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RAS-like protein expressed in many tissues 1 (RIT1) is a dis-
ease-associated RAS subfamily small guanosine triphosphatase
(GTPase). Recent studies revealed that germ-line and somatic
RIT1 mutations can cause Noonan syndrome (NS), and drive
proliferation of lung adenocarcinomas, respectively, akin to
RAS mutations in these diseases. However, the locations of these
RIT1 mutations differ significantly from those found in RAS,
and do not affect the three mutational “hot spots” of RAS. More-
over, few studies have characterized the GTPase cycle of RIT1
and its disease-associated mutants. Here we developed a real-
time NMR-based GTPase assay for RIT1 and investigated the
effect of disease-associated mutations on GTPase cycle. RIT1
exhibits an intrinsic GTP hydrolysis rate similar to that of
H-RAS, but its intrinsic nucleotide exchange rate is �4-fold
faster, likely as a result of divergent residues near the nucleotide
binding site. All of the disease-associated mutations investi-
gated increased the GTP-loaded, activated state of RIT1 in vitro,
but they could be classified into two groups with different
intrinsic GTPase properties. The S35T, A57G, and Y89H
mutants exhibited more rapid nucleotide exchange, whereas
F82V and T83P impaired GTP hydrolysis. A RAS-binding
domain pulldown assay indicated that RIT1 A57G and Y89H
were highly activated in HEK293T cells, whereas T83P and
F82V exhibited more modest activation. All five mutations are
associated with NS, whereas two (A57G and F82V) have also
been identified in urinary tract cancers and myeloid malignan-
cies. Characterization of the effects on the GTPase cycle of RIT1
disease-associated mutations should enable better understand-
ing of their role in disease processes.

Small GTPase proteins regulate signal transduction through
a conserved “switch” mechanism (1). The GTP-bound state of
these proteins adopts an activated conformation that can bind
to and activate downstream effector proteins, thus driving sig-
nal transduction. Hydrolysis of GTP to GDP then terminates
the signaling event (Fig. 1A). GTPase proteins have the ability to
hydrolyze GTP (intrinsic hydrolysis), and to become reacti-
vated by releasing GDP and binding a new molecule of GTP
(intrinsic exchange), although both of these processes occur
slowly. Most GTPases can be rapidly inactivated by GTPase-
activating proteins (GAPs),6 which catalyze nucleotide hydro-
lysis, whereas guanine nucleotide exchange factors (GEFs) pro-
mote their reactivation by accelerating the exchange of GDP for
GTP. Mutations in small GTPases or their GAPs and GEFs can
disrupt this GTPase cycle and result in diseases such as cancer
and developmental disorders (2, 3).

Recent genetic analyses of Noonan syndrome (NS) patients
have shown that mutations in RIT1 can cause this condition
(Fig. 1B and Table 1) (4 –11). NS is a “RASopathy” characterized
by short stature, distinctive facial features, and heart defects,
caused by mutations in several RAS signaling pathway genes,
including PTPN11, SOS1/2, RAF1, KRAS, NRAS, or BRAF
(12–14). RIT1 belongs to the RAS subfamily, sharing �44%
sequence identity with H-, K-, and N-RAS, but is distinct in that
it has a unique N-terminal extension of unknown function, and
its C-terminal hypervariable region lacks prenylation and
palmitoylation motifs, although reportedly, it can be recruited
to the plasma membrane through a C-terminal polybasic region
(15, 16). There are three splice variants of RIT1: isoform 2 con-
tains 18 extra N-terminal residues relative to RAS; an additional
exon in isoform 1 further extends the N terminus by an addi-
tional 17 amino acids; and isoform 3 initiates at a Met down-
stream of the G1 box and thus lacks a critical component of the
nucleotide binding site (Fig. 1B). In this study, the residue num-
bering is based on RIT1 isoform 2, consistent with previous
studies. RIT1 activates some of the same effector proteins as
RAS, including RAF kinases and RAL GEFs (15), however,
potential GAPs and GEFs for RIT1 remain unknown.

An engineered hyperactivated RIT1 mutant (Q79L, which
corresponds to RAS Q61L) has been reported to transform
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NIH3T3 cells, suggesting that RIT1 signaling could promote
oncogenesis (17, 18). Subsequently, RIT1 mutations were iden-
tified as driver mutations in �2% of lung adenocarcinomas (19),
and more recently RIT1 mutations have been reported in a wide
variety of human cancers, including myeloid malignancies,
hepatocellular carcinoma, breast cancer, and others (20 –23).
The RIT1 disease-associated mutations reported to date (sum-
marized in Fig. 1B and Table 1) are dispersed widely throughout
the gene and affect codons distinct from the three mutational
hot spots in H-, K-, and N-RAS (i.e. Gly-12, Gly-13, and Gln-
61), making it difficult to predict their effects on the GTPase
cycle (19, 21, 23). Several NS-associated RIT1 mutations, S35T,
A57G, A77P, E81G, F82L, F82V, T83P, Y89H, M90I, and G95A,
were shown to be gain-of-function mutations with respect to
activation of the RAS-ERK pathway (4, 5, 9); however, the bio-

chemical properties of these mutants and the mechanisms
underlying their gain-of-function phenotype remain unknown.
In this study we employed a real-time NMR-based GTPase
assay, which can accurately measure intrinsic nucleotide hydro-
lysis and exchange activities with no chemical modification of
the nucleotide (24 –26). We investigated wild-type RIT1 and a
series of five disease-associated mutants and compared the
results with those of the well known small GTPase oncoprotein
RAS.

