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Abstract

Fear conditioning researches have led to a comprehensive picture of the neuronal circuit 

underlying the formation of fear memories. In contrast, knowledge about the retrieval of fear 

memories is much more limited. This disparity may stem from the fact that fear memories are not 

rigid, but reorganize over time. To bring clarity and raise awareness on the time-dependent 

dynamics of retrieval circuits, we review current evidence on the neuronal circuitry participating in 

fear memory retrieval at both early and late time points after conditioning. We focus on the 

temporal recruitment of the paraventricular nucleus of the thalamus, and its BDNFergic efferents 

to the central nucleus of the amygdala, for the retrieval and maintenance of fear memories. Finally, 

we speculate as to why retrieval circuits change across time, and the functional benefits of 

recruiting structures such as the paraventricular nucleus into the retrieval circuit.
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 INTRODUCTION

Animals have an extraordinary ability to associate threatening events with sensory stimuli 

(e.g., images, smells or sounds). Such memories can persist long after learning1–3, and this 

persistence is critical for survival4. This evolutionary ability to remember cues that were 

previously associated with danger allows animals to select the most appropriate defensive 

responses5, 6. Decades of research on “fear conditioning” have led to a comprehensive 

understanding of the neuronal circuitry controlling acquisition of fear memories (for recent 

reviews see:7, 8, 9), but much less is known about circuits for retrieval of these memories.
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Part of the challenge in identifying fear retrieval circuits is that memories are not 

permanently stored into a single region, but are gradually reorganized over time (for review 

see:10, 11–13). Recent studies in rodents provide evidence supporting a time-dependent 

reorganization of the fear retrieval circuits following both contextual fear conditioning14–22, 

as well as auditory fear conditioning23–28. However, a systematic comparison of the different 

circuits required during early (hours after conditioning) and late (days to weeks after 

conditioning) retrieval of fear memories is lacking.

In this review, we summarize current evidence on the neuronal circuitry participating in the 

retrieval of auditory fear memories at early vs. late time points. Prior reviews on the retrieval 

of auditory fear memories have focused largely on the 24-hour post-conditioning time point, 

potentially missing temporal changes occurring in the retrieval circuits long after 

conditioning. We will begin by comparing lesion and pharmacological inactivation studies 

with more recent findings incorporating optogenetics, chemogenetics (mediated by designer 

receptors exclusively activated by designer drugs, DREADDs), and electrophysiological 

recordings from identified neurons. Next, we will speculate on the functional significance of 

alterations in retrieval circuits, and how current evidence discussed here could impact the 

design of future experiments in both laboratory animals and humans.

 Early retrieval of fear memories

Before discussing the circuits that mediate the retrieval of fear memories, it is important to 

review the target areas participating in the acquisition of fear memories. There is a general 

consensus that the acquisition of auditory fear memories requires the integration of sensory 

information in the amygdala (for review see:29, 30). Specifically, information about tone and 

shock originating in cortical and thalamic areas converge onto principal neurons of the 

lateral nucleus of the amygdala (LA), leading to synaptic changes that store tone-shock 

associations31–34. Similar conditioning-induced changes in synaptic transmission have been 

recently reported in the lateral portion of the central nucleus of the amygdala35, 36, an area 

that is also critical for fear memory formation37–39. In addition to their role in conditioning, 

LA and CeL are necessary for fear memory retrieval soon after conditioning (up to 24 h). 

We will discuss this in detail in the following sections.

 Amygdala microcircuits necessary for early retrieval—In the last decade, studies 

using lesions or pharmacological inactivation in rodents indicate that activity in the 

basolateral complex of the amygdala (BLA; comprising LA and the basal nucleus of the 

amygdala) is critical for retrieval of fear memory 24 h following conditioning40–43. LA 

neurons project to CeL, as well as to the basal nucleus of the amygdala (BA), both of which 

are connected with the medial portion of the central nucleus of the amygdala44–48. Neurons 

in CeM then project to downstream regions, such as the periaqueductal gray (PAG) and the 

hypothalamus, to mediate autonomic and behavioral correlates of conditioned fear49, 50. 

