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Abstract

Improved diagnostic methods are needed for bronchiolitis obliterans syndrome (BOS), a serious 

complication after allogeneic hematopoietic cell transplantation (HCT) and lung transplantation. 

For proteins candidate discovery, we compared plasma pools from HCT transplantation recipients 

with: BOS at onset (n=12), pulmonary infection (n=16), chronic graft-versus-host disease without 

pulmonary involvement (n=15), and no chronic complications post-HCT (n=15). Pools were 

labeled with different tags [isobaric Tags for Relative and Absolute Quantification (iTRAQ)], and 

two software tools identified differentially expressed proteins (≥1.5-fold change). Candidate 

proteins were further selected using a six-step computational biology approach. The diagnostic 

value of the lead candidate, matrix metalloproteinase-3 (MMP-3), was evaluated by ELISA in 

plasma of a verification cohort (n=112) with and without BOS following HCT (n=76) or lung 

transplantation (n=36). MMP-3 plasma concentrations differed significantly between patients with 

and without BOS (AUC=0.77). Thus, MMP-3 represents a potential non-invasive blood test for 

diagnosis of BOS.

 1. Introduction

Bronchiolitis obliterans syndrome (BOS) occurs following allogeneic hematopoietic cell 

transplantation (HCT) when a transplant donor’s immune system attacks lung tissue, 

ultimately leading to fibrosis of small airways and symptoms of respiratory insufficiency. 

BOS is a manifestation of pulmonary chronic graft-versus-host disease (cGVHD) and is 

associated with high morbidity and mortality (1–6). A similar syndrome occurs in lung 

transplantation recipients. Studies in human lung transplantation recipients and animal 

models suggest that BOS is initiated by immune recognition of foreign antigens in the lung 

epithelia, leading to inflammation and fibroproliferation within the small airways 

(bronchioles), which further results in air trapping and pulmonary insufficiency (1, 7–13). 

Although little is known about the precise mechanisms underlying the initiation or 

progression of BOS, perturbations in cellular, cytokine, and protein profiles have been 

documented in lung tissue and bronchoalveolar lavage (BAL) fluid of lung transplantation 

recipients, supporting the model of an aberrant immune response (14–22). BOS diagnosis in 

allogeneic HCT recipients corresponds to a poor prognosis due to a high infection risk and 

pulmonary failure, with less than 20% survival at 5 years (2). For patients who do survive, 

progressive lung disease is often accompanied by impaired quality of life, decreased 

endurance, compromised ability to perform daily activities, and eventual oxygen 

dependence.

Currently, BOS diagnosis continues to be based on pulmonary function test (PFT) 

parameters reflecting the obstructive lung defect, particularly a decline in forced expiratory 

volume in 1 second (FEV1). For HCT recipients, the 2014 National Institutes of Health 

(NIH) consensus project on diagnostic criteria for BOS were modified from those of the 

2005 NIH consensus to increase the specificity for obstructive lung defects and attempt to 
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identify BOS earlier in its course (23). For lung transplantation recipients, similar to HCT 

recipients, a decline in FEV1 is considered consistent with the onset of BOS and may be 

confirmed by a lung biopsy showing pulmonary fibrosis (7). However, PFTs have shown 

limited value for BOS diagnosis by identifying only the most severe cases (7, 23, 24). 

Therefore, plasma proteins correlated with BOS would be extremely valuable to allow early 

diagnosis, guide treatment choices, and monitor responses.

Herein, we used a mass spectrometry-based approach as a discovery engine to 

unambiguously identify candidate plasma proteins associated with BOS in a discovery 

cohort of 58 HCT recipients. We subsequently used computational biology to characterize a 

list of high-priority protein candidates. Finally, the diagnostic value of the lead candidate, 

matrix metalloproteinase-3 (MMP-3, also called stromelysin-1), was evaluated by enzyme-

linked immunosorbent assay (ELISA) in the plasma of a verification cohort of 112 patients 

with and without BOS following HCT or lung transplantation.