Results and Discussion

Developing a RIT1 GTPase Assay—To monitor the GTPase
cycle of RIT1 using a real-time NMR assay, 15N-labeled recom-
binant GTPase domain (residues 17–191) of wild-type RIT1
isoform 2 was expressed and purified. A buffer of high ionic
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FIGURE 1. Sequence of RIT1 and location of disease-associated mutations. A, schematic representation of the RIT1 GTPase cycle. The GTP-bound form of
RIT1 interacts with and activates downstream effector proteins, whereas GDP-bound RIT1 is inactive. B, location and frequency of the cancer-associated
mutations (above) and NS-associated mutations (below) identified to date in RIT1. Five disease-associated mutations investigated in this study appear in bold.
C, alignment of RIT1 with RAS isoforms. The conserved G-box motifs are highlighted in purple with non-conserved residues shaded as indicated. Sites of RIT1
mutations investigated in this study and the boundaries of the RIT1 construct used in this study (17–191) are indicated. Mutation sites and non-conserved
residues discussed in this study are listed in the table along with the corresponding residues in H-RAS.
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strength and high pH (450 mM NaCl, pH 8) was required to
prevent precipitation of RIT1 during concentration of the final
NMR sample, so these conditions were used throughout the
purification as well as the GTPase assays described below. The
size exclusion chromatography elution profiles revealed that
addition of 5 �M GDP to the running buffer reduced aggrega-
tion of the protein (data not shown), and RIT1-GDP eluted as a
monomer under these conditions as measured by in-line multi-
angle light scattering (Fig. 2A).

High quality 1H/15N HSQC spectra of RIT1 (0.8 mM) were
obtained for both the GMP-PNP-bound state and the GDP-
bound state under the optimized buffer conditions (Fig. 2B).
Standard triple-resonance backbone experiments were used to
assign 125 cross-peaks for the GDP-bound form (�70% of the
peaks, deposited in the Biological Magnetic Resonance Bank
under BMRB Entry 26787), and 12 residues with high-intensity
peaks that exhibit chemical shift changes upon nucleotide
cycling were chosen as “reporter residues” for the readout of the
GTPase assay.

Comparison of the GTPase Cycles of RIT1 and HRAS—First,
we compared the intrinsic nucleotide exchange and GTP hy-
drolysis rates of RIT1 to those of H-RAS, under the same high
ionic strength buffer conditions (Fig. 3, A and B). When assays
were conducted at pH 8 with 450 mM NaCl, H-RAS nucleotide
exchange was accelerated 5-fold and hydrolysis was decreased
2-fold, relative to rates that we previously determined at pH 7.5
with 100 mM NaCl (25), possibly due to destabilization of ionic

interactions between the nucleotides and the GTPase domain
(Table 2). To initiate nucleotide exchange, a 10-fold molar
excess of the non-hydrolysable GTP analog GTP�S was added
to GDP-loaded GTPase samples, and HSQC spectra were col-
lected in succession to monitor the reaction. Compared with
H-RAS, RIT1 exhibited �4-fold faster nucleotide exchange
(Fig. 3A and Table 2). To measure intrinsic nucleotide hydro-
lysis, the samples were loaded with GTP before collection of
successive HSQC spectra (Fig. 2C). RIT1 exhibited a 2.2-fold
faster hydrolysis rate relative to H-RAS (Fig. 3B).

The Effect of Disease-associated Mutations on RIT1 GTPase
Cycle—Next, we investigated how engineered and disease-as-
sociated mutations affect the GTPase cycle of RIT1. We chose
to study six mutations that have been associated with NS (S35T,
A57G, F82V, T83P, Y89H, and G95A) and an engineered muta-
tion, Q79L. Two of these mutations (A57G and F82V) have also
been found in human cancers. Three of these mutations, S35T,
A57G, and Y89H, increased the intrinsic nucleotide exchange
rate by �4-fold, the Q79L and T83P mutations doubled the
exchange rate, and F82V had no appreciable effect (Fig. 3, C and
D). We then examined the effects of these mutations on GTP
hydrolysis, beginning with RIT1 Q79L, an engineered mutation
of the putative catalytic residue corresponding to RAS Gln-61
(27). As expected, the Q79L mutation strongly impaired
GTPase activity, reducing the hydrolysis rate by 17-fold. Of the
disease-associated mutations, F82V and T83P had the largest
effect on GTP hydrolysis, reducing the rate by �3-fold, fol-

TABLE 1
RIT1 cancer and NS-associated mutations identified in patients

RIT1 residues
Cancer-associated

somatic mutations (No.)
NS-associated germline

mutations (No.)
Corresponding

KRAS4B residues
Conserved

with KRAS4B?

Ser-19 Leu (2) Met-1 No
Lys-23 Glu (2) Asn (1) Lys-K5 Yes
Gly-30 Gly-12 Yes
Gly-31 Arg (2) Gly-13 Yes
Gly-33 Trp (1) Gly-15 Yes
Lys-34 Thr (1) Lys-16 Yes
Ser-35 Thr (9) Ser-17 Yes
Thr-38 Ala (2) Thr-20 Yes
Gln-40 Leu (3) Gln-22 Yes
Arg-45 Gln (2) His-27 Conservative
Asp51 Val (1) D51Y (2) Asp-33 Yes
Ala-57 Gal (1) Gly (24) Ser-39 Conservative
Leu-74 Met (1) Leu-56 Yes
Ala-77 Pro (3), Ser (2) Pro (1), Ser (1), Thr (5) Ala-59 Yes
Gln-79 Gln-61 Yes
Glu-81 Gln (2), Gly (1) Gly (1), Gln (1) Glu-63 Yes
Phe-82 Cys (4), Leu (3), Val (1), Ile (1) Ile (1), Leu (17), Val (6), Ser(1) Tyr-64 Conservative
Thr-83 Pro (2) Ser-65 Conservative
Ala-84 Val (4)
Asp-87 Asn (1) Asp-69 Yes
Tyr-89 His (2) Tyr-71 Yes
Met-90 Ile (10) Ile (5) Met-72 Yes
Gly-95 Ala (29) Gly-77 Yes
Phe-108 Leu (2) Phe-90 Yes
Arg-112 Cys (2) His-94 Conservative
Arg-122 Leu (3),a (2), Qln (1) Lys-104 Conservative
Gly-133 Glu (1) Gly-115 Yes
Arg-154 Leu (1) Arg-135 Yes
Arg-168 His (2) Arg-149 Yes
Asp-172 Glu (1) Asp-153 Yes
Asp-173 Asn (1) Asp-154 Yes
Arg-180 Leu (1) Arg-161 Yes
Arg-183 His (1) Arg-164 Yes
Ala-192 Thr (3) Ser-172 Conservative
Phe-211 Leu (2) NAb No
Asp-216 Tyr (2) NA No

