our parallel protein engineering approach by ex-
perimentally screening 6000 computationally designed ubiquitin variants
predicted to bind USP21. We find that all attempted computational
design strategies (MD, CONCOORD, and Backrub) successfully iden-
tified multiple ubiquitin variants that tightly bind USP21. These tight-
Sun et al. Sci. Adv. 2016; 2 : e1600692 20 July 2016
binding variants occupy distinct regions in sequence space depending
on the computational design strategy (Fig. 4, C andD, and fig. S4, A and
B), suggesting that multiple protein design strategies are necessary to
fully explore the sequence landscape because each design method has
distinct biases. Because the same search and scoring functionswere used
to identify tight binders from the MD and CONCOORD protein
ensembles, the observedperformance differences among the protein en-
semble design strategies can be attributed to the different protein
backbone conformations being explored by each ensemble generation
method (Fig. 4B). We have shown that protein ensembles initialized
with the wild-type structure can be used to identify many tight-binding
variants. Whereas the backrub flexible backbone design approach gen-
erated ubiquitin conformations highly similar to the wild-type structure
(Fig. 4, A and B), the recovered variants had a sequence composition
distinctly different from the wild-type sequence (Fig. 3, A to C). This
limited exploration of alternative protein backbones is due to the short
backrub trajectories used in this study because only structures similar to
thewild-type structure are explored (Fig. 4A). Furthermore, exploration
of both backbone and sequence space in a single trajectory may hinder
the identification of tight-binding variants because low temperatures
may be necessary for the recovery of tight-binding variants, whereas
higher temperatures may be required for the rapid exploration of
alternative protein backbones.

We find that creating a targeted library by computational design
methods enables diverse sequences to be evaluated that have tight
binding to USP21 as assessed by phage display and Y2H selection
experiments (Figs. 3 and 4, C and D). On the other hand, the naïve
library had a limited diversity because of the wild-type sequence being
sampled 70% of the time at each nucleotide position. Although biasing
for sequences that resemble the wild-type increases the number of var-
iants likely to form a folded protein, it restricts the accessible sequence
space that a screening strategy can search. The large variation in
sequence composition of the variants found to tightly bind USP21 sug-
gests that the ubiquitin sequence landscape capable of low-nanomolar
affinity for USP21 is large and not at all confined to sequences similar
to those of the wild type (Fig. 3, B and C).

Our predictions illustrate that current scoring functions and search
strategies used in computational protein design are efficient in searching
the complete sequence space and honing in on regions containing
nanomolar protein binders but continue to have difficulty identifying
very high affinity binders. That is, current scoring functions can distin-
guish “good” from “bad” binders but are still poor at distinguishing
“very good” from “good.” Our methodology rectifies the problem by
testing thousands of variants.

Computational design methods have been shown to successfully
work in a broad range of systems (12, 13, 30), indicating that our parallel
engineering strategy will be broadly applicable. However, because our
strategy is reliant on computational methods to create the screening
library, its inherent limitation is the availability of suitable protein
structures. This restriction can be partially overcome with homology
modeling and other prediction methods. As additional structures are
deposited into the PDB, our parallel engineering strategy will become
more applicable to a greater number of protein systems. The use of a
random forest model to identify variants not discovered by the exper-
imental screening methods but are likely to tightly bind USP21 may
have limited success because of (i) the number of positions responsible
for tight binding and (ii) the number of tight-binding variants recovered
by the screening methods that can be used as training.
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Recovery of ubiquitin variants inhibiting USP21 with low nano-
molar IC50 concentrations validates our strategy and illustrates that a
small 6000 computationally designed library can recover hundreds of
variants whose sequences are diverse, yet tightly bind a targeted protein.
The ability to rapidly ascertain computationally designed proteins for
binding will be invaluable to the design community as they continue to
refine their methodologies and scoring functions for variant ranking.
With current microarray synthesis technologies, our approach can de-
sign, synthesize, screen, and recover 90,000 protein variants at a reasonable
cost. As microarray synthesis technology advances, both the number of
variants and oligonucleotide length will continue to increase, enabling
larger protein regions to be explored in ever larger libraries. Coupledwith
the increase in computational power and the continued development of
new protein design and deep sequencing strategies, our parallel protein
engineering approach will have a broad impact to the development of
targeted protein binders in both diagnostic and therapeutic settings.
MATERIALS AND METHODS