Tone-evoked responses in LA neurons are increased within one hour following fear 

conditioning51, 52, and persist for several days after learning53–55. Similar conditioned 

responses 24 h after conditioning have been demonstrated in BA56, 57, and inactivating BA 

at this time point impairs fear retrieval40, 56. BA contains a population of glutamatergic 
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neurons in which activity is correlated with fear expression (“fear neurons”), and participate 

in the generation of fear responses by relaying LA activity to the CeM8, 57.

Similar to BA, retrieval of fear memories at the 24 h time point activates neurons in CeM, 

and pharmacological inactivation of CeM with the GABAA agonist muscimol impairs fear 

retrieval39, 58. In contrast to CeM, muscimol inactivation of CeL promotes freezing 

behavior39, consistent with inhibitory control of CeM by CeL. In fact, it has been suggested 

that the release of CeL-mediated inhibition in CeM is critical for the expression of freezing 

during retrieval of fear memory36, 39, 59. This disinhibition hypothesis is also supported by 

electrophysiological findings showing two populations of inhibitory neurons in CeL 24 h 

following fear conditioning: one exhibiting excitatory tone responses (CeLON neurons), and 

another exhibiting inhibitory tone responses (CeLOFF neurons)39. The CeLOFF neurons, a 

fraction of which can be accounted for by their expression of protein kinase C-delta, project 

to CeM and are hypothesized to drive the tonic inhibition of CeM neurons39, 59. CeLON 

neurons selectively inhibit their CeLOFF counterpart, which presumably leads to the 

disinhibition of CeM output neurons during fear memory retrieval.

There also exists a functional dichotomy within CeL based on the discordant expression of 

the neuropeptide somatostatin (SOM; CeL-SOM+ neurons and CeL-SOM− neurons). 

Whereas optogenetic silencing of CeL-SOM+ neurons impairs fear memory retrieval, 

optogenetic activation of CeL-SOM+ neurons induces fear responses in naïve mice36. 

Additional experiments are necessary to determine if CeL-SOM+ neurons overlap with 

CeLON neurons. A similar disinhibitory mechanism has been described in the amygdala for 

the medial intercalated cells (mITCs), a group of GABAergic cells located in the 

intermediate capsule of the amygdala between BLA and central nucleus of amygdala 

(CeA)60–62. During early fear retrieval, excitatory inputs from LA neurons excite the dorsal 

portion of mITCs generating a feed-forward inhibition of their ventral portion. The reduction 

in activity in the ventral portion of mITCs release CeM output neurons from inhibition, 

thereby allowing fear responses to occur (for review see:8)

 Early retrieval requires the prelimbic cortex—The medial prefrontal cortex 

(mPFC) has long been suspected of regulating emotional responses in animals and 

humans63–65. Two subregions of the rodent mPFC, the prelimbic cortex (PL) and the 

infralimbic cortex (IL), have emerged as being antagonistic to each other in the regulation of 

fear memories. Whereas PL activity is necessary for fear retrieval soon (24 h) after 

conditioning27, 42, 66, IL activity at this same time point is critical for fear extinction 

learning 67–69.

PL neurons display increased tone-evoked firing 24 h after conditioning, which mirror the 

time course of freezing behavior70, 71. In this way, PL activity predicts the magnitude of fear 

responses72. Conditioned responses of PL neurons depend on BLA inputs, as 

pharmacological inactivation of BLA decreased both spontaneous activity and tone 

responses in putative PL projection neurons73. Consistent with this idea, a recent study 

combining retrograde tracing with optogenetic techniques demonstrated that “fear neurons” 

of BA project exclusively to PL, and optogenetic silencing of these projections 24 h after 

conditioning inhibits fear retrieval74.
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Previous neuroanatomical studies have demonstrated that PL not only receives projections 