a Nonsense mutation.
b NA, not applicable.
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lowed by S35T (2.4-fold decrease). The A57G and Y89H muta-
tions each caused a modest (1.5-fold) reduction in hydrolysis
rate (Fig. 3, E and F).

The RIT1 disease-associated mutants investigated in this
study exhibited either a faster nucleotide exchange rate, a
slower hydrolysis rate, or both (Fig. 4A), strongly suggesting
that they would exist in a more highly activated state in vivo. We
propose that these mutants can be classified into two groups
according to their biochemical properties: fast-exchangers ver-
sus slow-hydrolyzers. The fast-exchanger group includes S35T,
A57G, and Y89H, whereas the slow-hydrolyzer group includes
F82V and T83P, as well as the engineered mutant Q79L.

The ratio of the exchange to hydrolysis rates (kE/kH) for RIT1
is 2-fold higher than that of H-RAS under matched high salt
conditions, implying a higher basal activation level. Here we
propose a formula (see “Experimental Procedures”) to predict
the fraction of H-RAS, RIT1, and their mutants in the activated
state, on the basis of their intrinsic exchange and hydrolysis
rates (Fig. 4B). The predicted basal activation level of H-RAS
was 30% at 100 mM NaCl; however, the effects of high salt (450
mM NaCl) on kE and kH increased this value to 84% (Table 2). In
the same high salt buffer, 90% of wild-type RIT1 was predicted
to be in the activated state, primarily because it exhibits faster
exchange (Fig. 4B). However, the basal activation level of RIT1
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would probably be lower under physiological salt concentra-
tions, which we were unable to investigate due protein precip-
itation (extrapolating the effect of salt on H-RAS suggests
�44% basal activation level of RIT1).

The activation of RIT1 was further increased by mutation.
The engineered mutant Q79L was the most highly activated
mutant, with nearly complete GTP loading due to its impaired
ability to hydrolyze GTP. Of the disease-associated mutants,
the fast-exchangers were predicted to exhibit higher overall lev-
els of activation than the slow-hydrolyzers. Mutations that per-
turb both exchange and hydrolysis (S35T and T83P) lead to

particularly high levels of activation (Fig. 4, A and B). Using data
from our previously published characterization of the intrinsic
exchange and hydrolysis rates of H-RAS, we used the same
formula to predict the fraction of activated H-RAS oncogenic
mutants (25). The H-RAS mutants G12V and Q61L are slow-
hydrolyzers, whereas G13D is a fast-exchanger. The impact of
these H-RAS mutations on the intrinsic hydrolysis and
exchange rates (Fig. 4, C and D) increases the basal activation
state from 30 to 70 –99% at 100 mM NaCl. The G13D substitu-
tion introduces a negative charge in the phosphate-binding site
that renders binding of nucleotide less favorable (28). Affinity
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FIGURE 3. Comparison of wild-type RIT1 intrinsic nucleotide hydrolysis and exchange rates with RIT1 mutants and H-RAS. A, intrinsic nucleotide
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NaCl) using real-time NMR. C, nucleotide exchange curves of wild-type versus a series of mutations of RIT1. GDP-bound samples were monitored by real-time
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TABLE 2
NMR-derived hydrolysis and exchange rates for all experiments in this study
S.D. were derived from at least two repeats of the same experiment.

Figure Small GTPase NaCl pH
Exchange

mean � S.D.
Exchange

fold-change
Hydrolysis

mean � S.D.
Hydrolysis

fold-change kE/kH ratio kE/kH fold-change kE/(kH � kE)

mM min�1 min�1

Fig. 3 RIT1 WT 450 8.0 7.8 � 0.7E-2 1 8.8 � 1.3E-3 1 9.0 � 1.6 1 90.0%
RIT1 Q79L 450 8.0 2.1 � 0.1E-1 2.7X above WT 5.10E-04 17.2X below WT 4.1 � 0.2E2 45.8X above WT 99.8%
RIT1 S35T 450 8.0 3.0 � 0.2E-1 3.8X above WT 3.6 � 0.4E-3 2.4X below WT 8.3 � 1.0E1 9.3X above WT 98.8%
RIT1 A57G 450 8.0 4.7 � 1E-1 6X above WT 5.4 � 1.0E-3 1.6X below WT 8.7 � 2.5E1 9.7X above WT 98.9%
RIT1 F82V 450 8.0 7.6 � 0.4E-2 �1 3.0 � 0.7E-3 2.9X below WT 2.5 � 0.6E1 2.8X above WT 96.2%
RIT1 T83P 450 8.0 1.5 � 0.3E-1 2.0X above WT 2.9 � 0.1E-3 3.0X below WT 5.4 � 1.1E1 6.0X above WT 98.2%
RIT1 Y89H 450 8.0 3.2 � 0.5E-1 4.1X above WT 5.7 � 0.2E-3 1.5X below WT 5.7 � 0.9E1 6.3X above WT 98.3%
H-RAS WT 450 8.0 2.0 � 0.2E-2 3.9X below RIT1 4.0 � 0.6E-3 2.2X below RIT1 5.0 � 0.9 1.8X below RIT1 83.4%