Model preparation
The human wild-type ubiquitin–USP21 complex (PDB ID: 3I3T) was
used as the initial structure for both ensemble and flexible computation-
al protein design strategies (20). Unresolved loop segments in the
USP21 protein structure (residues 209 to 564) were completed with
the FALC-Loop web server (31). To ensure that asparagine, glutamine,
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and histidine amino acids were correctly oriented, any position with
strong evidence for flipping was corrected by MolProbity4 (32).

Protein backbone ensembles were generated from a 100-ns MD
simulation and from distant constraints using CONCOORD (22).
In total, 2500 backbones were generated for each ensemble. An expli-
cit solvent MD simulation was run with the GROMACS package (21)
using the AMBER force field (33) and the TIP3P water model. Fifty-
one Na+ ions and 61 Cl− ions were added to the solution to achieve
a neutrally charged system. The ubiquitin-USP21 complex was mini-
mized using the steep integrator for 5000 steps, with particle mesh
Ewald (PME) electrostatics using 1.2 Å cutoffs. The system was equili-
brated at constant volume/temperature then at constant pressure/
temperature (Parrinello-Rahman/V-rescale couplings) at 300 K for 5 ps
each. The ensemble used for fixed backbone design is composed of
structures sampled every 40 ps over the 100-ns trajectory. The ubiquitin-
USP21 complex used as input for CONCOORDhad its hydrogen atoms
removed and replacedwith the reduce program fromMolProbity4 (32).
TheCONCOORDdist commandwas runwith parameters “-r -m100,”
and the ensemble was subsequently generated with the disco command
using parameters “-bump -dyn 1.”

To prepare the ensembles for fixed backbone design and the ini-
tial structure for flexible design to be used with the Rosetta energy
function, each chain was separately minimized with the Rosetta
relax program with the flags “-relax:constrain_relax_to_start_coords
-relax:coord_constrain_sidechains -relax:ramp_constraints false -ex1
-ex2 -use_input_sc -flip_HNQ -no_optH false -dun10 true -score:weights
A  Ubv1 B  Ubv2 C  Ubv4

D  Ubv10 E

H68

F423
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L450

F68

E395
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T66

K63

E64

Q63

N64

D438
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T393

K63
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F64
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K63

E64
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R63

Q62

Y62

K63

E64
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Fig. 6. Microenvironment of the ubiquitin-USP21 interface.Molecularmodels for four ubiquitin variants were superimposed onwild-type ubiquitin (PDB
ID: 3I3T). (A toD) Designed residues (bold) for (A) Ubv1 (cyan), (B) Ubv2 (magenta), (C) Ubv4 (yellow), and (D) Ubv10 (green) are shown relative to wild-type
ubiquitin (pink) as colored sticks. USP21 contact residues are shownasgray sticks.Wild-typeubiquitinGlu64was substituted for Phe, Asn, His, andAsn inUbv1,
Ubv2, Ubv4, and Ubv10, respectively, which removes the unfavorable charge interaction with USP21 Asp438. Ala65 substitution for all variants removes the
unfavorable charge interaction with Glu395. (E) Thr66 was maintained in all variants making a hydrogen bond with Glu395, whereas Phe68 facilitates hydro-
phobic interactions with USP21 residues Leu378, Phe423, and Leu450.
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talaris2013.” The ubiquitin-USP21 complex was reconstructed by
merging the twominimized protein structures. Here, we used the Rosetta
software suite version 3.5 (build 2013 week 42) with the Dunbrack
2010 rotamer library (23).