from BLA, but also projects to this region75, 76. Silencing of PL projections to BLA with 

optogenetic techniques 6 h after conditioning impaired fear memory retrieval27, suggesting 

that PL exerts a top-down modulation of amygdala activity during fear retrieval soon after 

conditioning. Conditioned increases in PL activity may involve disinhibition, as it was 

recently shown that PL interneurons expressing parvalbumin (PV+) decrease their activity 

after conditioning, and optogenetic silencing of these cells augments fear responses77. While 

these findings suggest a critical role of PL interneurons in fear retrieval, further studies are 

needed to investigate if the recently described long-range GABAergic neurons in mPFC78 

can also contribute to fear memory regulation79.

 Later retrieval of fear memories

A growing number of studies indicate that circuits guiding the retrieval of fear memories 

change with the passage of time after conditioning. Below, we review the evidence 

supporting a time-dependent reorganization of the fear circuits, beginning with the auditory 

cortex, a region that is completely dispensable at early time points, but becomes essential at 

late time points.

 Recruitment of auditory cortex for retrieval—Lesions of the auditory cortex 

shortly before or after fear conditioning do not prevent the acquisition or consolidation or 

fear memories, suggesting that the auditory thalamus is sufficient to support fear learning in 

the amygdala80–83. Notably, whereas the auditory cortex is dispensable for the formation of 

fear memory, the secondary auditory cortex (Te2) has a critical role in the retrieval of fear 

memory long after conditioning24, 26. Lesions of Te2 performed 30 d, but not 24 h, after 

conditioning impair fear retrieva 26, and conditioning increases the expression of the 

neuronal activity marker zif268 in Te2 30 d after, but not 24 h after, learning24, 26. Together, 

these results suggest that the role played by the auditory cortex in fear conditioning is not 

restricted to stimulus processing and transmission, but rather, for retrieval of fearful stimuli 

long after associations are established84.

The recruitment of area Te2 for retrieval of auditory fear memory resembles the time-

dependent recruitment of the anterior cingulate cortex (aCC) for retrieval of contextual fear 

memory13. Retrieval of contextual fear information 24 h after conditioning depends on 

activity in the hippocampus, but not in the aCC, whereas retrieval 36 d after conditioning 

depends on activity in the aCC, but not in the hippocampus16. Retrieval of fear memories at 

24 h or 36 d time points was associated with an increase in dendritic spine density in the 

hippocampus or the aCC, respectively21. Interestingly, blocking spine growth in the aCC 

during the first postconditioning week disrupts memory consolidation85. While these studies 

suggests a cellular mechanism underlying the time-dependent involvement of the 

hippocampus and aCC in contextual fear retrieval, whether the Te2 region also undergoes 

temporal plasticity changes following auditory fear conditioning remains to be determined.

 Shifting of retrieval circuits in the prelimbic cortex—Prior studies have 

demonstrated that cortical areas are necessary for retrieval at late but not early time points. 

This raises the question as to the mechanisms involved in the transitions of circuits across 
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time. An important clue comes from PL, a structure previously shown to be necessary for 24 

h retrieval27, 42, 66, 77. A recent study demonstrated that PL is necessary for retrieval of fear 

at both 6 h and 7 d after conditioning, but the target of PL efferent fibers shifts across the 

two time points27. PL neurons projecting to BLA are necessary for retrieval at 6 h (but not 7 

d), whereas PL neurons projecting to the paraventricular nucleus of the thalamus (PVT) are 

required for retrieval at 7 d (but not 6 h) following conditioning. This time-dependent shift 

between retrieval circuits likely involves different populations of neurons in the PL, because 

neurons projecting to BLA or PVT are located in different layers of PL27, 76, 86. While 

further studies on PL circuit dynamics are needed, these findings suggest that time-

dependent changes in PL efferents may serve to reorganize retrieval circuits in subcortical 

targets.