 2. Methods

 2.1. Patients and samples

Three cohorts of patients were included in this study (BOS discovery, BOS verification, and 

cGVHD post-HCT verification). Patients were treated at the University of Michigan, the 

Fred Hutchinson Cancer Research Center, and the Indiana University School of Medicine. 

All patients or their legal guardians provided written informed consent, and the collection of 

samples for studying post-HCT or post-lung transplantation complications was approved by 

the institutional review boards of the University of Michigan, the Fred Hutchinson Cancer 

Research Center, and Indiana University School of Medicine. Heparinized blood samples 

were collected prospectively, either prior or at the time of the onset of symptoms consistent 

with BOS, and at matched time points post-HCT or lung transplantation in patients who did 

not develop BOS. Samples were aliquoted without additives into cryovials and stored at 

−80°C. BOS diagnosis was established after extensive testing for respiratory infections and 

PFT criteria for BOS established by the HCT and lung transplantation consensus (7, 23).

 2.2. Proteomics analysis

The proteomics methods are detailed in the Supplemental Methods in the Supporting 

Information.

 2.3. Six-step computational biology approach

The six-step computational biology approach is detailed in Supplemental Methods in the 

Supporting Information.

 2.4. ELISAs

MMP-3 antibody pairs were purchased from Bio-techne, and an FN1 ELISA kit from 

eBioscience. Samples and standards were analyzed in duplicate according to the 

manufacturer’s protocols. Briefly, capture antibody was coated in 96-well plates (Corning) 

overnight at room temperature (RT). Standards were prepared and plasma samples diluted 

(1:25) and added for 2 hours at RT while mixing on an orbital shaker. After washing, 
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biotinylated antibody was added and incubated for 2 hours. Plates were washed and 

streptavidin-conjugated horseradish peroxidase (SA-HRP) was diluted as recommended and 

added for 30 minutes. The TMB color substrate was prepared and incubated for 6 minutes. 

The reaction was terminated by addition of 1.5 M sulfuric acid, and the absorbance 

immediately determined using a SpectraMax 384plus plate reader (Molecular Devices).

 2.5. Statistical analysis

Differences in characteristics between patient groups were assessed with Student t tests for 

continuous variables and with χ2 tests for categorical variables. Logarithmic (Log2) 

transformed protein values were used in all analyses because of the skewness of the raw 

values. Median protein concentrations from individual samples in the verification cohort 

were compared using the Wilcoxon-Mann-Whitney test. p values were not corrected for 

multiple comparisons in a priori analyses. AUCs were estimated nonparametrically.

 3. Results

 3.1. Proteomics discovery

We first performed a discovery proteomics analysis comparing four pools of plasma in the 

same proteomics experiment. Pool 1 contained plasma from 12 HCT recipients who met 

BOS criteria and with plasma samples available at the onset. Pool 2 contained plasma from 

16 HCT recipients with pulmonary infections who never had BOS during their course. Pool 

3 contained plasma from 15 HCT recipients with cGVHD without pulmonary involvement 

(cGVHD no BOS), and pool 4 contained plasma from 15 HCT recipients with no chronic 

complications (plasma samples collected at a similar time point post-HCT as BOS samples). 

Each pool contained 25 µl plasma and was labeled with a unique tag [isobaric Tags for 

Relative and Absolute Quantification (iTRAQ)] allowing for differential quantification. 

Plasma pools were compared between patients with BOS versus the other three conditions. 

The clinical characteristics of patients in this discovery cohort are provided in Table S1.

The acquired liquid chromatography-tandem mass spectrometry (LC-MS/MS) data were 

analyzed using two approaches and two search engines, Proteome Discoverer™ version 1.4 

(Thermo Scientific) and Mascot™ version 2.4 (Matrix Science) (25). In the Proteome 

Discoverer analysis, a total of 857 proteins were identified with at least one peptide after 

filtering using a stringent 1% peptide-level false discovery rate (FDR; see methods), and of 

these, the levels of 855 proteins (Table S2) were quantified. Of these proteins, 21 were 

upregulated more than 1.5-fold, and 222 proteins were downregulated more than 33% in the 