Computational protein design of the ubiquitin interface
Ubiquitin positions 54 to 71 were selected for computational protein
design and could be varied in any of the 20 canonical amino acids. Res-
idues within a 10 Å distance from ubiquitin residues 54 to 71 were
allowed to alter their residue rotamers. The remaining residues had their
rotamers fixed during the design process, thereby limitingmemory con-
sumption. Fixed backbone design was run 25 times for eachminimized
structure in the ensemble, resulting in 62,500 designed protein models,
using the flags “-ex1 -ex2 -dun10 true -score:weights talaris2013 -no_
his_his_pairE -extrachi_cutoff 0 -multi_cool_annealer 10 -nstruct 25.”
For flexible backbone protein design, Rosetta backrubwas executedwith
the flags “-ex1 -ex2 -dun10 true -score:weights talaris2013 -extrachi_cutoff
0 -no_his_his_pairE -backrub:ntrials 10000 -nstruct 25,” resulting in
62,500 designed proteinmodels. For both ensemble and flexible protein
design strategies, the resulting designs underwent a further round of
minimization with the same relaxation flags as above, but the complete
complex was minimized. Computations were performed on the GPC
supercomputer provided by the SciNet HPC Consortium (34).

Oligonucleotide synthesis
Oligonucleotides corresponding to the 6000 computational designed
variants were synthesized using a custom microarray ordered from
CustomArray.

Phage display screening
The ubiquitin variant library was constructed using oligonucleotide-
directed mutagenesis (35). The oligonucleotide library (0.6 mg) was
5′-phosphorylated for 1 hour at 37°C in TM buffer [10 mM MgCl2,
50 mM tris-HCl (pH 7.5)] with 1 mM adenosine 5′-triphosphate
(ATP), 5 mM dithiothreitol (DTT), using a T4 polynucleotide kinase
(1 U/ml; New England Biolabs). The phosphorylated oligonucleotides
were annealed to single-strand template DNA (20 mg) containing the
wild-type ubiquitin sequence fused with the M13 major coat protein
P3 [described by McLaughlin and Sidhu (36)] by incubating at 90°C
for 3 min, at 50°C for 3 min, and at 20°C for 5 min. Complementary
DNA primed by the phospho-oligonucleotides was synthesized and li-
gated by the addition of 10 ml of 10 mMATP, 10 ml of a 10 mM deoxy-
nucleotide triphosphate mixture, 15 ml of 100 mM DTT, 30 Weiss
units of T4 DNA ligase, and 30 U of T7 DNA at 20°C overnight. The
double-stranded DNA was purified using a QIAquick DNA purifica-
tion kit and transformed into Escherichia coli SS320 cells preinfected
with M13KO7 helper phage. The cells were grown overnight in 500 ml
of 2YT medium at 37°C. The supernatant was precipitated by the addi-
tion of one-fifth volume of polyethylene glycol (PEG)–NaCl (20% PEG-
8000 and 2.5MNaCl) and incubated for 5min at 4°C and spun down at
28,880g at 4°C for 20min. The phage pellet was resuspendedwith 20ml
of PBT [phosphate-buffered saline (PBS), 0.05% Tween 20, and 0.2%
bovine serum albumin (BSA)] and stored at −80°C with 20% glycerol.