 Basolateral amygdala’s role in late retrieval—The BLA has been classically 

described as a critical region for the retrieval of recently acquired fear memories. However, 

its role in fear memory retrieval long after conditioning is far less clear, with most of the 

evidence coming from experiments using post-training lesion techniques. Indeed, excitotoxic 

lesions of BLA performed 7 days, 14 days, or 16 months after fear conditioning produced 

significant deficits in fear retrieval3, 87, suggesting that BLA is an important substrate to 

store remote fear memories. Nevertheless, because lesion techniques provide an inaccurate 

control of the lesion size, it is difficult to determine whether the effects observed are due to 

non-specific lesion of adjacent areas (e.g. CeA, ITCs). Recent studies employing newer 

methodologies have challenged the idea that BLA is a critical site for the retrieval of fear 

memories several days after conditioning. Inducible silencing of synaptic output from BLA 

neurons after fear acquisition had no effect on fear retrieval tested 3 days later, suggesting 

that BLA is dispensable for fear memory retrieval long after conditioning88, 89.

Further evidence that BLA activity is not required for late fear memory retrieval is our 

finding showing that optogenetic silencing of either BLA neurons or PL-BLA 

communication blocked the retrieval of 6 h-old, but not 7 d-old fear memories27. Consistent 

with this, BLA neurons showed increased expression of the neuronal activity marker cFos 

during fear retrieval at 6 h or 24 h after conditioning, but not 7 d after conditioning27. 

Altogether, there is increasing evidence that although BLA participates in the acquisition 

and early retrieval of fear memory, late retrieval of fear memories may occur independent of 

BLA. A time-limited role of BLA neurons in memory retrieval may augment the availability 

of BLA neurons for new associations, with more permanent storage of emotional memories 

occurring in cortical structures (e.g. mPFC) where contextual and emotional information are 

integrated with circuits involved in decision-making90. While the mechanisms by which fear 

memories are transferred away from BLA remain unclear, the neuronal circuit underlying 

the retrieval of fear memories downstream of the mPFC seems to require a previously 

overlooked structure, the PVT.

 Paraventricular nucleus of the thalamus is recruited for retrieval—The PVT is 

a subdivision of the dorsal midline thalamus that is anatomically connected with multiple 

brain regions known to be involved in fear regulation, including PL, IL, BLA, CeA and 

PAG86, 91, 92. A role of PVT in fear retrieval at the 24 h time point has been suggested by 
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previous studies using lesion or pharmacological inactivation93, 94. Extending these findings, 

a recent study using chemogenetic techniques in mice demonstrated that PVT projections to 

CeL are essential for fear memory consolidation, as well as for the retrieval of fear memory 

at the 24 h time point28. A parallel study combining pharmacological inactivation and 

optogenetic techniques in rats demonstrated that, following conditioning, PVT becomes 

increasingly necessary for fear memory retrieval27. Unlike BLA, PVT is not required for 

retrieval 6 h after conditioning, but is required at 24 h and thereafter. In addition to the 

impairment of fear retrieval, pharmacological inactivation of PVT at late time points (tested 

at 7 and 28 d) significantly hindered fear memory retrieval in a subsequent drug free session, 

suggesting that activity in PVT neurons may also be necessary for the maintenance of fear 

memory27.

These recent findings argue for PVT as an important regulator of fear memories, which 

becomes critical for fear memory retrieval 24 h after conditioning, and raise the following 

questions: 1) When does PVT become recruited into the fear memory circuit? 2) How does 

PVT regulate fear memories? and 3) What are the advantages of PVT recruitment? In the 

following sections, we will discuss current evidence that may help to answer some of these 

questions and also identify the critical experiments needed to fill the knowledge gap.