BOS pool (pool 1) compared with the pool without chronic complications (pool 4). In the 

Mascot™ analysis, a total of 682 proteins were identified after filtering with a significance 

threshold of p<0.01 (see methods). Using the weighted protein abundance ratio in Mascot™, 

the protein abundance ratios were obtained for 462 (Table S3) of the 682 proteins. Of these 

proteins, 62 were upregulated more than 1.5-fold, and 65 were downregulated more than 

33% in the BOS pool (pool 1) compared with the pool without chronic complications (pool 

4). A total of 422 proteins were identified by both approaches, and of these, 5 were 

upregulated more than 1.5-fold and 52 were downregulated more than 33%.
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 3.2. Selection of lead candidates from our computational biology approach

We next applied a computational biology approach to characterize and screen BOS-specific 

proteins from the two mass-spectrometry identification results. The original number of 

proteins identified in the Proteome Discoverer™ analysis was 857 (mapped to 822 genes). 

After six steps of system biology data processing, five BOS-specific proteins were 

characterized (Table 1a and Tables S4, S6) from formed protein–protein interaction network 

module (Figure 1a). The original number of proteins identified in the Mascot™ experiment 

was 462 (mapped to 436 genes). After six steps of computational biology data processing, 

six BOS-specific proteins were characterized (Table 1b and Tables S5, S7) from formed 

protein–protein interaction network module (Figure 1b). The discrepancy between the two 

characterized network modules is due to the complexity of the mass spectrometry techniques 

and the different protein identification and quantification methods implemented in the two 

mass spectrometry data analysis software tools (see Discussion). However, two proteins, 

fibronectin 1 (FN1) and MMP-3, were consistently identified by both approaches, making 

them potential BOS-specific proteins.

 3.3. Validation of MMP-3 by ELISA in a verification cohort

We then evaluated the diagnostic potential of the candidate proteins for BOS diagnosis in a 

verification cohort of 112 transplantation recipients. The clinical characteristics of patients 

in this verification cohort combining HCT and lung transplantation are described in Table 2. 

We categorized plasma samples of the verification cohort into two different groups 

according to the presence or absence of BOS diagnosis: patients after either HCT or lung 

transplantation presenting with BOS (n=40) and patients without BOS (n=72). Plasma from 

healthy donors (n=20) was used as the reference. In patients without BOS, samples were 

obtained at equivalent time points after HCT as from patients with BOS. Recipients of grafts 

from mobilized peripheral blood (PB) or from donors who were not family members were 

overrepresented in the BOS group (26). As previously reported (27), patients who developed 

prior acute GVHD were more likely to develop cGVHD and BOS, but this was not different 

from patients with cGVHD and no BOS (Table S8).

We first analyzed plasma concentrations of both FN1 and MMP3 in a pilot study of 17 BOS 

cases versus 13 controls without BOS. FN1 was not significantly different between the two 

groups in the pilot study (Figure S1), and thus, further analysis focused on MMP3. Plasma 

MMP-3 concentrations were significantly higher in patients with BOS than in patients 

without BOS and healthy donors (p<0.0001; Figure 2A). We next generated a receiver 

operating characteristic (ROC) curve, which represents the false and true positive rates for 

every possible level of MMP3, comparing the patients with and without BOS, and found that 

the area under the ROC curve (AUC) was 0.77 (95% confidence interval: 0.68–0.86; Figure 

2B). These data show that MMP-3 is a sensitive and specific discriminator for the diagnosis 

of BOS in HCT and lung transplantation recipients who exhibit a decline in FEV1. Because 

it was also important to show that MMP-3 is a marker of BOS specifically versus cGVHD, 

we compared MMP-3 plasma concentrations in patients with BOS post-HCT (n=31) versus 

patients with cGVHD but without lung involvement (n=167). The clinical characteristics of 

patients in this cohort of only HCT recipients are described in Table S2. MMP-3 

concentrations were significantly higher in patients with BOS than in patients with cGVHD 
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without BOS (p=0.02; Figure 3) and in HCT patients without cGVHD (p<0.0001; Figure 3). 