Phage selection was performed as described elsewhere (15) with mi-
nor modifications. Four wells of 96-well Maxisorp immunoplates were
coatedwith 100 ml of neutravidin (5mg/ml) overnight at 4°C andblocked
with 200 ml of blocking buffer (PBS and 0.2% BSA) for 1 hour at 4°C,
followed by incubation with 100 ml of biotinylated USP21 (10 mg/ml)
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(20) for 30 min at room temperature (20). Ubiquitin phage library
(100 ml) was added to the coated plate and incubated for 1 hour at room
temperature, with gentle shaking. After washing four times with PT
buffer (PBS and 0.5% Tween 20), bound phages were eluted by adding
100 ml of 100 mM HCl to each well, followed by 5-min incubation.
Eluted phages were neutralized with 1:10 volume of 1 M tris-HCl
(pH 11), and 2 ml of E. coli OmniMax in log phase (A600 = ~0.8) was
then infected with 200 ml of the eluted phages for 30 min by incubation
at 37°Cwith shaking at 200 rpm.A final concentration of 1010 phage per
microliter of M13KO7 helper phage was added to the culture and in-
cubated for 45 min at 37°C with shaking at 200 rpm. The culture was
transferred to 50 ml of 2YT with kanamycin (25 mg/ml) and carbenicil-
lin (100 mg/ml) and incubated overnight at 37°C and shaken at 200 rpm.
The cultivated cells were pelleted by spinning at 17,090g for 10min, and
phage particles were precipitated with PEG-NaCl for the following se-
lection. Ninety-six infected colonies were randomly picked from both
selection rounds 3 and 4 and grown in 96-well deep well plates (con-
taining 400 ml of 2YT medium with carbenicillin and M13KO7) over-
night at 37°C with shaking at 200 rpm. One hundred ninety-two wells of
384-well Maxisorp immunoplate were coated with 30 ml of neutravi-
din (10 mg/ml), and another 96 wells were coated with BSA (5 mg/ml)
overnight at 4°C. After blocking the plates with 60 ml of blocking buffer
for 1 hour, 96 wells coated with neutravidin were incubated with 30 ml of
biotinylated USP21 (10 mg/ml) for 30 min at room temperature. The
phage supernatant of 96 colonies was subsequently transferred to fresh
tubes and diluted threefold with PBT buffer, followed by incubation
onto the protein-coated 384-well plates for 1 hour at room temperature
with gentle shaking. After washing eight times with PT buffer, 30 ml of
horseradish peroxidase (HRP)/anti-M13 antibody conjugate (1:5000di-
lution in PBT) was added to each well and then incubated for 30min at
room temperature with gentle shaking. Trimethylboron substrate (30 ml)
was added to thewashedwells, and color developmentwasmonitored for
15 min. HRP reaction was quenched by adding 30 ml of 1.0 M H3PO4,
and the plates were spectrophotometrically read at 450 nmusing a plate
reader. Clones showing four times higher enzyme-linked immuno-
sorbent assay signal of USP21 than neutravidin and BSA were used
for Sanger sequencing.

Y2H screening
USP21 andubiquitin phage librarywere transferred byGateway cloning
(Invitrogen) into Y2H destination vectors pDEST-DB and pDEST-AB,
respectively. Transformation of DB-USP21 and AD-Ubiquitin library
constructs into Saccharomyces cerevisiae was performed using the
LiAc/SS Carrier DNA/PEG method (37). Cells (2.5 × 108) from over-
night culture of Y8800 (MATa) andY8930 (MATa) were added to 50ml
of the prewarmed 2×YPADmedium (final, 5 × 106 cells/ml). Cells were
cultivated at 30°C until the cell titer is 2 × 107 cells/ml. Cells were spun
down at 3000g for 5 min and washed two times with 25 ml of sterile
water. Cell pellets were resuspended with 1 ml of sterile water and were
pelleted again by centrifugation. Cells were finally resuspended with
0.5 ml of sterile water and mixed with transformation mix [240 ml of
50% PEG-3500, 36 ml of 1.0 M LiAc, 50 ml of SS carrier DNA (2 mg/ml),
and 34 ml of plasmid DNA/water mixture]. DB-X or AD-Y constructs
were transformed intoY8930 orY8800, respectively.After vigorous vor-
texing, the resuspended mixture was incubated for 40 min at 42°C. Pel-
leted cells were resuspended with 1 ml of sterile water and plated onto
selection plates (-Leu or -Trp synthetic dropout media). To make dip-
loid cells for Y2H screening, the same number of cultured cells of each
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haploid was mixed and cultivated on 2× YPAD plates. Final diploid
cells (DB-USP21 + AD-Ubiquitin library/DB-USP21 + AD-null) were
tested on four different synthetic complete dropout media with various
concentrations of 3-AT (-Leu-Trp/-Leu-Trp-His/-Leu-Trp-His + 1 mM
3-AT/-Leu-Trp-His + 3 mM 3-AT). After 4 to 6 days of incubation at
30°C, fast-growing colonies from 3 mM 3-AT plates were picked and
regrown on -Leu-Trp plates for Sanger sequencing, whereas all cells on
selection plate were scrapped and used as a template for deep sequen-
cing. Picked colonies were lysed by using zymolyase solution for 3 hours
at 37°C followed by 15min at 95°C andwere then PCR-amplified using
a pair of primers for Sanger sequencing. Selected yeast pools were used
to purify plasmid pools using Zymoprep II (Zymo Research).