Fig. 4 H-RAS WT (1) 100 7.5 3.8 � 0.4E-3 1 8.8 � 0.7E-3 1 4.3 � 0.6E-1 1 30.2%
H-RAS G12Va 100 7.5 2.0 � 0.6E-3 1.8X below WT 8.90E-04 10X below WT 2.2 � 0.7 5.2X above WT 69.2%
H-RAS G13Da 100 7.5 56.7 � 0.7E-3 15X above WT 3.1 � 0.0E-3 2.8X below WT 1.8 � 0.2E1 42X above WT 94.8%
H-RAS Q61La 100 7.5 9.0 � 0.9E-3 2.4X above WT 1.10E-04 80X below WT 8.2 � 0.8E1 190X above WT 98.8%

a See Ref. 25.
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for nucleotide can also be reduced through an engineered
H-RAS mutation (F28L) that disrupts a hydrophobic interac-
tion with the base (29). This approach has been extended to
produce analogous fast-exchange mutants of RhoA, Rac1, and
Cdc42, which better mimic deregulated oncogenic RHO-GEF
activity than mutants with impaired GTP hydrolysis (30). Thus,
mutations that decrease nucleotide affinity can increase nucle-
otide exchange and the activation of small GTPases. It is inter-
esting that three NS-associated mutations in RIT1 (S35T,
A57G, and Y89H) behave like G13D and F28L in H-RAS,
whereas the other two RIT1 NS mutations studied (F82V and
T83P) are akin to G12V and Q61L in H-RAS. Furthermore,
characterization of RASopathy-associated germ-line K-RAS
mutations revealed subsets with fast intrinsic nucleotide
exchange or slow hydrolysis (31). Thus, the proposed formula
uncovered unexpected similarities between RIT1 and RAS
mutants.

Effects of Disease-associated Mutations on Basal Activation of
RIT1 in Cells—It is important to note that the activation state of
RIT1 in vivo is likely to be substantially modulated by GAPs
and/or GEFs, and the effect of RIT1 mutations on sensitivity to
GAP/GEF activities. Currently, no such regulators have been
identified, and this question awaits further investigation. Nev-
ertheless, the overall activation state of a GTPase protein can be
estimated by the fraction that can be pulled down through a
GTP-dependent interaction with the GTPase-binding domain
of an effector protein. We therefore sought to use a RAS-bind-
ing domain (RBD) pulldown assay to compare the basal activa-
tion level of RIT1 and its mutants in cells. Among several char-
acterized RIT1 effectors, we chose BRAF as it had been shown
to be essential for RIT1-mediated activation of ERK, a key sig-
naling event in NS (32). Using NMR, we confirmed that recom-
binant RIT1 binds directly to recombinant BRAF-RBD in a

GTP-dependent manner (data not shown), thus we used BRAF
RBD for RIT1 pulldown assays.

Surprisingly, the engineered mutation of the catalytic residue
(Q79L) did not significantly affect the amount of RIT1 pulled
down by the RBD (Fig. 5), although a similar result was reported
previously by Shi and Andres (32). Among five disease-associ-
ated RIT1 mutants tested, three of them (A57G, T83P, and
Y89H) were pulled down �2-fold more than wild-type by
BRAF-RBD (Fig. 5). The F82V mutant exhibited modest activa-
tion, whereas S35T was not pulled down to a greater extent than
wild-type RIT1 (Fig. 5). Thus the predicted GTP loading of
RIT1 mutants based on their intrinsic hydrolysis (Fig. 4) and
exchange rates is not strongly correlated with the RIT1 activa-
tion state in cells inferred from the results of the BRAF-RBD
pulldown assay, suggesting that mutational effects occur on
multiple levels in cells. For example, some mutations may alter
the sensitivity of RIT1 to the actions of GAPs or GEFs in cells,
which were not present in the GTPase assay. Furthermore, dif-
ferent mutations may differentially impact the affinity of RIT1
for the BRAF RBD probe used to assess activation in the cell,
akin to the previously reported effects of the H-RAS G12V
mutation on ARAF and RGL1 RBD binding (33). It is important
to note that the binding affinity for RAF-RBD is reduced by
most of the germ-line and cancer-associated K-RAS mutations
that have been studied, including those that are distal from the
RBD-binding site (28, 31). The activation state of such mutants
would be underestimated in RBD pulldown assays. The effect of
Q79L mutation is somewhat puzzling, because there is evi-
dence that this RIT1 mutation enhances phosphorylation of
RAF and ERK (4, 19, 32) in the absence of any substantial
increase in binding to BRAF (32), suggesting that additional
regulatory mechanisms may contribute to RIT1-induced ERK
activation.
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FIGURE 4. Effects of RIT1 and H-RAS mutations on the GTPase cycle and GTP loading. A, effect of mutations on exchange (y axis) and hydrolysis (x axis)
expressed as fold-change. B, fraction of wild-type and mutant RIT1 loaded with GTP at steady state calculated as a function of the exchange and hydrolysis rates
(GTPase domain in vitro at 298 K, pH 8.0, in 450 mM NaCl). C, changes in nucleotide exchange and GTP hydrolysis induced by H-RAS mutations in vitro at 298 K
(pH 7.5) in 100 mM NaCl. D, fraction of wild-type versus mutant H-RAS bound to GTP calculated as a function of the exchange and hydrolysis rates in vitro at 298
K (pH 7.5) in 100 mM NaCl.
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Structural Considerations of RIT1 Disease-associated
Mutations—To deepen our understanding of the mechanistic
rationale for the GTPase cycle defects of the RIT1 mutants, we
modeled them using the structure of RIT1-GDP (PDB code
4KLZ) recently solved by Siegal and co-workers,7 and gained
insight into these mutations from the extensive literature avail-
able on characterization of RAS mutations.