Of note, our study was not powered to compare concentrations in patients with versus 

without BOS in the lung transplantation subgroup.

 3.4. MMP-3 plasma concentrations prior to the BOS diagnosis

We next measured the plasma concentrations of MMP-3 on timepoints prior BOS diagnosis 

in 13 HCT and 10 lung transplantation patients with BOS for whom prior onset samples 

were available, to evaluate MMP-3 plasma concentrations kinetics before the diagnosis of 

BOS (Figure 4). Measurements in longitudinal samples showed that MMP3 is not elevated 

in the plasma prior to the onset of BOS as defined by FEV1 criteria, even when the samples 

were taken closer to the diagnosis (30 to 180 days prior).

 4. Discussion

MMP-3 was identified as a candidate plasma protein specific for BOS after HCT and lung 

transplantation via an in-depth tandem MS (MS/MS)–based analysis of plasma combined 

with a multiscale computational biology process: (1) generation of abundance rate from the 

comparison of plasma samples taken from BOS and cGVHD without lung involvement, (2) 

generation of protein–protein interactions pairs in the STRING database and selection of the 

BOS-relevant proteins by the relevance score Rp, (3) computing penalty scores for 

unspecific proteins found in proteomics experiments for cancer and cardiovascular diseases, 

(4) pair-wise baseline transformation and comparison of proteins specific for BOS versus 

pulmonary infection versus cGVHD without BOS, (5) filtering out proteins found in 

proteomics experiments that are not related to BOS using domain knowledge provided by 

experts, and (6) visual exploration of the candidate list using a GeneTerrain computational 

biology visual analytic software tool (28–30). This process enabled us to reduce a list of 

hundreds of proteins to about a dozen proteins with little human selection bias. Furthermore, 

we used this approach for two separate proteomics analyses done with different protein 

search engines and selected proteins reported by both analyses with reliable quantification as 

potential candidate markers. In the identification of protein–protein interaction modules, it 

has been challenging to determine which proteins identified from proteomics results 

represent true positive signals instead of the background as contaminants. One recently 

developed approach involved generation of the Contaminant Repository for Affinity 

Purification (the CRAPome) by aggregating negative controls from multiple studies of 

affinity purification coupled with mass spectrometry (31). By filtering out unspecific 

proteins using the penalty score, we applied a similar approach that is key to increasing the 

specific relevance of the proteins identified. With our approach, we found a protein that was 

not only identified as highly relevant in two separate proteomics analyses but also in a large 

independent cohort with a high AUC. The technique used for protein detection validation 

was a sandwich ELISA that is the most relied-on approach for clinical tests because it is 

highly sensitive and specific due to the extreme affinity of two antibodies recognizing 

different epitopes from the full length of the protein (32, 33).

In this study, we favored the large scale proteomics approach as compared to the hypothesis-

driven approach because 1) an hypothesis-driven approach focusing on MMPs has been 
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performed previously in the context of BOS following lung transplantation (34), and 2) we 

hypothesize that we could find additional proteins using MS/MS proteomics that will not 

have been thought of just based on functional hypothesis as we have shown for other models 

such as acute GVHD markers (i.e. ST2, (35)). The proteomics workflow is used as a 

discovery tool for potential candidate markers; however, in this ITRAQ experiment, only one 

protein (MMP3) was validated, which is lower than numbers obtained in our previous IPAS 

experiments (35–37), in proportion to the number of proteins quantified (approximately 

2000 vs. 500, respectively). This suggests that lower sensitivity is achieved with the ITRAQ 

workflow as compared to the IPAS workflow. The mostly likely explanations for the 

differences between the ITRAQ workflow vs. the IPAS workflow are: (i) a lower plasma 

volume was processed (20–50 µl vs. 300 µl), and (ii) single-dimensional fractionation at the 

tryptic peptide level vs. two-dimensional fractionation only then followed by tryptic 

digestion. Based on the different biochemical conditions between IPAS and iTRAQ, it is 

quite possible that some classes/types of proteins could be favored in one method versus the 

other. Due to the prohibitive cost and labor intensity of multi-dimensional fractionation such 

as was done in IPAS (480 pools), we do not consider future workflows involving IPAS, and 

instead we have already taken several steps to improve the sensitivity and quantification of 

our current MS/MS workflow for future studies that include better depletion of higher 

abundant proteins, use of Tandem Mass Tag (TMT) labeling, longer LC-MS elution 

gradient, and optimizing mass spectrometry data collection.