 When is PVT recruited into the fear circuit?: Both immunohistochemical and 

electrophysiological evidence support the notion that PVT is activated early after fear 

conditioning. PVT displays a significant increase in cFos protein expression immediately 

after conditioning28, and a fraction of PVT neurons displays increased spontaneous firing 

rate within 2 h post conditioning27. However, transient pharmacological inactivation of the 

dorsal midline thalamus, including PVT, immediately prior to conditioning had no effect on 

fear memory retrieval assessed 24 h later93. In addition, chemogenetic inhibition of PVT 

neurons, starting from the onset of conditioning, does not affect the fear conditioning-

induced synaptic plasticity onto SOM+ CeL neurons – a recently identified cellular process 

critical for fear memory formation36 – at 3 h following conditioning28. By contrast, the same 

manipulation does impair this CeL plasticity when assessed at 24 h following 

conditioning28. One possible explanation for the latter effect is that ongoing PVT activity 

following conditioning is required for the consolidation of CeL plasticity. Consistently, 

inhibiting the ongoing PVT activity with a chemogenetic approach that lasts several hours 

(~10 h)95 is sufficient to impair this consolidation process28.

Consistent with this hypothesis, the proportion of PVT neurons showing either increased 

tone responses or changes in spontaneous firing rate increases significantly from 2 h to 24 h 

post-conditioning27. These observations highlight PVT’s importance for the maintenance, 

albeit not for the induction, of fear-evoked synaptic plasticity. Together with the finding that 

PVT becomes critical for fear memory retrieval 24 h, but not 6 h, after conditioning27, 28, 

current evidence indicates that PVT regulates both the long-term expression and 

maintenance of fear memory. In contrast, various features of short-term memory such as 

fear-induced synaptic plasticity (3 h) and fear retrieval (6 h) appear to be PVT-independent.

Another important question regarding the time-dependent recruitment of PVT is whether 

PVT neurons activated early on following fear conditioning are different from those 
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activated later on, when PVT becomes critical for fear memory retrieval and maintenance. A 

partial answer to this question may be found in the observation that PVT neurons displaying 

tone responses 2 h after conditioning are distinct from those neurons displaying tone 

responses 24 h after conditioning27. Nevertheless, to fully address this question, one would 

need to systematically compare large populations of PVT neurons that are activated by fear 

memory retrieval at early vs. late time points. Currently, a wide range of novel experimental 

approaches, which include calcium and/or voltage imaging of identified neuronal ensembles 

in behaving animals would help to tackle this issue96, 97.

 The PVT-amygdala circuit in fear memory regulation: While moderate projections 

from PVT are found in multiple amygdala nuclei, CeL is the main amygdala recipient of 

PVT efferent fibers91, 92. Rats with PVT lesions exhibit a significant increase in stress-

induced cFos expression in the CeL98. Similarly, increased cFos expression was observed in 

CeL when PVT was inactivated during a fear retrieval session93, suggesting that PVT 

normally serves to suppress the recruitment of CeL neurons. CeL inhibition is currently 

thought to be a critical step in the retrieval of fear memories39, 59, raising the possibility that 

PVT may control fear memory retrieval by promoting CeL inhibition. However, such 

inhibition is unlikely a result of inhibitory projections from PVT, as the midline thalamus is 

largely devoid of GABAergic neurons99, 100.

A closer look at the PVT-CeL microcircuit in mice reveals that PVT projections 

preferentially targets SOM+ neurons of CeL, and enhance their excitability28. In addition, 

optogenetic activation of PVT afferents in CeL causes indirect inhibiton of SOM− neurons28, 

consistent with previous observations that SOM+ CeL neurons are powerful local 

inhibitors36. Thus, activation of SOM+ neurons could be the mechanism by which PVT 

promotes CeL local inhibition and thereby fear retrieval. However, the cellular and 

molecular mechanisms underlying PVT’s role in fear memory consolidation and 

maintenance are far less clear. A potential answer may be found in the observation that the 

brain-derived neurotrophic factor (BDNF) mediates PVT-CeL communication28.