Deep sequencing
The phage pools of rounds 3 and 4, the naïve phage library, and pooled
plasmid fromY2Hwere barcoded for Illumina sequencing as previously
described (15). Briefly, phage pools (5 ml) were used as templates for
24 cycles of 50-ml of PCRs using barcoded primers for each reaction
(0.5mMfor each forwardandreverse) andKAPAHiFiHotStartReadyMix
(Kapa Biosystems). The PCR product were confirmed by gel electro-
phoresis (2% agarose gel) by loading 1 ml of the sample with 6× loading
buffer, and the concentration of each PCR products was quantitated
using Quant-iT PicoGreen assay (Invitrogen) (15). PCR products were
pooled as equal quantities and purified using a QIAquick gel extraction
kit. Pooled amplicons were quantified using Quant-iT PicoGreen assay
(Invitrogen). The insert size of the pooled library was confirmed on an
Agilent Bioanalyzer High Sensitivity DNA chip (Agilent Technologies),
and the size-corrected concentration was determined with reverse
transcription quantitative PCR (Kapa Biosystems Illumina standards).
Libraries (11.4 pM) and thePhiX control library (0.6 pM) (Illumina)were
denatured and loaded on a MiSeq V2 sequencing kit, with a paired-end
read length of 250 base pairs.

High-quality deep sequencing reads of the phage selection pools and
Y2H pooled plasmids were identified by selecting short reads whose
minimumPhred score was greater than 30. For the Y2H selection, three
positions were permitted to have aminimumPhred score of 20. Tomit-
igate the number of false positives, ubiquitin variants associated with
greater than or equal to 2 and 5 reads counts were used for the phage
selection pools and Y2H pooled plasmids, respectively.

Purification of protein (USP21 and Ubv)
Selectedubiquitin variants andUSP21were expressed inE. coliBL21(DE3)
and were cultivated to express proteins. Protein expression was induced
by 0.5mMisopropyl-b-D-thiogalactopyranoside atmid-log phase. After
growing the culture overnight at 16°C, the cells were harvested by cen-
trifugation at 14,000g for 10 min. The cells were lysed with a sonicator,
and proteins were purified using Ni–nitrilotriacetic acid agarose (Qiagen)
according to the product manual. Concentration of the purified pro-
teins was determined by measuring the absorption at 280 nm.