In RAS, the G13D mutation accelerates nucleotide exchange
by destabilizing nucleotide binding. A recent crystal structure
of K-RAS G13D revealed that the negative charge of the Asp
substitution in proximity to the nucleotide phosphates creates
unfavorable electrostatic interactions (28). The fast-exchanger
RIT1 mutants each appear to destabilize nucleotide binding
through different mechanisms. The side chain hydroxyl of RIT1
Ser-35 is highly conserved in RAS GTPases, and is involved in
coordinating the Mg2� ion that is required for high affinity
nucleotide binding. The S35T mutation appears to destabilize
nucleotide binding, either by affecting the rotameric dynamics
of the hydroxyl group or by introducing steric hindrance in the
Mg2� binding site (Fig. 6, A–D). A decrease in nucleotide affin-
ity would accelerate nucleotide exchange, consistent with the
gain-of-function phenotype of S35T reported for ELK transac-
tivation (4). It is possible that the S35T mutant may be highly
activated in the GTP-rich cellular environment, but due to its
reduced affinity the nucleotide may be lost during washing in
the RBD pulldown assay, thus hindering the interaction. Inter-
estingly, threonine is found in this position in many GTPases
(ARF, RHO, and RAB subfamilies), but introduction of a more
divergent side chain at the residue corresponding to Ser-35 in
RAS (i.e. RAS S17N) sterically displaces Mg2�, severely desta-
bilizing GTP binding (34). The S17N mutation generates a fre-
quently used dominant-negative RAS mutant that blocks the
activation of wild-type RAS by sequestering and inhibiting RAS
GEFs (35). It was previously demonstrated that an engineered
RIT1 S35N mutation disrupted interactions with putative RIT1
effectors (27), but it is not clear whether this mutant has dom-

inant-negative properties; whereas its overexpression reduced
ELK transactivation (4), its expression at near physiological lev-
els did not reduce ERK phosphorylation (5).

The A57G and Y89H mutations, which cause fast-exchange,
are found in/near switch I and switch II, respectively (corre-
sponding to RAS Ser-39 and Tyr-71, Fig. 1C), and the structure
of wild-type RIT1-GDP suggests that these disease-associated
mutations might perturb Van der Waals interactions between
these hydrophobic side chains and Leu-74 (Fig. 6, E and F).
Disruption of these interactions could destabilize Switch I or
Switch II, respectively, thereby disrupting nucleotide binding
and promoting nucleotide exchange (Fig. 6, E and F). The A57G
and Y89H mutations were highly activated in the RBD pull-
down, and have been shown to enhance activation of ERK (5, 8)
and ELK (4, 9).

The RIT1 G95A protein exhibited severely reduced stability
in vitro, and although some protein was present in the soluble
fraction of Escherichia coli lysate, it precipitated during purifi-
cation. Interestingly, of four NS-associated mutants expressed
in Flp-In T-Rex 293 cells by Chen et al. (5), only G95A exhibited
reduced expression and did not enhance EGF-induced ERK
activation, whereas the other NS mutations (and Q79L)
expressed more highly than wild-type and increased ERK acti-
vation. By contrast, transient overexpression of RIT1 G95A
enhanced ELK transactivation and induced more developmen-
tal defects in zebrafish embryos than wild-type (4), suggesting
that the intrinsic instability of this mutant protein might be
overcome by higher expression levels in zebrafish. The instabil-
ity of this mutant might be explained by impaired nucleotide
binding, akin to other nucleotide-free GTPases such as the RAS
homolog enriched in brain (RHEB) mutant D60K, which fails to
bind GDP and GTP (36) and exhibited markedly reduced sta-
bility and solubility in E. coli expression. RIT1 Gly-95 is located
in a glycine-rich hinge region connecting Switch II to �4. The
corresponding glycine residues in RAS (Gly-77), together with
Gly-75, is thought to confer flexibility on Switch II (37); thus the
G95A mutation might impair nucleotide binding by restricting
the conformation of Switch II. Notably G95A is the most fre-
quent RIT1 mutation associated with NS and thus is very likely
causative, although the underlying mechanism remains
unclear. To date, this mutation has not been reported in cancer.

In RAS, Gln-61 is a key catalytic residue for hydrolysis of
GTP. The RAS Gln-61 side chain forms an H-bond with a
nucleophilic water molecule, which becomes activated to
attack the �-phosphate. The Q61L mutation displaces the
bridging water and significantly decreases GTP hydrolysis (38,
39). The loss of RIT1 GTPase activity caused by the engineered
mutation of the corresponding residue (Gln-79) suggests con-
servation of this type of mechanism, although a structure of
RIT1 in the GTP-bound form is needed to reveal the details.
The two RIT1 mutations that produce slow GTP hydrolyzers,
F82V and T83P, are both in close proximity to Gln-79, suggest-
ing that their impact on nucleotide hydrolysis might stem from
perturbation of the precise positioning of Gln-79. These two
mutations could be analogous to RAS G12V, which impairs
GTP hydrolysis by interfering with the positioning of Gln-61
and the bridging water (38). Mutations of RIT1 Phe-82 to Val or
Leu and T83P have been shown to increase phosphorylation of

7 D. M. Shah, M. Kobayashi, P. H. Keizers, A. W. Tuin, E. Ab, L. Manning, A. A.
Rzepiela, M. Andrews, F. J. Hoedemaeker, and G. Siegal, unpublished data.
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FIGURE 5. Effects of disease-associated mutations on the activation of
RIT1 in cells. HEK293T cells were transfected with empty vector, wild-type
FLAG-RIT1, or FLAG-RIT1 bearing engineered or disease-associated muta-
tions. Activated RIT1 competent for effector binding (i.e. RIT1-GTP) was pulled
down by immobilized GST-BRAF-RBD, and detected in a Western blot using
anti-FLAG (upper panel). The expression of FLAG-RIT1 in the lysate and load-
ing of recombinant GST-RBD were examined by Western blot using anti-FLAG
and anti-GST (lower panel). Endogenous ERK2 was probed to serve as a load-
ing control. Normalized ratios of the band intensities of RIT1 pulled down by
the RBD to the total RIT1 in the lysate are indicated for each RIT1 construct.
The results are representative of experiments performed in duplicate.
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ERK (5), and activation of ELK (4, 9). In addition to fast nucle-
otide exchange, the S35T mutant also exhibited reduced
GTPase activity, which is likely related to perturbation of the
Mg2� ion.