BDNF is a critical regulator of neuronal plasticity and synaptic function101, 102, and has 

been heavily implicated in memory formation103. In the fear circuit, BDNF regulates both 

fear learning in the BLA104, 105 and fear extinction in the mPFC106, 107. A pivotal role of 

BDNF has also been reported for the persistence of fear memories108, 109, suggesting that 

BDNF signaling in PVT-CeL may be a potential candidate to mediate the maintenance of 

fear memories. Indeed, BDNF communication between PVT and CeL neurons is critical for 

both fear learning and the long-term expression of fear-induced CeL synaptic plasticity28. In 

addition, because BDNF mediates PVT-CeL neurotransmission, BDNF may subserve PVT’s 

function in fear memory maintenance, although direct evidence for this is lacking.

As previously mentioned, inactivation of PVT inputs to the CeA during a 7d fear memory 

retrieval session impairs the subsequent retrieval of fear memory one day later27. This 

observation is consistent with the idea that PVT-CeA communication is essential for the re-

consolidation of fear memory. Surprisingly, however, fear memory re-consolidation is not 

impaired by intra-PVT blockade of MAP kinase27, a critical mediator of neuronal 

plasticity110. A possible explanation for this finding is that, although PVT may participate in 
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the maintenance and/or re-consolidation of fear memory within the amygdala, it may not be 

a site of plasticity itself. Nevertheless, increased expression of MAP kinase in the PVT has 

been associated with impaired retention of extinction memories in adolescent rats111. 

Activation of MAP kinase signaling in PVT may strengthen the formation of fear memories, 

leading to impaired retrieval of extinction memories during adolescence.

 What are the advantages of recruiting PVT into the fear circuit?: Anatomical studies 

have demonstrated that PVT is reciprocally interconnected with multiple limbic, 

hypothalamic and cortical regions, including the mPFC86, 91, 92. Our understanding of the 

functional role of PVT is mainly based on lesion studies, which characterize PVT as part of 

the brain circuitry controlling both arousal mediated by negative states and adaptive 

responses to stress (for review see:112, 113). Studies in rodents have shown that PVT is 

activated by a variety of physical and psychological stressors including restraint114, 115, foot 

shock116, sleep deprivation117, and forced swim118, 119. In turn, PVT activity has been 

shown to modulate neuroendocrine120, 121, autonomic114, 122 and behavioral responses to 

stress123. Together, these studies suggest that recruitment of PVT during the establishment 

of long-term fear memories may serve to coordinate adaptive responses to stress.

Consistent with this, functional impairments in PVT have been implicated in maladaptive 

responses such as increased vulnerability to stress, exacerbated anxiety phenotypes and 

depressive-like behaviors such as despair, anhedonia and lack of motivation112, 124. Notably, 

pharmacological activation of PVT produces anxiety and fear-like behavior in rats125, 126, 

and increased activity in PVT neurons projecting to the CeA is correlated with depressive-

like behavior in rats119, reinforcing the idea that dysfunction in PVT circuits may lead to the 

maladaptive expression of fear and/or aversive behaviors.

Recent evidence has also implicated PVT in the development of drug seeking and addiction-

related behaviors127, suggesting that malfunctioning in this thalamic subregion may be also 

involved in inappropriate retrieval of reward-associated memories. PVT’s involvement in the 

modulation of maladaptive forms of both aversive and reward processes is intriguing given 

that there is a high comorbidity between mood, anxiety and addiction disorders in 

humans128. However, whether a link exists between PVT dysfunction and the co-expression 

of these pathological phenotypes has yet to be determined. Consistent with the idea of 

coordinating both positive and negative emotional states, PVT is activated by cues 

associated with either food129, 130 or drug reward131–133, as well as by cues associated with 

aversive taste134 or fearful stimuli27, 134, 135. Therefore, encoding of negative valence could 

occur via activation of PVT projections to CeA (as discussed above), whereas encoding of 

positive valence could occur through activation of PVT projections to the nucleus 

accumbens, as previously suggested136, 137.

In addition to its documented role in both defensive and reward-seeking behaviors, PVT has 

also been implicated in the modulation of circadian rhythms and energy balance in rats114. 