USP21 inhibition assay (IC50)
USP21 enzymatic assay was performed with the C-terminal derivatiza-
tion of ubiquitin with 7-amido-4-methylcoumarin (Ub-AMC) (Boston
Biochem). Inhibitory effects of the ubiquitin variants were measured in
the assay buffer [50 mMHepes (pH 7.5), 0.01% Tween 20, and 10 mM
DTT] with 1 mMUb-AMC, 15 nMUSP21, and varying concentrations
of the ubiquitin variants. USP21 and ubiquitin variants were mixed in
the assay buffer and incubated for 30 min at room temperature. The
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reaction was started by the addition of Ub-AMC. Proteolytic activity
of USP21 was observed by the increase of fluorescence emission at
460 nm with excitation at 360 nm for 30 min using a BioTek Synergy
2 plate reader (BioTek Instruments). Activity of USP21 was normal-
ized to noninhibited USP21, and the percent activity was plotted ver-
sus the ubiquitin variant concentrations with a log scale. IC50 values
were calculated by fitting a dose-response curve with a four-parameter
logistic function.

Isothermal titration calorimetry
The purified proteins were dialyzed overnight at 4°C against 50 mM
Hepes buffer (pH7.0)with 500mMNaCl and 1mM2-mercaptoethanol.
Calorimetric titrations were carried out using a MicroCal ITC200

(Malvern), with an operating cell volumeof 205.9ml. Three independent
titrations were performed using the same protein batch with a concen-
tration of 25 mM USP21 in the cell and 339.2 mM for Ubv10. Protein
concentration was determined by absorbance at 280 nm using an ex-
tinction coefficient of 32,890 M−1 cm−1 and 7450 M−1 cm−1 for USP21
and Ubv10, respectively. The syringe was stirred at a speed of 600 rpm
to ensure rapidmixing in the cell. Experiments were carried out at 25°C.
Each titration was initiated with a 0.2-ml injection, followed by 25 to
40 injections spaced 150 s, of 1 to 2 ml. The binding stoichiometry (N),
association constants (Ka), and binding enthalpy (DH) were obtained by
nonlinear regression analysis using a one-independent-type-of-sites
binding model implemented in the Origin 7.0 software.

Predicting deep sequencing read counts from sequence
The random forest regression models were built using the R (version
2.14.1) randomForest package (38). Positive training data were formed
from the 215 sequences recovered fromdeep sequencing the phage pool
after four selection rounds. An equal number of negative training
samples were randomly generated using all 20 natural amino acids over
the 18designedpositions and assigned a sequence read count of 1×10−10.
Parameters were selected using a grid search and fivefold cross-validation
over the terminal node size, and the number of sampled variables cho-
sen at each decision split was selected to be 3 and 7, respectively. Here,
an equal number of tight-binding variants and random sequences,
45 samples each (90 total), were chosen for each fold. This validation
approach was chosen to ensure that enough testing data were available
for each fold when using the Spearman rank correlation as an evalu-
ation metric (fig. S5). In total, 100 random forest models were trained.
This ensemble of random forests is used to predict the deep sequen-
cing counts for all 6000 designed sequences. A count threshold of
0.6125 is used as a lower bound to determine the percentage of the
designed sequences that inhibit USP21 below the IC50 concentration
of 68.1 nM.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/7/e1600692/DC1
fig. S1. Structural comparisons of the ubiquitin backbone models.
fig. S2. IC50 and affinity validation of a subset of the designed ubiquitin variants against USP21.
fig. S3. Venn diagrams of the designed ubiquitin variants recovered by phage display and Y2H.
fig. S4. PCA of sequences identified by Y2H.
fig. S5. Random forest regression model for sequence count prediction.
fig. S6. Sequence logos of ubiquitin variants predicted to tightly bind USP21 by an ensemble
of random forests model for variants derived from MD, CONCOORD, and Backrub.
fig. S7. Y2H screening of ubiquitin library against USP21.
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table S1. Jenson-Shannon divergence of designed ubiquitin variants derived from MD,
CONCOORD, and Backrub ensembles compared to the wild-type sequence and ubiquitin
variants recovered from a biased naïve library.
table S2. IC50 and associated deep sequencing read counts for four selected low-nanomolar
binders to USP21.
table S3. Deep sequencing read counts of ubiquitin variants surviving phage display and Y2H
selections.
table S4. Isothermal titration calorimetry of Ubv10 binding USP21.
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