Comparison of the Mutational Profiles of RIT1 and RAS—It is
interesting to note that among the disease-associated RIT1
mutations reported to date, there is only a single example (10)
involving a codon that corresponds to the three RAS hotspots
(i.e. RIT1 Gly-30, Gly-31, and Gln-79). Mutation of codon 79
(CAG) of the cDNA impaired GTP hydrolysis by altering the
catalytic Gln residue; however, in the RIT1 gene this codon
forms the splice site at the 3� end of exon 4, as noted previously
(19). Mutations that affect the second or third position of this
codon would alter the consensus AG splice site motif, likely
disrupting mRNA splicing and yielding a non-functional poly-
peptide. Likewise, mutation of the first position could lead to
premature termination (TAG), or a very rare splice site (GAG)
(40) encoding a Q79E mutation, which by analogy to H-RAS
Q61E might accelerate intrinsic nucleotide hydrolysis (41). Of
the nine possible point mutations of codon 79, only one (i.e.
AAG) would be predicted to produce an activated RIT1 protein
(Q79K); however, AAG is also rarely found at splice sites. The
engineered RIT1 mutation G30V was shown to be less effective
than Q79L or NS-associated mutations at inducing ELK trans-
activation (4). As this manuscript was in revision, a RIT1 G31R
mutation (corresponding to RAS Gly-13) was identified in a
patient with Noonan syndrome (10), however, its biochemical
and functional properties remain to be characterized. It is not
clear why RIT1 Gly-30 and Gly-31 are infrequently mutated
relative to RAS, and whether local DNA sequence or structure
of the RIT1 gene might render these codons less susceptible to
mutation than RAS Gly-12/Gly-13.

Compared with the oncogenic hot spots in RAS isoforms,
cancer-associated mutations of RIT1 are much more dispersed
throughout the sequence (Fig. 1B and Table 1), resembling the
spectrum of RASopathy-associated germ-line RAS mutations

(19, 21, 23). Four of the cancer-associated RIT1 mutations
affect residues (K23E, Q40L, D172E, and M90I) corresponding
to germ-line and low-frequency somatic K-RAS mutation sites
(K5N, Q22E, Q22R, D153V, and M72L) (21, 42). There are sev-
eral examples of the same RIT1 mutation occurring in both NS
and cancer (e.g. A57G, A77P, E81G, F82L, F82V, M90I), sug-
gesting that mutations associated with the two diseases do not
lead to distinct biochemical properties. The most frequently
mutated RIT1 site is Phe-82, where mutations to Cys, Leu, Ile,
and Val have been identified in multiple cancer types, whereas
Leu and Val substitutions have been found in NS patients.
Mutation of the corresponding site in H-RAS (Tyr-64) or
RAP1A (Phe-64) impairs both intrinsic and GAP-mediated
GTP hydrolysis (43).

The high level of RIT1 activation that results from its intrin-
sic hydrolysis and exchange rates underscores the importance
of identifying potential GAP proteins that inactivate RIT1 in
the cell, although none have been identified to date. Resistance
to the catalytic activity of GAPs is the major mechanism by
which oncogenic RAS mutants maintain high activation levels
in cells (39, 44), whereas germ-line RASopathy-associated RAS
mutations are highly variable in their impact on GAP sensitiv-
ity, ranging from undetectable to profound impairment (31,
45). Differential sensitivity to GAP activity might underlie some
of the discordance between in vitro activation of RIT1 mutants
and the RBD pulldown assays from cell lysates, although this
remains to be investigated if a GAP is identified. RIT1 mutants
that are resistant to GAP activity would be dependent on their
intrinsic GTPase activity for inactivation.

Some cancer-associated RIT1 mutations (M90I and A77S)
have been validated as oncogenic drivers (19), but most remain
to be investigated. The cancer-associated mutations are biased
toward highly conserved residues, suggesting that many are
likely to perturb RIT1 function (Table 1).

Functional Implications of Divergent RIT1 Residues—An
alignment of the sequences of RIT1 and three RAS isoforms
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FIGURE 6. Structural analysis of the impact of the RIT1 S35T, A57G, and Y89H mutations on nucleotide binding with comparison to K-RAS G13D and
H-RAS S17N. A, structure of wild-type RIT1-GDP (PDB code 4KLZ) indicating the position of the Ser-35 side chain, which is involved in the coordination of the
Mg2� ion. B, an S35T mutation was introduced into the wild-type RIT1-GDP structure, and the lowest-energy rotamer of the Thr-35 side chain was selected. The
S35T mutation may destabilize the binding of Mg2�, consistent with its accelerated nucleotide exchange. C, mutation of the corresponding H-RAS residue to
Asn (S17N) displaces Mg2� (PDB code 3LO5). D, by contrast, the K-RAS G13D mutation destabilizes nucleotide binding electrostatically through the introduc-
tion of a negatively charged side chain (PDB code 4TQA). E and F, A57G and Y89H mutations were introduced into the wild-type RIT1-GDP and the lowest-
energy rotamer of Y89H was selected. RIT1 A57G and Y89H mutations may disrupt the stability of Switch I and Switch II, respectively.
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reveals some key amino acid substitutions in the switch regions
and the conserved nucleotide-binding G-box motifs (Fig. 1C),
which could be responsible for the faster intrinsic exchange
observed with RIT1. Compared with RAS, RIT1 has substitu-
tions of residues within or immediately adjacent to all five
G-box motifs. Most of these substitutions occur in sites that are
fully conserved between H-, K-, and N-RAS, but exhibit some
divergence across the RAS superfamily, consistent with our
finding that RIT1 nucleotide binding is modestly destabilized,
but not completely disrupted. Interestingly, at many of these
sites (e.g. RIT1 codons His-50, Ala-57, Ala-80, Phe-82, Ser-136,
and Ala-166), the RIT1 side chains are less bulky than those of
RAS, potentially reducing the surface area in contact with the
nucleotide.