MMPs are prominent contributors to microenvironmental signaling, because these 

proteolytic enzymes degrade structural components of the extracellular matrix (ECM), 

permitting tissue remodeling. Additionally, MMPs can release cell-bound inactive precursor 

forms of growth factors, degrade cell–cell and cell–ECM adhesion molecules, activate 

precursor zymogen forms of other MMPs, and inactivate inhibitors of MMPs and other 

proteases (38). MMP-3 in particular has been shown to promote the epithelial–mesenchymal 

transition (EMT) that can result in tissue fibrosis (39). It is important to note that MMP-3 is 

not the only protease capable of initiating EMT (39). In our study, MMP-10 (stromelysin-2) 

was also identified and upregulated in the BOS proteomics experiment but did not pass our 

six-step computational biology filtering process. In addition, to formally prove that our 

approach targeted the most biologically relevant proteins, we measured MMP-10 plasma 

concentration by ELISA and did not observe a difference in MMP-10 levels between 

patients with and without BOS (data not shown). Elevated plasma levels of MMP-9, and 

TIMP-1 have been previously associated with BOS after lung transplantation (34), but in our 

proteomics study, these proteins were identified and found increased in both BOS and 

cGVHD samples. Thus, they were not selected by our computational biology process. 

During the acute phase of GVHD, MMPs inhibitors such as TIMP-1 have been found 

elevated more often than the MMPs per se (40, 41). However, MMPs have been reported to 

be correlated with inflammation as well, and MMP-9 was shown in a small cohort of HCT 

patients to be correlated with acute GVHD (42) and that suppression of MMP-9 by a 

plasmin inhibitor attenuated murine acute GVHD (43). In our knowledge, there is no studies 

on MMPs correlated with chronic GVHD.

Few other potential biological correlates of BOS following HCT have been proposed using a 

hypothesis-driven approach such as lung epithelial proteins: Clara cell secretory protein-16 
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(44) and Serum Krebs Von Den Lungen-6 (45), or BAFF levels and CD19+CD21low B cells 

(46).

The combination of discovery proteomics analysis and computational biology is an efficient 

method for reducing a list of thousands of proteins to a short list of candidate proteins that 

can be validated by ELISA. This method combines various information sources, including 

protein quantification, protein–protein interaction networks, and domain knowledge from 

experts, making it a powerful approach for distinguishing proteins related to BOS from those 

not related. While the method successfully identified candidate proteins in this study, it still 

has weaknesses. First, the mass spectrometry-based protein identification and quantification 

analysis is not robust due to the low abundances of candidate proteins and the complexity of 

data. It is common to identify only one peptide in a candidate protein using bottom-up mass 

spectrometry because of the low abundance. As a result, “one hit wonders” in protein 

identification are often reported, which may introduce many false-positive identifications. 

This was the main reason for the discrepancies between the two protein lists reported by 

Proteome Discoverer and Mascot. Second, the filtering process heavily relies on domain 

knowledge of experts, which plays an important role in filtering out proteins that are 

commonly observed in plasma but are not related to BOS. This reliance on expert domain 

knowledge makes it difficult to apply this method to diseases that have not been well 

studied.