Notably, PVT displays diurnal variations in neuronal activity122, and lesions of PVT abolish 

light-induced phase shifts in circadian rhythmicity138. Together, these findings depict a 

potential role for PVT as an important regulator of homeostasis and state-dependent 

behavior. Therefore, unlike BLA, PVT may be well positioned to integrate defensive 
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behaviors elicited by aversive memories with adaptive biological responses, which include 

arousal, stress-adaptation, regulation of circadian rhythms, and control of food intake and 

energy balance (see Fig 2).

 CONCLUSIONS

The studies reviewed here support the idea that the circuits mediating the retrieval of fear 

memories change with the passage of time following conditioning. Although much remains 

to be discovered regarding the mechanisms mediating the reorganization of retrieval circuits, 

the present findings emphasize the importance of investigating - at the molecular, cellular 

and circuit level - how aversive memories are retrieved across time. Prior studies of retrieval 

circuits have uniquely focused at the 24 hours post-conditioning time point, therefore 

ignoring temporal changes that occur later after the acquisition phase. Understanding how 

fear retrieval circuits are restructured over time may be of relevance for the treatment of 

post-traumatic stress disorder (PTSD), given that PTSD patients seek medical assistance 

weeks or even months after the initial trauma139.

The advance of optogenetic tools, combined with calcium imaging and single-unit recording 

of identified neurons, have provided a unique opportunity to understand the temporal 

dynamic of memory reorganization. By manipulating and recording the activity of defined 

neural ensembles during behavior, future studies will identify time-dependent changes in the 

neural circuits mediating long-term retrieval of aversive memories. In addition, imaging 

studies focusing on the temporal modifications of retrieval circuits in humans may help to 

elucidate how aversive memories persist over time, thereby providing alternative targets for 

pharmacological treatment in patients with anxiety disorders.
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Fig. 1. Temporal reorganization of the circuits necessary for retrieval of auditory fear memories
Left - Retrieval of fear memories at early time points after conditioning recruits reciprocal 

activity between the amygdala and PL. During early retrieval, the conditioned tone activates 

auditory thalamus inputs to LA. Increased activity in LA neurons activates Som+ neurons in 

CeL, thereby disinhibiting CeM output neurons that mediate fear responses. Increased 

activity in LA neurons also activates BA neurons interconnected with PL, thereby allowing a 

top-down control of fear retrieval. Right - Retrieval of fear memories at late time points after 

conditioning recruits activity in PL neurons projecting to PVT, as well as PVT neurons 

projecting to CeL. During late retrieval, the conditioned tone activates auditory cortex inputs 

to both LA and PL. Increased activity in PL interneurons inhibits PV+ interneurons, thereby 

disinhibiting PL neurons projecting to PVT. Increased activity in PVT neurons activates 

Som+ neurons in CeL, and consequently disinhibits CeM output neurons that mediate fear 

responses. Legend: PL= prelimbic cortex, sup= superficial, PVT= paraventricular nucleus of 

the thalamus, LA= lateral amygdala, BA= basal amygdala, CeL= lateral portion of the 

central amygdala, CeM= medial portion of the central amygdala, cc= corpus callosum, 3V= 

third ventricle, PV+= parvalbumin positive neurons, Som+= somastotatin positive neurons, 

Som−= somatostatin negative neurons.
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Fig. 2. Recruitment of PVT into the fear circuit may serve to integrate aversive memories with 
adaptive biological responses
The paraventricular nucleus of the thalamus (PVT) is reciprocally interconnected with the 

medial prefrontal cortex (mPFC), the hypothalamus (Hypo), and the central nucleus of the 

amygdala (CeA). In addition, PVT is the major source of inputs to the nucleus accumbens 

(NAcc). This pattern of anatomical connections places PVT in a central position to integrate 

aversive memories and anxiety (through connections with CeA) with adaptive biological 

responses such as arousal and defensive strategies (through connections with the mPFC), 

motivation and control of food intake (through projections to the NAcc), and regulation of 

circadian rhythms and stress responses (through connections with the hypothalamus).
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