Previous mutagenesis studies of some of these sites in H-RAS
shed light on how some of the divergent residues might con-
tribute to the biochemical properties of RIT1. Mutation of
H-RAS Ser-39 or Lys-147 have been shown to destabilize nucle-
otide binding (46 – 48), and both of these positions bear alanine
substitutions in RIT1 (Ala-57 and Ala-166, respectively).
H-RAS Lys-147 lies within the G5 box and interacts with
Phe-28 and Asp-119 through Van der Waals and polar interac-
tions, stabilizing their side chains in conformations that can
form ring stacking and ionic interactions, respectively, with the
nucleotide base (Fig. 7A). H-RAS Ser-39 is adjacent to the G2
box in switch I, where it forms interactions with Asp-54 and
Leu-56 that restrain the switch in a conformation whereby key
G2 residues interact with the nucleotide phosphate groups (Fig.
7D). Substitution of these lysine or serine residues with alanine
in RIT1 destabilizes these interactions, indirectly distorting the
nucleotide binding site (Fig. 7, B and C).

H-RAS mutagenesis experiments suggest that the RIT1 sub-
stitutions in the G3 and G4 boxes (i.e. E62A and C118S, respec-
tively) are unlikely to contribute to faster nucleotide exchange,
but provide insight into other functional properties of RIT1. In
H-RAS, neither the E62A nor the C118S mutation (analogous

to RIT1 Ala-80 and Ser-136) directly impacts intrinsic nucleo-
tide exchange. However, RAS E62A abolishes SOS-mediated
nucleotide exchange, and this was identified as a highly con-
served residue that is required for the GEF-mediated activation
of most small GTPases (49, 50). Substitution of the correspond-
ing residue of RIT1 with Ala, together with the rapid intrinsic
nucleotide exchange rate, suggest that RIT1 might not be reg-
ulated by a GEF in the cell, or that any potential GEF may func-
tion through a non-canonical mechanism. Interestingly, SOS
and EPAC (RAS- and RAP-GEFs, respectively) are required for
RIT1 activation in cells, however, they fail to activate RIT1 in
vitro (51, 52). RAS can be regulated through modification of
Cys-118 by nitric oxide, which destabilizes nucleotide binding
and promotes activation by accelerating nucleotide exchange
(50). Notably, the oncogenicity of K-RAS is reduced by a C118S
mutation (53, 54). Hence, the presence of serine at the corre-
sponding position in RIT1 (Ser-136) argues that RIT1 would
not be regulated by nitric oxide.

Classification of RIT1 GTPase mutants according to their
hydrolysis and exchange properties could be of clinical signifi-
cance for treatment of RIT1-mutant cancers. It was recently
appreciated that specific K-RAS mutations are associated with
different responses to targeted therapies. Colon cancer patients
with K-RAS G13D, but not Gly-12 mutations benefit from the
EGFR inhibitor Cetuximab (55–57), whereas non-small-cell
lung cancers with G12C or G12V mutations responded better
to a MEK inhibitor than those with other K-RAS mutations
(58). The G13D mutation is associated with increased EGF
receptor expression and p53 phosphorylation, which are strik-
ingly different compared with codon 12 and 61 mutations (59).
The number of patients identified with RIT1 mutant tumors to
date is small, and specific targeted therapies for these patients
have not been identified. Nevertheless, stratification of patients
with specific mutations (or the two classes of mutations defined
here) could be important for future analyses of the impact of
RIT1 mutation status on clinical outcomes.
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FIGURE 7. Structural analysis of divergent residues of RIT1 relative to RAS. The crystal structure of RIT1-GDP is shown (PDB code 4KLZ). Substitutions in the
G2 and G5 motifs of RIT1 may destabilize nucleotide binding, resulting in faster nucleotide exchange. Panels A and B, RAS Lys-147 is involved in a stabilizing
network of side chain interactions (A), which is disrupted by substitution with Ala (A166) in RIT1 (B). Panels C and D, RAS Ser-39 (G2) stabilizes a conformation of
switch I that makes favorable interactions with the nucleotide (C), however, this network is disrupted by substitution with Ala (A57) in RIT1 (D).
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Experimental Procedures

Protein Preparation—Human H-RAS (residues 1–171) and
RIT1 isoform 2 (residues 17–191) were expressed as His-tagged
proteins in E. coli (BL21) from the pET28a vector described
previously (60). RIT1 mutations (S35T, A57G, Q79L, F82V,
T83P, Y89H, and G95A) were introduced using QuikChange
site-directed mutagenesis (Stratagene). Bacteria were grown in
minimal M9 media, supplemented with 15NH4Cl (and [13C]glu-
cose to prepare samples for resonance assignment), and protein
expression was induced with 0.25 mM isopropyl 1-thio-�-D-
galactopyranoside at 15 °C overnight. Proteins were purified
using nickel-nitrilotriacetic acid resin, and His tags were
removed by thrombin. The thrombin-cleaved proteins were
further purified through Superdex-75 size exclusion chroma-
tography (GE Healthcare). Following purification from E. coli,
H-RAS and RIT1 are in the GDP-bound form. Depending on
the particular experiment, purified proteins were preloaded
with GMP-PNP, GTP�S, or GTP (Sigma) in the presence of
EDTA, which was removed along with the excess nucleotide
using a G25 resin PD10 desalting column (GE Healthcare). A
construct encoding residues 150 –233 of the RBD of BRAF was
cloned into pGEX-4T2 to express a GST-BRAF-RBD fusion
protein, which was purified as previously described (33).