Although tested in a relatively small cohort, MMP-3 appears to represent a non-invasive 

blood test for diagnosis of BOS as defined by FEV1 criteria. MMP-3 plasma concentrations 

kinetics showed that MMP-3 is not elevated in the plasma prior to the onset of BOS, even 

when the samples were taken closer to the diagnosis (30 to 180 days prior) suggesting that 

MMP-3 is augmented only when FEV1 is decreased and thus represent a non-invasive aid 

for diagnosis rather than a prognostic test. If MMP-3 correlation with BOS is confirmed in 

future prospective studies and further correlated to risk for poor clinical outcomes, MMP-3 

measurement may provide opportunities for future therapeutic intervention to minimize BOS 

severity or to stabilize the disease. It has recently been shown that Fluticasone, 

Azithromycin, and Montelukast (FAM) inhalation treatment halted pulmonary decline in 

new-onset BOS after HCT in the majority of patients and permitted reductions in systemic 

steroid exposure (47). Indeed, protein levels cutoffs can be used to risk-stratify patients at 

low- or high-risk for developing BOS. As a next step, a prospective multicenter trial should 

include intervention and control strategies. High-risk patients are candidates for FAM 

treatment or additional/different treatment as soon as a diagnosis of BOS is established. In 

the near future, a targeted therapy should also be available (MMPs inhibitors are currently 

under development) (48). Low-risk patients could be randomized for a standard intervention 

versus a novel treatment with lower toxicity or more targeted therapies as proposed above. 

Plasma proteins measurement following HCT and lung transplantation will enable precision 

medicine for future clinical trials, just as protein measurement has done for other diseases 

(49).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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 List of abbreviations

AUC area under the ROC curve

BAL bronchoalveolar lavage

BOS bronchiolitis obliterans syndrome

cGVHD chronic graft-versus-host disease

ELISA enzyme-linked immunosorbent assay

EMT epithelial–mesenchymal transition

FEV1 forced expiratory volume in 1 second

FN1 fibronectin 1

HCT allogeneic hematopoietic cell transplantation

iTRAQ isobaric Tags for Relative and Absolute Quantification

LC-MS/MS liquid chromatography-tandem mass spectrometry

MMP-3 matrix metalloproteinase-3

µL microLiter

NIH National Institutes of Health

n number of patients

PFT pulmonary function test

PPI protein–protein interaction

p p-value

ROC receiver operating characteristic

Rp relevance score
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Figure 1. a, Biomarker selection via gene terrain visualization tools shown in a 2D panel obtained 
with the Proteome Discoverer™ proteomics analysis; b, biomarker selection via gene terrain 
visualization tools shown in a 2D panel obtained with the Mascot™ proteomics analysis
MMP-3: matrix metalloproteinase-3; FN1: fibronectin; VWF: von Willebrand factor; 

TIMP1: Metalloproteinase inhibitor 1; TIMP2: Metalloproteinase inhibitor 2; CD44: CD44 

antigen; CSF1R: Macrophage colony-stimulating factor 1 receptor; KIT: Mast/stem cell 

growth factor receptor Kit; LRG1: Leucine-rich alpha-2-glycoprotein.
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Figure 2. a, MMP-3 plasma concentrations measured by ELISA in the BOS verification cohort; 
b, ROC curve comparing patients with and without BOS post-transplantation
a. Individual log2 transformed MMP-3 in ng/ml are plotted for BOS patients (n = 41), no 

BOS patients (n = 71), and healthy donors (n = 20). Wilcoxon-Mann-Whitney test 

comparing the median of BOS vs. no BOS, p<0.0001. b. Area under the ROC = 0.77.
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Figure 3. MMP-3 plasma concentrations measured by ELISA in an HCT cohort of patients with 
cGVHD not of the lung and with BOS post-HCT
Individual log2 transformed MMP-3 in ng/ml are plotted for BOS patients (n = 31), no BOS 

with cGVHD patients (n = 167), and no BOS no cGVHD patients (n = 45). Wilcoxon-Mann-

Whitney test comparing the median: BOS vs. cGVHD, p=0.02; BOS vs. BOS no cGVHD, 

p<0.0001.
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Figure 4. MMP-3 plasma concentration kinetics prior to BOS diagnosis in 13 HCT and 10 lung 
transplantation patients
Individual log2 transformed MMP-3 in ng/ml are graphed at >180 days, 30 to 180 days prior 

to and at the BOS diagnosis. The bold line represents the mean of the cohort.
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