NMR Spectroscopy—Protein samples were prepared in a
sample buffer containing 20 mM HEPES (pH 8), 450 mM NaCl, 5
mM MgCl2, 2 mM tris(2-carboxyethyl)phosphine hydrochlo-
ride, and 5 �M GDP. The final protein concentrations used in
the real-time NMR assay and backbone chemical shift
assignment experiments were 0.4 and 0.8 mM, respectively.
For GTP hydrolysis assays, proteins were loaded with GTP
by adding a 10-fold molar excess in the presence of EDTA,
and excess reagents were removed by passage through a
desalting column (PD MidiTrap G-25, GE Healthcare). For
nucleotide exchange assays, we found it necessary to add 1
molar eq (0.4 mM) of GDP to the sample to stabilize some of
the RIT1 mutants (e.g. RIT1 A57G precipitated within 15
min at room temperature in the absence of additional nucle-
otide); therefore, all samples were treated in this manner.
Nucleotide exchange was initiated by adding a 10-fold molar
excess of GTP�S to mimic physiological conditions. RIT1
G95A precipitated at 4 °C even in the presence of excess
GDP, and could not be purified, suggesting that its nucleo-
tide binding may be severely impaired.

All NMR data were acquired at 25 °C on an 800 MHz Bruker
AVANCE II spectrometer equipped with a 5-mm TCI Cryo-
Probe or a 600 MHz Bruker AVANCE III spectrometer with a
TXI 1.7-mm CryoProbe. Triple resonance HNCACB, CBCA-
CONH, HNCO, and HNCACO spectra, as well as 1H-15N
HSQC spectra, were collected for the backbone chemical shift
assignments. To monitor the GTPase reaction, 1H-15N HSQC
spectra were collected in succession with 2 scans (5 min) for
nucleotide exchange assays and 8 scans (20 min) for GTP
hydrolysis assays. The spectra were processed with NMRPipe
(61), and analyzed with SPARKY (62). Pairs of peaks that
exhibited distinct chemical shifts in each nucleotide-bound
state and were well resolved from other peaks were selected
as reporters of reactions rates. The fraction of RIT1 in the

GDP-bound state was calculated from IGDP/(IGDP � IGTP),
where I is the peak intensity of reporters, plotted against
time, and fit to a one-phase exponential decay curve using
Prism (GraphPad software). The error was estimated as
described previously (24).

Formula Used for Calculating Level of Intrinsic Activation of
GTPase Proteins—We developed a formula to predict the frac-
tion of RIT1 bound to GTP at steady state when GTP hydrolysis
and nucleotide exchange occur concurrently in the presence of
a constant 10:1 ratio of GTP to GDP, which is consistent with
the cellular GTP to GDP ratio. At steady state, the rate of GTP
hydrolysis is equal to the rate of nucleotide exchange. As hydro-
lysis and exchange are first order reactions, the rates of which
depend on the concentration of reactants, this leads to Equa-
tion 1 (kE, exchange rate constant; kH, hydrolysis rate constant;
FGTP, fraction of GTP-bound RIT1 in total RIT1; FGDP, fraction
of GDP-bound RIT1 in total RIT1). This equation demon-
strates that intrinsic GTP loading of small GTPases is a function
of the ratio of the exchange and hydrolysis rates (kE/kH) in this
isolated system. For this reason, the intrinsic activation level of
a small GTPase can be estimated on the basis of these rate
constants. This level of intrinsic activation does not consider
the activities of GEF-mediated activation or GAP activity. To
date, no RIT1 GAPs or GEFs have been reported.

Cell Lines, Transfections, and Assays of Cellular RIT1
Activation—HEK293T cells maintained in DMEM plus 10%
FBS and antibiotics were transiently transfected using
jetPRIME transfection reagent (Polyplus Transfection, Illkirch,
France) according to the manufacturer’s protocol 1 day after
seeding. 24 h after transfection, cells were starved in serum-free
DMEM overnight before harvesting. The GST-BRAF-RAS
binding domain (RBD) pulldown assay was performed as
described previously (63). Lysates containing 600 �g of total
protein were incubated with 10 �g of GST-BRAF-RBD mixed
with 10 �l of 50% slurry of glutathione resin (GeneScript) in a
total volume of 600 �l for 45 min at 4 °C. The resin was col-
lected and washed three times before bound proteins were
released by boiling the resin in Laemmli sample buffer for 5
min. Samples were then resolved by SDS-PAGE, transferred to
polyvinylidene difluoride membrane, and analyzed by immu-
noblotting to probe for FLAG-tagged RIT1 (anti-FLAG, clone
M2, Sigma) in the pulldown and whole cell lysate, as well as
ERK2 (anti-ERK1/2, Millipore) in the whole cell lysate, and
GST-RBD (anti-GST, Novagen) in the pulldown to ensure
equal loading. IRDye infrared secondary antibodies were used
for visualization in the Odyssey Infrared imaging system (Li-
Cor Biosciences), followed by quantification using Odyssey ver-
sion 3.0 software. Ratios of each FLAG-RIT1 mutant band in
the pulldown relative to whole cell lysate were calculated and
normalized to that of wild-type RIT1.

EQUATION 1.
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